Применения дизельных двигателей в автобусах. Журнал автомобильных инженеров

Проф. д-р. Франц К. Мозер, АВЛ Лист ГмбХ (Prof. Dr. Franz X. Moser, AVL List GmbH)

Введение

За последние десять – двадцать лет произошло ускоренное развитие дизельных двигателей как для легковых, так и для грузовых автомобилей. Значительно увеличились мощности, резко снизилась токсичность отработавших газов, главным образом за счет сокращения выбросов NOx и сажи. Было достигнуто значительное снижение шума, расхода топлива, улучшилась надежность, увеличились интервалы технического обслуживания, особенно для двигателей грузовиков. В результате всего этого дизели стали незаменимыми для всех типов транспортных средств и заняли значительную долю рынка силовых агрегатов (в Европе более 50%).

В настоящее время во всем мире ставится вопрос: по какому пути пойдет дальнейшее развитие дизеля под давлением ужесточающегося с каждым годом законодательства по токсичности транспортных средств? Может быть, в сегменте легковых автомобилей дизели исчезнут совсем, как прогнозируют некоторые эксперты? Ведь и бензиновые двигатели не стоят на месте и догоняют своего дизельного конкурента по расходу топлива. А в будущем дизельные моторы будут еще дороже бензиновых: стоимость и без того уже более дорогого дизеля будет возрастать из-за сложных систем очистки отработавших газов. Какие меры необходимы для того, чтобы сделать дизели будущего конкурентоспособными? Как будут выглядеть дизели будущего для легковых и грузовых автомобилей? Для легковых автомобилей доведенный бензиновый мотор с непосредственным впрыском топлива и турбокомпрессором, несомненно, может стать альтернативой дизелю. Для грузовых автомобилей и промышленности это менее вероятно.

На сегодняшний день дизель обладает самой обширной областью применения и самым большим спектром мощностей среди всех существующих моторов вообще, поэтому заменить его невозможно (рисунок 1). В дополнение следует заметить, что КПД дизельных двигателей, как видно на рисунке, достигает более 40% для малых агрегатов и более 50% у самых больших судовых и стационарных двигателей, что не может быть достигнуто никаким другим типом ДВС.

Рисунок 1. Область применения и КПД дизельных двигателей.


За последние 20 лет произошло удвоение удельной мощности и удельного крутящего момента дизелей легковых автомобилей (рисунок 2).

Рисунок 2. Соотношение удельной мощности к удельному крутящему моменту дизелей для легковых автомобилей.


У дизелей для грузовых автомобилей удельная мощность с 1970 г. увеличилась почти втрое, несмотря на то, что за последние пятнадцать лет токсичность выхлопных газов намного уменьшилась (рисунок 3).

Рисунок 3. Рост удельной мощности дизелей для грузовых автомобилей.


Параллельно этому развитию происходит постоянное увеличение максимального давления в камере сгорания с 90 Бар до 220 Бар (рисунок 4). Подобная тенденция наблюдается и в секторе дизелей для легковых автомобилей, где в недалеком будущем ожидаются максимальные давления в диапазоне от 180 до 200 Бар.

Рисунок 4. Рост максимального давления в камере сгорания дизелей грузовых автомобилей.


Будущие требования к дизелям легковых автомобилей

Из всего множества различных требований стоит особенно обратить внимание на следующие четыре: расход топлива, токсичность, комфорт при вождении автомобиля (например, тяговые качества, ездовые характеристики, акустика) и стоимость двигателя. Благодаря пониженному расходу топлива и хорошим тяговым характеристикам, возникающим при высоком крутящем моменте на низких частотах вращения коленчатого вала, дизель с непосредственным впрыском топлива занял большую долю рынка в Европе. Но уже сейчас, и особенно в перспективе, выполнение будущих законодательств по токсичности, а также относительно высокая себестоимость являются препятствием, преодоление которого будет являться основным направлением дальнейшей работы (рисунок 5).

Рисунок 5. Требования рынка к дизелю для легковых автомобилей.


Законодательство по нормам токсичности отработавших газов, начиная с норм EU4, представлено на рисунке 6. При этом следует учесть, что для достижения норм EU6 или US Tier2, Bin5, которые еще обсуждаются, необходимо разработать и принять множество мер.

Рисунок 6. Законодательства разных регионов по выбросу токсичных веществ для легковых автомобилей.


Еще сложнее будет выполнить будущие ограничения по CO2, особенно если учесть состояние продуктов различных производителей на сегодняшний день (рисунок 7). Прежде всего, производителям более тяжелых автомобилей предстоит большая работа для достижения поставленной цели: 120-130 г/км в 2012 году.

Рисунок 7. Законодательство по ограничению выбросов CO2 – стимулирование развития технологий ДВС.


Особые направления разработок дизелей легковых автомобилей

Учитывая обозначенные выше проблемы дизелей для легковых автомобилей, необходимы особые стратегии развития, нужны новые технические решения и подходы. Существует три возможных пути дальнейшего выполнения требований законодательства по токсичности, схематически представленные на рисунке 8. Во всех трех вариантах необходим фильтр частиц для достижения очень жестких ограничений по выбросам. Для уменьшения выбросов NOx возможно использование:

Рисунок 8. Стратегии уменьшения токсичности отработавших газов дизельных двигателей легковых автомобилей.


1) системы DeNOx, обладающей очень высокими показателями конвертирования;

2) особой организации рабочего процесса (улучшенный обычный рабочий процесс или альтернативный);

3) комбинации вышеуказанных вариантов 1) и 2).

Предположительно в 2015 г. будут реализованы все три варианта.

На данный момент специалисты АВЛ предпочитают способ, основанный полностью на оптимизации рабочего процесса, названный EmIQ (Intelligente Emissionsreduzierung - «умное» снижение токсичности), Рисунок 9.

Рисунок 9. Общий подход АВЛ к доводке рабочего процесса дизеля для легковых автомобилей.


При этом, с одной стороны, рабочий процесс оптимизируется в классическом смысле для достижения пониженных показателей выбросов NOx (рисунок 10), с другой стороны, производится особый контроль процесса сгорания (рисунок 11).

Рисунок 10. EmIQ Ч асть 1, процесс сгорания.


Рисунок 11. EmIQ Ч асть 2, управление рабочим процессом.


В рамках оптимизации рабочего процесса сгорания для достижения требуемого расхода топлива и удельной мощности возможно использование двухступенчатого наддува (рисунок 12) и доводка степени рециркуляции ОГ (в виде «внешней» рециркуляции ОГ - газов низкого давления из выпускного коллектора), рисунок 13.

Рисунок 12. Д вухступенчатый наддув: концепция и эффект.


Рисунок 13. Рециркуляция выхлопных газов низкого давления на дизелях различного назначения.


Для контроля оптимизированного процесса сгорания фирмой АВЛ был разработан основанный на физической модели алгоритм контроля CYPRESS™, основанный на давлении рабочей смеси как входном сигнале, схематически изображенный на Рисунке 14.

Рисунок 14. Основанный на давлении рабочей смеси как входном сигнале замкнутый цикл процесса сгорания, AVL CYPRESSTM.


Такой подход обеспечивает помимо прочего не только низкий выброс вредных веществ, но и ограничение разброса, возникающего из-за производственных погрешностей, что гарантирует стабильность процесса сгорания в течение длительного периода эксплуатации. Помимо этих основных эффектов также достигается ряд других преимуществ, приведенных на рисунке 15. Уже долгое время эксплуатируется демонстрационный автомобиль, показывающий осуществимость достижения ожидаемых результатов.

Рисунок 15. Результаты контроля процесса сгорания как замкнутого цикла AVL CYPRESSTM


Для достижения целей, поставленных к 2015 году, помимо вышеперечисленных подходов необходимы дополнительные решения (рисунок 16).

Рисунок 16. Технологии будущего дизелей для легковых автомобилей.


За счет оптимизации различных решений и технологий станет возможным не только удовлетворить все требования мировых законодательств по токсичности, но и одновременно сохранить или даже улучшить показатели расхода топлива, причем не за счет ухудшения важных для потребителя ездовых качеств, «удовольствия» от во ждения и управления автомобилем. Большим препятствием на этом пути является стоимость производства. Вышеописанные решения повлекут за собой дальнейшее повышение стоимости дизеля, хотя по сравнению со стоимостью доработанного бензинового двигателя разница в стоимости может и уменьшиться, так как и для бензиновых двигателей ожидается подорожание.

В заключение на рисунке 17 приведен обобщенный временной график внедрения вышеуказанных и некоторых дополнительных технических решений. Становится очевидным, что для того, чтобы в 2015 году надежно выполнялись требования к двигателям серийного производства, необходимо не только одновременно комбинировать многие из этих решений, но и начать работы по их разработке/реализации уже сегодня.

Рисунок 17. Пути развития технологий дизельных моторов для легковых автомобилей.


Будущие требования к дизелям грузовых автомобилей

Несмотря на то, что ряд будущих требований к дизелям для грузовых автомобилей аналогичен требованиям к легковым автомобилям, для двигателей грузовых и внедрение компенсирующих решений. На рисунке 18, в отличие от диаграммы для дизелей легковых автомобилей, критерий «удовольствие от вождения» заменен критерием «надежность и долговечность».

Рисунок 18. Требования рынка к дизелям средних и тяжелых грузовиков.


Основным направлением разработок будет компенсация ожидаемых ухудшений, которые возникнут вследствие введения ограничений по токсичности. Это означает, что необходимо искать решения, противодействующие: увеличению расхода топлива, ухудшению надежности и долговечности и увеличению стоимости продукта. В этом сегменте потребитель никогда не пойдет ни на какие компромиссы, особенно касающиеся расхода топлива и долговечности.

Учитывая эти условия, мировые ограничения по токсичности являются особым препятствием. На рисунке 19 представлены максимально допустимые значения выбросов сажи и NOx в США, Японии и Европе, которые будут действовать примерно с 2010 года, а также необходимые для их выполнения значения «сырой» эмиссии. За основу этой оценки взято значение эффективности системы очистки отработавших газов, которое возможно при использовании систем, имеющихся на сегодняшний день.

Рисунок 19. Ограничения токсичности ОГ для дизелей грузового транспорта и необходимые для этого «сырые» эмиссии.


Становится очевидным, что должны быть достигнуты выбросы сажи около 0,08 г/кВт*ч и NOx - 1,5 г/кВт*ч. Это актуально и для Японии, хотя предельно допустимый выброс NOx там менее строг, чем в США и в Европе (0,7 г/кВт*ч). Причиной этого является специфика работы транспортных средств в Японии, которая редко допускает достижение необходимой температуры отработавших газов для обеспечения работоспособности системы их нейтрализации. Эффективность системы очистки ОГ, достигающая в Японии 65-70%, намного ниже, чем в США и Европе, что в конечном итоге требует соблюдения адекватного уровня «сырой» эмиссии.

В отличие от легковых автомобилей, процедура сертификационных испытаний дизелей производится на моторном стенде. При этом проводятся как стационарные, так и нестационарные, так называемые транзиентные испытания, при которых двигатель, в отличие от испытаний двигателей легковых автомобилей, долгое время работает в режиме полной нагрузки. Это сильно усложняет задачу, т.к. в режиме полной нагрузки особенно сложно обеспечить и регулировать необходимую степень рециркуляции отработавших газов.

Грузовые автомобили классифицируются на легкие, средние и тяжелые. Обычно в этих трех классах применяются двигатели с рабочим объемом цилиндров примерно 0,8-1,2-2,0 л/цилиндр, к которым, в зависимости от класса, применяются разные требования. На рисунке 20 изображены основные требования к двигателям в этих классах, причем чем больше рабочий объем цилиндров двигателя (т.е. сам двигатель), тем большее значение придается расходу топлива, надежности и долговечности.

Рисунок 20. Требования к дизелям грузовых автомобилей.


В отношении стоимости двигателя ситуация прямо противоположна, так как легкие грузовые автомобили для доставок товаров к местам назначения особенно дороги в эксплуатации, причем расход топлива здесь не играет большой роли из-за относительно небольших годовых пробегов. Рассматривая будущие технические требования (рисунок 21), стоит отдельно отметить такие параметры, как удельная мощность, максимальное давление сгорания, долговечность и интервалы технического обслуживания.

Рисунок 21. Будущие технические требования к дизелям для грузовых автомобилей.


Значения этих параметров заметно возрастают с ростом рабочего объема двигателя. Также представляет интерес распределение общих эксплуатационных расходов, где для тяжелых грузовиков расход топлива составляет одну треть, что и объясняет такое повышенное внимание к этому параметру.

Особености развития дизелей грузовых автомобилей

Как уже было упомянуто выше, сертификационные испытания дизелей грузовых автомобилей проводятся на моторном стенде. Помимо стационарных испытаний во всех режимах, требуются также и транзиентные испытания, которые отличаются друг от друга в зависимости от страны по типам выбранных нагрузочных режимов. Помимо европейских, японских и американских транзиентных испытаний обсуждается и подготавливается обобщенное, так называемое „World Harmonized Transient Cycle“ испытание - WHTC. На рисунке 22 представлены эти четыре типа испытаний (на графиках с осями «крутящий момент» / «частота вращения коленчатого вала»).

Рисунок 22. Анализ различных транзиентных циклов


Становится очевидным, что распределение основных режимов нагрузок весьма различно, что делает унификацию моторов почти невозможной. Применение испытания WHTC решило бы эту проблему, но возникают сомнения, произойдет ли его внедрение. Выполнение требований на различных испытательных циклах сложно для каждого отдельного из них, так как нестационарные режимы в эксплуатации все больше и больше являются камнем преткновения.

Особенно сложным является прохождение испытаний, которые проводятся в режимах малых нагрузок и оборотов, как, например, на японском цикле или на цикле WHTC. Проще всего выполняются требования цикла USTC, где преобладают высокие частоты вращения коленчатого вала двигателя.

В течение последних лет на фирме АВЛ были достигнуты выдающиеся результаты на стационарных режимах (рисунок 23).

Рисунок 23. Результаты разработок по достижению минимальных выбросов сажи и NOx.


При этом применялись улучшенные и доработанные процессы сгорания, высокие или очень высокие степени рециркуляции отработавших газов и чрезвычайно высокие давления впрыска топлива - до 2500 бар. «Сырые» эмиссии NOx - 1,0 г/кВт*ч и сажи - 0,02 г/кВт*ч были достигнуты при сохранении вполне приемлемого расхода топлива.

Для достижения таких значений «сырых» эмиссий необходимы очень высокие давления впрыска топлива, до 2500 бар (рисунок 24). А для реализации удельной мощности более 28 кВт/л на двигателе, выполняющем требования EU6, не обойтись без применения двухступенчатого турбонаддува.

Рисунок 24. Максимальное давление газов в камере сгорания в зависимости от удельной мощности и степени рециркуляции отработавших газов для различных уровней выбросов / норм токсичности.


Необходимость в таких высоких давлениях объясняется большой степенью рециркуляции отработавших газов, необходимой также и на режимах полной нагрузки, так как в этом случае для обеспечения необходимого коэффициента избытка воздуха? требуются значительно более высокие давления воздуха во впускном коллекторе. Поэтому становится необходимой совершенно новая, очень жесткая и прочная конструкция блока и головки цилиндров, предпочтительно из высокопрочного чугуна (вермикулярный графит), а также «параллельное» расположение впускных каналов.

В свою очередь такая особая конструкция головки цилиндров в совокупности с требованием высокой эффективности работы моторного тормоза делает необходимым расположение валов газораспределения, одного или двух, в головках цилиндров (OHC или DOHC).

Сложность работы двигателя на транзиентных режимах для различных циклов испытаний отображена на рисунке 25. На тех испытаниях, где часто происходит разгон с низких оборотов, а именно испытания JPTC и WHTC, наблюдается значительное увеличение выбросов NOx и сажи по сравнению со стационарным режимом.

Рисунок 25. Увеличение выбросов на переходных режимах.


Таким образом, будущие требования по токсичности могут быть удовлетворены только интенсивными разработками и улучшением работы двигателя на переходных режимах, а прежний, преимущественно стационарный подход к оптимизации поршневого двигателя, устарел.

Особенностью дизелей грузовых транспортных средств является необходимость единовременного контроля взаимозависимых параметров «давление воздуха во впускном коллекторе» и «степень рециркуляции отработавших газов». Вместо двух раздельных контроллеров на фирме АВЛ был разработан так называемый MMCD™ контроллер: один контроллер с несколькими переменными величинами, который, основываясь на физической модели, компенсирует интерференцию обоих переменных параметров (рисунок 26).

Рисунок 26. Концепция и результаты основанного на физической модели алгоритма контроля давления воздуха во впускном коллекторе и процента рециркуляции отработавших газов.


Таким образом, возможно значительное уменьшение выбросов NOx на переходном режиме при сохранении уровня выбросов сажи неизменным (рисунок 27).

Рисунок 27.Уменьшение выбросов на переходных режимах с помощью AVL MMCDTM контроллера.


На рисунке 28 приведены технологии и решения, с помощью которых удастся выполнить будущие требования для дизелей грузовых автомобилей. При этом должен быть предусмотрен фильтр для частиц и система SCR (впрыск мочевины). Применение топливных систем, обеспечивающих высокие давления впрыска, может быть достаточным и иметь преимущества перед использованием фильтра, конечно, если это будет совместимо с общими «политическими» тенденциями.

Рисунок 28. Технологии для будущих дизелей тяжелых грузовиков


Дизель в 2015 году

Необходимые технологии дизелей легковых и грузовых автомобилей для соответствия требований 2015 года известны.

В обеих областях разработки будут проходить эволюционным путем, технологические «скачки» не предвидятся, да и не требуются.

Учитывая большое количество новых технологий, которые необходимо будет внедрить в серийное производство, начинать работы по их разработкам нужно уже сегодня.

Как и до сих пор, большую часть работ для достижения целей должны будут везти производители двигателей.

На сегодняшний день ситуация оценивается таким образом, что двигатели для развивающихся стран едва ли будут в корне отличаться по своему технологическому уровню от двигателей для индустриально развитых стран.

Двигатель и система нейтрализации токсичности отработавших газов должны рассматриваться как единое целое.

Дизель для легковых автомобилей в 2015 году будет обладать следующими свойствами:

Максимальное давление газов в камере сгорания 180-200 бар, облегченные конструкции, преимущественно применение чугуна для блока и головки цилиндров.

Удельные мощности до 75 кВт/л, двухступенчатый турбонаддув с или без промежуточного охлаждения наддувочного воздуха.

Гибкая система впрыска топлива Common Rail, возможность обеспечения давления впрыска до 2000 бар.

Оптимизированная, высокотехнологичная система контроля расхода воздуха и рециркуляции отработавших газов, основанная на физической модели алгоритма контроля.

Основанный на давлении рабочей смеси, как входном сигнале, замкнутый цикл процесса сгорания и физический модельный алгоритм контроля процесса сгорания. На режимах неполных (частичных) нагрузок смешанные альтернативные (гомогенные - гетерогенные) рабочие процессы (напр. HCCI).

Фильтр частиц как базовая модификация, конвертирование NOx преимущественно с помощью SCR (впрыск мочевины), возможно также адсорбирование NOx.

Дизель для грузовых автомобилей в 2015 году будет обладать следующими свойствами:

Максимальное давление газов в камере сгорания 220-250 бар, оптимизированная конструкция головки и блока цилиндров из чугуна.

Удельные мощности 35–40 кВт/л, двухступенчатый турбонаддув с или без промежуточного охлаждения наддувочного воздуха, комбинированный наддув.

Гибкая система впрыска, обеспечение давления впрыска до 2500 бар, предпочтительно Common Rail, стандартизированные форсунки.

Привод валов газораспределения со стороны маховика, расположение валов газораспределения, одного или двух, в головке цилиндров (OHC или DOHC).

Высокоэффективный, встроенный моторный тормоз.

Оптимизированная, высокотехнологичная система контроля расхода воздуха и рециркуляции отработавших газов, основанная на физической модели алгоритма контроля; степень рециркуляции на режимах полной нагрузки до 30%.

Фильтр частиц как базовая комплектация, возможно применение «открытого» фильтра, SCR (впрыск мочевины).

За дополнительной информацией, пожалуйста, обращайтесь по указанным ниже адресам:

Проф., доктор Франц. К. Мозер Исполнительный вице-президент AVL LIST GMBH A-8020 Graz, Hans-List-Platz 1 email: [email protected] Тел.: +43 316 787 1200, Факс: +43 316 787 965 www.avl.com

Г-н Левит Семен Моисеевич Директор по развитию бизнеса «Силовые установки транспортных средств» в России и СНГ ООО «АВЛ» Россия, 127299, Москва, ул. Б. Академическая, д.5, стр.1 email: [email protected] Тел.: +7 495 937 32 86, Факс: +7 495 937 32 89

Тема 1.4. Изобретение автомобиля с ДВС

Создание первых транспортных поршневых ДВС. Газовый двигатель Этьена Ленуара (1860 г.): принцип действия и основы устройства; достоинства и недостатки.

Четырехтактный газовый двигатель Николая-Августа Отто и Евгения Лангена (1876 г.). Рассмотрение четырехтактного цикла работы двигателя. Причины, воспрепятствовавшие применению двигателя Отто на автомобиле.

Двигатель Готлиба Даймлера на жидком топливе (1883 г.) ― первый автомобильный ДВС. Основные технические характеристики и особенности устройства. Создание Рудольфом Дизелем поршневого двигателя внутреннего сгорания с воспламенением от сжатия.

Готлиб Даймлер и Карл Бенц ― признанные миром изобретатели автомобиля (1885 г.). Первый (трехколесный) автомобиль К. Бенца. Первый (двухколесный) и второй (четырехколесный) автомобили Г. Даймлера. Превращение "безлошадного экипажа" в автомобиль. Совершенствование ДВС и рост его мощности как основные факторы формирования концепции автомобиля отличной от конной повозки. Новая компоновочная схема, предложенная Эмилем Левассором (1894 г.). Дополнительные штрихи к схеме, внесенные Луи Рено в 1898 г. (карданная передача, трехвальные коробки передач (КП) и рулевое колесо). Совершенствование автомобильного ДВС к началу XXвека: закрытый картер с системой смазки разбрызгиванием; управляемые клапаны системы газораспределения; жидкостная система охлаждения с сотовым радиатором и водяным насосом; увеличение количества цилиндров. Система зажигания с магнето высокого


напряжения Роберта Боша.

Первые автомобили Г. Даймлера и К. Бенца. Автомобилестроительные фирмы Германии «Даймлер», «Бенц». Начало промышленного производства автомобилей во Франции: «Панар – Левассор», «Де-Дион-Бутон», «Пежо » и др. Автомобилестроительные фирмы США: «Форд Мотор Компани», «Кадиллак », «Уайт», «Паккард».

Тема 1.5. Периоды развития автомобилестроения

Три периода истории развития автомобиля (по Ф. Пикару): изобретательский (до 1918 г.), инженерный (до 40-х гг.) и дизайнерский (или стилистический).

Характерные черты автомобиля "изобретательского" периода в США и Европе ("Олдсмобил", "Де-Дион"). Применение глушителей выпуска отработанных газов, батарейного зажигания, системы запуска двигателя стартером. Дальнейшее развитие механизмов: сцепление, коробка передач, тормозные системы, подвеска, шины, колеса.

Рост спроса на автомобили. Повышение технической культуры в производстве автомобилей: использование высококачественных материалов, более совершенных технологий и оборудования. Первые успехи стандартизации и взаимозаменяемости ("Кадиллак" Г. Лиленда, 1907 г.).

Начало крупносерийного и массового производства "Форд-Т" (1903 г.). Социальный, экономический, конструкторский и технологический аспекты массового производства. "Серебряный дух" (1907 г.) Чарлза Стюарта Роллса и Фредерика Генри Ройса ― пример нового подхода к задаче производства автомобилей.

Взаимовлияние автомобилестроения начала XX в. и других отраслей промышленности и техники. Расширение практической сферы применения автомобиля: появление автобусов, грузовых автомобилей, такси. Потребность армии в автомобиле, и его роль в Первой мировой войне.


«Инженерный» период развития автомобиля: новые производственные и материальные возможности автомобилестроения после Первой мировой войны (конверсия военного и авиационного производства). Концепция автомобиля данного периода ― хорошая транспортная машина.

Дальнейшее усовершенствование механизмов и систем: синхронизаторы КП, гипоидное зацепление в главной передаче, дисковое сцепление и др. Повышение интереса к вопросам конструктивной безопасности и системам сигнализации (электрогудок, стоп-фонарь, указатели поворота, стеклоочистители, буферы , установка тормозов на все колеса, стекло-триплекс).

Появление интереса к вопросам аэродинамики (П. Ярай, Э. Румплер). Обтекаемые автомобили "Крайслер -Эрфлоу", "Татра-77" и "Татра-87".

Привод на передние колеса ― важный момент в развитии компоновки легкового автомобиля ("ДКВ" Й. Расмуссена, "Ситроен -7СУ" Ж. Соломона).

Повышение роли научных методов решения технических проблем автомобилестроения. Решение проблем устойчивости и управляемости в связи с ростом скорости.

Развитие грузовых автомобилей и автобусов. Грузовики с "передней" кабиной, достоинства и недостатки. Автобусы вагонного типа: повышение вместимости, улучшение условий работы водителей. Автобусы с несущим кузовом.

Применение дизелей на грузовых автомобилях и автобусах. Особенности устройства и рабочего процесса дизеля, достоинства и недостатки.

Итоги развития автомобилестроения в "инженерный" период: создание производственной базы, конструкторских и научных коллективов , испытательных лабораторий и полигонов. Компоновочные особенности американских и европейских автомобилей этого периода. Технические характеристики и уровень производства автомобилей к концу периода.


«Дизайнерский» период развития автомобиля. Особенности направлений американского и европейского автостроения в послевоенное время: "сухопутные дредноуты" и "народный автомобиль"(Фольксваген "Жук", ФИАТ-500, Ситроен-2СУ, "Изетта", "Мини", НАМИ-013, "Белка").. Послевоенное автомобилестроение в Японии.

Концепция – дешевый «автомобиль для всех». Успех в борьбе за «автомобиль для всех» фирм «Ситроен» и «Пежо» во Франции, «Опель» и БМВ в Германии, «Остин» и «Моррис» в Англии, «Фиат» в Италии.

Разработка теории устойчивости автомобиля (Морис Олей). Новые имена в автомобилестроении: Винченцо Лянча - в Италии(«Лямбда»), Сенсо-де-Лаво, Коттен Дегут и братья Сизер -во Франции, Ледвинка -в Чехословакии(«Татра»).

Развитие теории обтекаемости автомобиля: немецкие авиаконструкторы Пауль Ярай и Эдмунд Румплер. Появление автомобилей с приводом на передние колеса: ДКВ, «Ситроен-Траксьон аван».

Развитие конструкций грузовых автомобилей. Особенности конструкции автомобиля конца 1930-х годов. Совершенствование приборов системы питания. Улучшение эксплуатационных показателей автомобиля: увеличение мощности двигателя, улучшение приемистости. Новые требования к автомагистралям. Наступление автомобильного транспорта на железнодорожный.

Единообразие требований рынка, международные стандарты безопасности, международные экономические и технические связи и кооперация ― главные факторы выработки общей концепции мирового автомобилестроения.


Развитие компоновки и конструкции грузовых автомобилей. Распространение прицепных и полуприцепных автопоездов. Разделение грузовых автомобилей на городские и магистральные (различия требований по грузоподъемности, скорости, типу двигателя и пр.). Специализированный подвижной состав .

Тема 1.6. История отечественного автомобилестроения

Первые отечественные автомобили и мотоциклы. Автомобили фирм "ДУКС" , "Психо", "Кузьмин", "Пузанов", "Аксонт" и др.

Яковлева, электрические и бензиновые автомобили П. Фрезе (1986 г.), Б. Луцкого и И. Пузырева, автомобили "Руссо-Балт" (1909 г.), их двигатели и конструкции. Контракты 1916 г. Главного военно-технического управления на строительство в России шести автозаводов. Бронеавтомобили Путиловского завода.

Первый советский легковой автомобиль "Промбронь" (1922 г.). Грузовики АМО-Ф-15 (1924 г.), ЯЗ (1925 г.), НАМИ-1 (1926 г.).

Первые электромобили

Организация массового производства автомобилей "АМО-3" (1931 г.), ГАЗ-АА и ГАЗ-А (1932 г.). Отечественное автомобилестроение к 1941 г.

Отечественные автомобили в Великой Отечественной войне.

Автомобили повышенной проходимости.

Послевоенный период отечественного автомобилестроения. Производство автомобилей в СССР в 1945–1986 гг. Увеличение количества автомобильных заводов. «Победа М-20» ― новое слово в автомобилестроении.

Достоинства конструкции автомобилей "ЗИМ ГАЗ-12" и "ЗИС-110". Грузовые автомобили ГАЗ-51, ЗИС-150, МАЗ-200 и др. Автобусы вагонного типа ЗИС-155, ЗИС-154 (с электротрансмиссией).


Изменения в автомобилестроении, вызванные новым экономическим курсом России (1986–1991 гг.). Поиск направлений выхода из кризиса. Первые достижения автомобилестроительной отрасли (1991 – 2000 гг.) Изменения в структуре управления, вызванные новым экономическим курсом России (1986–2000 гг.). Обострение проблемы безопасности дорожного движения. Поиск направлений выхода из кризиса.

Модуль 2. Современное состояние мирового автомобилестроения

Тема 2.1. Автомобилестроение США

США - мировой лидер автомобилестроения. Влияние процессов глобализации мирового рынка на процессы концентрации производства . Перенос производства в страны третьего мира.

Влияние на автомобилизацию страны импорта автомобилей. Ведущие автомобильные концерны Америки: «Форд Моторс», «Дженерал Моторс» и «Даймлер-Крайслер», их состояние и перспективы развития.

Влияние экономического кризиса на перераспределение структуры

производства в пользу грузовых автомобилей. Ведущие компании по производству

средних и тяжелых грузовиков: «Фрейтлайнер» (дочерняя «Даймлер-Бенц»), «Нэвистар» и «Форд». Состояние фирм: «Мэк», «Вольво /Дженерал Моторс», «Кенворс», «Питербилт». Автобусы компании «Нэвистар».

Основные рынки сбыта американских автомобилей. Причины «не слишком благоприятных» перспектив для дальнейшего расширения американского экспорта.

Тема 2.2. Автомобилестроение Европы

Стратегия концерна «Фольксваген», интеграция в Европу, Южную Америку и Африку.

Перспективные разработки концерна БМВ, расширение выпускаемой гаммы автомобилей.

Новые автомобили фирмы «Даймлер-Крайслер», работы по созданию электромобиля.

Спортивные автомобили «Порше».Фирма «Опель».

Развитие производства автомобилей в Польше.

Тема 2.3. Автомобилестроение Азии

Япония - один из признанных мировых лидеров в автомобилестроении. Пять автомобильных фирм –лидеров: «Тойота », «Ниссан», «Хонда», «Мицубиси », «Судзуки», «Мазда ». Отличительная черта деятельности японских автомобилестроительных концернов. Стратегия ведущих автофирм Японии.

Весьма распространены на легковых автомобилях. Многие модели имеют хотя бы один вариант в моторной гамме. И это без учета грузовиков, автобусов и строительной техники, где их применяют повсеместно. Далее рассмотрено, что такое дизель, конструкция, принцип работы, особенности.

Определение

Данный агрегат представляет собой функционирование которого основано на самовоспламенении распыленного топлива от нагрева либо сжатия.

Особенности конструкции

Бензиновый двигатель имеет те же конструктивные элементы, что и дизель. Схема функционирования в целом также аналогична. Отличие состоит в процессах формирования топливовоздушной смеси и ее сгорания. К тому же дизельные моторы отличаются более прочными деталями. Это обусловлено примерно вдвое более высокой степенью сжатия, чем у бензиновых двигателей (19-24 против 9-11).

Классификация

По конструкции камеры сгорания дизели подразделяют на варианты с раздельной камерой сгорания и с непосредственным впрыском.

В первом случае камера сгорания отделена от цилиндра и соединена с ним каналом. При сжатии поступающий в камеру вихревого типа воздух закручивается, что улучшает смесеобразование и самовоспламенение, которое начинается там и продолжается в основной камере. Дизельные двигатели данного типа ранее были распространены на легковых автомобилях в связи с тем, что они отличались пониженным уровнем шума и большим диапазоном оборотов от рассмотренных далее вариантов.

В с непосредственным впрыском камера сгорания находится в поршне, а топливо подается в надпоршневое пространство. Такая конструкция изначально использовалась на низкооборотных моторах большого объема. Они отличались высоким уровнем шума и вибраций и низким расходом топлива. Позднее, с появлением с электронным управлением и оптимизацией процесса сгорания, конструкторы достигли стабильной работы при диапазоне до 4500 об./мин. К тому же возросла экономичность, снизилась шумность и уровень вибраций. Среди мер по уменьшению жесткости работы - многостадийный предвпрыск. Благодаря этому двигатели данного типа получили в последние два десятилетия обширное распространение.

По принципу функционирования дизели подразделяют на четырехтактные и двухтактные, как и бензиновые моторы. Их особенности рассмотрены далее.

Принцип функционирования

Чтобы понимать, что такое дизель и чем обусловлены его функциональные особенности, необходимо рассмотреть принцип работы. Приведенная выше классификация поршневых ДВС основана на количестве тактов, входящих в рабочий цикл, которые выделяют по величине угла поворота коленчатого вала.

Следовательно, включает 4 фазы.

  • Впуск. Происходит при повороте коленвала от 0 до 180°. При этом воздух проходит в цилиндр через открытый на 345-355° впускной клапан. Одновременно с ним во время поворота коленвала на 10-15° открыт выпускной клапан, что называют перекрытием.
  • Сжатие. Поршень, двигаясь вверх при 180-360°, сжимает воздух в 16-25 раз (степень сжатия), а впускной клапан закрывается в начале такта (при 190-210°).
  • Рабочий ход, расширение. Происходит при 360-540°. В начале такта до достижения поршнем верхней мертвой точки топливо подается в горячий воздух и воспламеняется. Это особенность дизельных двигателей, отличающая их от бензиновых, где происходит опережение зажигания. Выделяющиеся при этом продукты горения толкают поршень вниз. При этом время сгорания топлива равно времени его подачи форсункой и длится не дольше продолжительности рабочего хода. То есть при рабочем процессе давление газов постоянно, вследствие чего дизели развивают больший крутящий момент. Также важной особенностью таких моторов является необходимость обеспечения избытка воздуха в цилиндре, так как пламя занимает небольшую часть камеры сгорания. То есть отличается пропорция топливовоздушной смеси.
  • Выпуск. При 540-720° поворота коленвала открытый выпускной клапан поршень, двигаясь вверх, вытесняет выхлопные газы.

Двухтактный цикл отличается укороченными фазами и единым процессом газообмена в цилиндре (продувкой), происходящей между концом рабочего хода и началом сжатия. При движении поршня вниз продукты горения удаляются через выпускные клапаны или окна (в стенке цилиндра). Позже открываются впускные окна для поступления свежего воздуха. Когда поршень поднимается, все окна закрываются, и начинается сжатие. Чуть ранее достижения ВМТ впрыскивается и воспламеняется топливо, начинается расширение.

Из-за сложности обеспечения продувки вихревой камеры двухтактные моторы бывают только с непосредственным впрыском.

Производительность таких двигателей выше в 1,6-1,7 раз, чем характеристики дизеля четырехтактного типа. Ее прирост обеспечивается вдвое более частым осуществлением рабочих ходов, но частично сокращается из-за их меньшей величины и продувки. Вследствие удвоенного количества рабочих ходов двухтактный цикл особо актуален в случае невозможности увеличения частоты вращения.

Основной проблемой таких двигателей является продувка из-за ее непродолжительности, что невозможно компенсировать без снижения эффективности за счет укорочения рабочего хода. К тому же невозможно разделить выхлоп и свежий воздух, из-за чего часть последнего удаляется с отработанными газами. Данную проблему можно решить путем обеспечения опережения выпускных окон. В таком случае газы начинают удаляться до продувки, и после закрытия выпуска цилиндр дополняется свежим воздухом.

К тому же при использовании одного цилиндра возникают сложности с синхронностью открытия/закрытия окон, поэтому существуют двигатели (ПДП), в которых каждый цилиндр имеет два поршня, движущихся в одной плоскости. Один из них контролирует впуск, другой - выпуск.

По механизму осуществления продувку подразделяют на щелевую (оконную) и клапанно-щелевую. В первом случае окна служат и впускными и выпускными отверстиями. Второй вариант предполагает их использование в качестве впускных отверстий, а для выпуска служит клапан в головке цилиндра.

Обычно двухтактные дизели применяют на тяжелых транспортных средствах вроде кораблей, тепловозов, танков.

Топливная система

Топливная аппаратура дизельных двигателей существенно сложнее, чем у бензиновых. Это объясняется высокими требованиями к точности подачи топлива по времени, количеству и давлению. Основные компоненты топливной системы - ТНВД, форсунки, фильтр.

Широко применяется система подачи топлива с компьютерным управлением (Common-Rail). Она впрыскивает его двумя порциями. Первая из них маленькая, служащая для повышения температуры в камере сгорания (предвпрыск), что позволяет снизить шум и вибрации. К тому же данная система повышает на малых оборотах крутящий момент на 25%, снижает расход топлива на 20% и содержание сажи в выхлопных газах.

Турбонаддув

На дизельных двигателях очень широко применяют турбины. Это объясняется более высоким (в 1,5-2) раза давлением выхлопных газов, которые раскручивают турбину, что позволяет избежать турбоямы, обеспечив наддув с более низких оборотов.

Холодный запуск

Можно найти множество отзывов о том, что при отрицательных температурах Сложность запуска таких моторов в холодных условиях обусловлена тем, что для этого требуется больше энергии. Для облегчения процесса их оснащают предпусковым подогревателем. Данное устройство представлено свечами накаливания, размещенными в камерах сгорания, которые при включении зажигания подогревают воздух в них и работают еще в течение 15-25 секунд после запуска для обеспечения стабильности работы непрогретого мотора. Благодаря этому дизели заводятся при температурах -30...-25 °С.

Особенности обслуживания

Для обеспечения долговечности при эксплуатации необходимо знать, что такое дизель и как его обслуживать. Относительно невысокая распространенность рассматриваемых двигателей в сравнении с бензиновыми объясняется в том числе более сложным обслуживанием.

Прежде всего это касается топливной системы высокой сложности. Из-за этого дизели крайне чувствительны к содержанию в топливе воды и механических частиц, а ее ремонт дороже, как и двигателя в целом в сравнении с бензиновым того же уровня.

В случае наличия турбины также высоки требования к качеству моторного масла. Ее ресурс обычно составляет 150 тыс. км, а стоимость высока.

В любом случае на дизельных двигателях менять масло следует чаще, чем на бензиновых (в 2 раза по европейским нормам).

Как было отмечено, у данных моторов встречаются проблемы холодного запуска, когда при низких температурах В некоторых случаях это вызвано использованием неподходящего топлива (в зависимости от сезона на таких двигателях применяют различные сорта, так как летнее топливо при низких температурах застывает).

Эксплуатационные качества

К тому же многим не по душе такие качества дизельных моторов, как меньшие мощность и диапазон рабочих оборотов, более высокий уровень шума и вибраций.

Бензиновый двигатель действительно обычно превосходит в производительности, в том числе и литровой мощности, аналогичный дизель. Мотор рассматриваемого типа при этом имеет более высокий и ровный график крутящего момента. Повышенная степень сжатия, обеспечивающая больший крутящий момент, вынуждает применять более прочные детали. Так как они тяжелее, снижается мощность. К тому же это сказывается на массе двигателя, а следовательно, и автомобиля.

Небольшой диапазон рабочих оборотов объясняется более длительным возгоранием топлива, вследствие чего на высоких оборотах оно не успевает догореть.

Повышенный уровень шума и вибраций вызывает резкое нарастание давления в цилиндре при воспламенении.

Основными достоинствами дизелей считают более высокую тяговитость, экономичность и экологичность.

Тяговитость, то есть высокий крутящий момент на малых оборотах, объясняется сгоранием топлива по мере впрыска. Это обеспечивает большую отзывчивость и облегчает эффективное использование мощности.

Экономичность обусловлена как низким расходом, так и тем, что топливо для дизеля дешевле. К тому же возможно использовать в качестве него низкосортные тяжелые масла благодаря отсутствию строгих требований к испаряемости. А чем топливо тяжелее, тем выше эффективность мотора. Наконец, дизели работают на бедных смесях в сравнении с бензиновыми моторами и при высокой степени сжатия. Последнее обеспечивает меньшие потери тепла с отработанными газами, то есть большую эффективность. Все данные меры снижают расход топлива. Дизель, благодаря этому, тратит его на 30-40% меньше.

Экологичность дизелей объясняется тем, что в их выхлопных газах ниже содержание окиси углерода. Это достигается применением сложных систем очистки, благодаря чему сейчас бензиновый двигатель соответствует тем же экологическим нормам, что и дизель. Мотор такого типа ранее значительно уступал бензиновому в данном отношении.

Применение

Как понятно из того, что такое дизель и каковы его характеристики, такие моторы наиболее подходят для тех случаев, когда необходима высокая тяга на низких оборотах. Поэтому ими оснащают почти все автобусы, грузовики и строительную технику. Что касается частных транспортных средств, среди них такие параметры наиболее важны для внедорожников. Благодаря высокой экономичности данными моторами оснащают и городские модели. К тому же они удобнее в управлении в таких условиях. Тест-драйвы дизелей свидетельствуют об этом.

Принцип работы которого основан на самовоспламенении топлива при воздействии горячего сжатого воздуха.

Конструкция дизеля в целом мало чем отличается от бензинового двигателя , за исключением того, что в дизеле отсутствует как таковая система зажигания, поскольку воспламенение топлива происходит по другому принципу. Не от искры, как в бензиновом двигателе, а от высокого давления, с помощью которого сжимается воздух, из-за чего тот сильно разогревается. Высокое давление в камере сгорания накладывает особые требования к изготовлению деталей клапанов, которые предназначены для восприятия более серьезных нагрузок (от 20 до 24 единиц).

Дизельные двигатели применяются не только на грузовых, но и на многих моделях легковых автомобилей. Дизели могут работать на различных типах топлива - на рапсовом и пальмовом масле, на фракционных веществах и на чистой нефти.

Принцип действия дизельного двигателя

Принцип действия дизеля основан на компрессионном воспламенении топлива, которое попадает в камеру сгорания и смешивается с горячей воздушной массой. Рабочий процесс дизеля зависит исключительно от неоднородности ТВС (топливно-воздушной смеси). Подача ТВС в таком типе двигателя происходит раздельно.

Вначале подается воздух, который в процессе сжатия нагревается до высоких температур (около 800 градусов по Цельсию) , затем в камеру сгорания под высоким давлением (10-30 МПа) подается топливо, после чего происходит его самовоспламенение.

Сам процесс воспламенения топлива всегда сопровождается высокими уровнем вибраций и шума, поэтому двигатели дизельного типа являются более шумными в сравнении с бензиновыми собратьями.

Подобный принцип работы дизеля позволяет использовать более доступные и дешевые (до недавнего времени:)) виды топлива, снижая уровень затрат на его обслуживание и заправку .

Дизели могут иметь как 2, так и 4 рабочих такта (впуск, сжатие, рабочий ход и выпуск). Большинство автомобилей оснащено 4-х тактовыми дизельными двигателями.

Типы дизельных двигателей

По конструкционным особенностям камер сгорания дизели можно разделить на три типа:

  • С разделенной камерой сгорания. В таких устройствах подача топлива осуществляется не в основную, а в дополнительную, т.н. вихревую камеру, которая располагается в головке цилиндрового блока и соединяется с цилиндром каналом. При попадании в вихревую камеру воздушная масса максимально сжимается, тем самым улучшая процесс воспламенения топлива. Процесс самовоспламенения начинается в вихревой камере, затем переходит в основную камеру сгорания.
  • С неразделенной камерой сгорания. В таких дизелях камера располагается в поршне, а топливо подается в пространство над поршнем . Нераздельные камеры сгорания с одной стороны позволяют экономить расход топлива, с другой стороны - повышают уровень шума при работе двигателя.
  • Двигатели предкамерные. Подобные дизели оснащаются вставной форкамерой, которая соединяется с цилиндром тонкими каналами. Форма и размер каналов определяют скорость движения газов при сгорании топлива, снижая уровень шума и токсичности, увеличивая ресурс работы двигателя.

Топливная система в дизельном двигателе

Основой любого двигателя дизельного типа является его топливная система. Основной задачей топливной системы является своевременная подача нужного количества топливной смеси под заданным рабочим давлением.

Важными элементами топливной системы в дизельном двигателе являются:

  • насос высокого давления для подачи топлива (ТНВД);
  • топливный фильтр;
  • форсунки

Топливный насос

Насос отвечает за подачу топлива к форсункам по установленным параметрам (в зависимости от числа оборотов, рабочего положения регуляторного рычага и давления турбонаддува). В современных дизельных двигателях могут применяться два типа насосов для топлива - рядные (плунжерные) и распределительные.

Топливный фильтр

Фильтр является важной составляющей частью двигателя дизельного типа. Топливный фильтр подбирается строго в соответствии с типом двигателя. Фильтр предназначен для выделения и удаления из топлива воды, и лишнего воздуха из топливной системы.

Форсунки

Форсунки не менее важные элементы топливной системы в дизеле. Своевременная подача топливной смеси в камеру сгорания возможна только при взаимодействии топливного насоса и форсунок. В дизелях применяются два типа форсунок - с многодырчатым и шрифтовым распределителем. Распределитель форсунок определяет форму факела, обеспечивая более эффективный процесс самовоспламенения.

Холодный пуск и турбонаддув дизельного двигателя

Холодный пуск отвечает за механизм предпускового подогрева. Это обеспечивается за счет электрических нагревательных элементов - свечей накаливания, которыми оснащена камера сгорания. При запуске двигателя свечи накаливания достигают температуры в 900 градусов, подогревая воздушную массу, которая попадает в камеру сгорания. Питание со свечи накаливания снимается через 15 секунд после запуска двигателя. Системы подогрева перед запуском двигателя обеспечивают его безопасный запуск даже при низких атмосферных температурах.

Турбонаддув отвечает за повышение мощности и эффективности работы дизеля. Он обеспечивает подачу большего количества воздуха для более эффективного процесса сгорания топливной смеси и увеличения рабочей мощности двигателя. Для обеспечения нужного давления наддува воздушной смеси во всех рабочих режимах двигателя применяется специальный турбонагнетатель.

Остается только сказать, что споры относительно того, что лучше выбрать рядовому автолюбителю в качестве силовой установки в свой автомобиль, бензин или дизель , не утихают до сих пор. Преимущества и недостатки есть у обоих типов двигателя и выбирать необходимо, исходя из конкретных условий эксплуатации автомобиля.

Использование дизельных двигателей

После изобретения Дизеля, его двигатель, претерпев некоторые изменения в течении ста лет стал самым востребованным и практичным в использовании в разных областях деятельности. Главной его особенностью стала высокая эффективность и экономичность.
Сегодня дизельный двигатель используют:

    на стационарных силовых агрегатах;

    на грузовых и легковых машинах;

    на тяжелых грузовиках;

    на сельхоз/спец/строительной технике;

    на тепловозах и судах.

Дизели могут иметь рядную и V-образную структуру. Без проблем работают с системой наддува воздуха.

Основные параметры

При эксплуатации двигателя, важны следующие параметры:

    мощность двигателя;

    удельная мощность;

    экономичная, и в тоже время надежная эксплуатация;

    практичная компоновка в силовом отсеке;

    комфорт и совместимость с окружающей средой.

От того, в какой области деятельности применяется дизель, будет меняться его внутренняя конструкция.

Применение дизельного двигателя

    Стационарные силовые агрегаты
    Рабочие обороты, в стационарных агрегатах как правило фиксированные, поэтому двигатель и система питания должны работать вместе в постоянном режиме. В зависимости от интенсивности нагрузки, подача топлива контролируется регулятором частоты вращения коленчатого вала, для поддержания заданных оборотов. На стационарных силовых агрегатах чаще всего используют аппаратуру впрыска с механическим регулятором. Иногда как стационарные могут использоваться и двигатели для легковых авто и грузовиков, но только при правильно настроенном регуляторе.

    Легковые авто и легкие грузовики

    На легковых автомобилях используются быстроходные дизели т. е. способные развивать высокий крутящие момент в широком диапазоне частот вращения коленчатого вала. Система с электронным управлением впрыска Common Rail получила здесь своё широкое применение. Электроника отвечает за впрыск определенного количества топлива и этим достигается полное сгорание, повышение мощности и экономичность. В Европе дизельные легковые автомобили оснащаются системами впрыска топлива, т. к. расход топлива у них ниже, чем у двигателей с разделенными камерами сгорания (на 15-20%).

    Эффективной системой повышения мощности двигателя является турбонаддув. Для создания наддува во всех режимах работы двигателя используется турбонагнетатель.

    Ограничение по нормам токсичности отработавших газов (ОГ) и рост мощности обеспечили использование систем впрыска топлива с большим давлением. Ограничения содержания вредных веществ в ОГ обусловили постоянное совершенствование конструкции дизелей.

    Тяжелые грузовые автомобили

    Основным критерием здесь является экономичность, поэтому для грузовых автомобилей применяют дизельные двигатели с системой непосредственного впрыска топлива. Частота вращения коленчатого вала здесь достигает 3500 оборотов. К этим двигателям также применимы жесткие требования норм по отработавшим газам, это говорит о контроле и высоких требованиям качества к существующей системы, а также к разработке новых.

    Строительная спец/сельскохозтехника

    Самое широкое использование дизель получил именно здесь. Основными критериями здесь стали не только экономичность, но и надежность, просто и удобство в обслуживании. Мощности и шумности не придается такое значение, как например для легковых дизельных авто. На спец/сельхозтехнике используют дизели различной мощности. Чаще всего для таким машин применяется механическая система впрыска топлива, а также простая система воздушного охлаждения.

    Тепловозы

    Схожесть двигателей тепловозов с корабельными двигателями говорит об их надежности и длительной эксплуатации. Они могут работать на топливе худшего качества. По размерам могут быть от двигателей для большегрузовых авто до средних судов.

    От области применения судового дизеля зависят требования к нему. Для морских и спортивных катеров используют дизели высокой мощности (здесь применяют четырехтактные двигатели с частотой вращения коленчатого вала до 1500 в мин, имеющие до 24 цилиндров). Двухтактные двигатели экономичныи применяются при длительной эксплуатации. Эти низкооборотные двигатели имеют наивысший КПД до 55%, и работают на мазуте и для этого нужна специальная подготовка на судне. Мазут необходимо нагревать (примерно до 160 С) - тогда вязкость мазута уменьшается и его можно использовать для работы фильтров и насосов.
    На судах среднего размера используют дизельные двигатели, которые изначально были созданы для большегрузных авто. В конечном итоге это двигатель, настроенный и отрегулированный в зависимости от его характера эксплуатации и не требующий дополнительных затрат на разработку.

    Многотопливные дизели

    Сегодня эти двигатели уже не актуальны, так как они не проходят контроль качество ОГ и не имеют необходимых характеристик (совершенности и мощности). Они были разработаны для специального применения для местностей с нерегулярной поставкой топлива и могли работать как на дизельном топливе, так и на бензине либо на других заменителях.

Сравнительные параметры

С помощью таблицы ниже, можно сравнить основные параметры дизельных и бензиновых двигателей.

Тип системы впрыска

Номинальн.частота вращения коленвала (мин)

Степень сжатия

Среднее давление (бар)

Удельная мощность (кВт/л)

Удельная масса (кг/кВт)

Удельный расход топлива (г/кВтч)

Для легковых автомобилей:

Без наддува воздуха(3)

С наддувом воздуха(3)

Без наддува воздуха(4)

С наддувом воздуха(4.5)

Для грузовых автомобилей

Без наддува воздуха (4)

С наддувом воздуха (4)

С наддувом воздуха (4.5)

Для строительной и спец/сельхозтехники

1000…3600 16…20 7…23 6…28 1…10 190…280

Для тепловозов

Судовые, 4-тактные

Судовые, 2-тактные

Бензиновые двигатели

Для легковых автомобилей

Без наддува воздуха

С наддувом воздуха

Для грузовых автомобилей

Преимущества и недостатки дизеля

Сегодня дизельные двигатели имеют КПД до 40-45%, крупные двигатели более 50%. Из-за своих особенностей, дизель не имеет жестких требований к топливу, это позволяет использовать тяжелые масла. Чем тяжелее топливо, тем выше эффективность двигателя и его теплотворность.

Дизель не может развить высокие обороты - топливо не успеет догореть в цилиндрах, и для возгорания требуется время. Здесь используются дорогие механические детали, что делает двигатель более тяжелым.

По мере впрыска топлива происходит его сгорание. При низких оборотах, двигатель дает высокий вращающий момент - это делает автомобиль более управляемым «отзывчивым» при движении, чем автомобиль с бензиновым двигателем. Поэтому на большее количество грузовых автомобилей ставят дизельный двигатель, плюс это более экономично.
В отличие от бензинового двигателя, дизель имеет меньше окиси углерода в выхлопе. Что благоприятно сказывается на окружающей среде. В России больше всего загрязняют атмосферу старые и не отрегулированные грузовики и автобусы.

Дизельное топливо нелетучее, т. е. плохо испаряется, поэтому вероятность возгорания дизеля намного меньше, тем более в нем не используется искра зажигания, в отличие от бензина.