Изменяемая степень сжатия двс. Степень свободы

Изобретение относится к двигателестроению, в частности к поршневым двигателям внутреннего сгорания с камерой сгорания, имеющей переменный объем и управляемые впускные клапаны. Технический результат заключается в возможности повышения кпд двигателя и снижения воздействия на окружающую среду. Согласно изобретению управление поршневым двигателем внутреннего сгорания обеспечивается путем выбора объема камеры сгорания в комбинации с выбором времени открытия и времени закрытия впускных клапанов и в комбинации с выбором частоты, с которой выполняются рабочие ходы. 11 з.п. ф-лы, 1 ил.

Настоящее изобретение относится к способу управления для модуляции крутящего момента поршневого двигателя внутреннего сгорания с камерой сгорания, имеющей переменный объем и управляемые впускные клапаны.

Изобретение применимо к двигателям, работающим с переменной нагрузкой, например к карбюраторным двигателям и дизельным двигателям, предназначенным для приведения в движение транспортных средств, самолетов, лодок, судов и т.д., а также для приведения в действие компрессоров, гидравлических насосов, электрических генераторов и т.д.

Изобретение требует использования системы управления. Работа системы управления определяется ее программным обеспечением. Программное обеспечение, посредством которого может быть реализовано настоящее изобретение, может, например, быть частью большей системы управления, используемой также для управления другими характеристиками и параметрами рассматриваемого двигателя.

Уровень техники

В течение последних десятилетий развитие двигателей внутреннего сгорания было направлено на повышение экономичности их работы и снижение воздействия на окружающую среду путем введения систем цифрового управления, например для инжекции топлива и зажигания.

Однако, несмотря на указанные усовершенствования, остается нерешенной проблема, которая состоит в том, что изменение режима работы приводит к низкому усредненному коэффициенту полезного действия и значительному воздействию на окружающую среду. Состав выхлопных газов также изменяется, что мешает их очистке.

Известно, что переменная степень сжатия повышает коэффициент полезного действия двигателя. Кроме того, известно, что введение свободно управляемых клапанов, так называемых управляемых приводов клапанов, приводит к возможности замены дроссельного регулирования на более раннее закрытие впускных клапанов в течение такта впуска, так называемый цикл Миллера, и к возможности полного закрытия цилиндра в течение такого небольшого времени, как один оборот двигателя, что называют также частотной модуляцией крутящего момента или циклом пропуска, в результате чего значительно повышается эффективность работы двигателя. Кроме того, установлено, что при использовании управляемых приводов клапанов можно переключаться из работы с двухтактным циклом к работе с четырехтактным циклом.

Цель изобретения

Целью настоящего изобретения является создание способа управления для модуляции крутящего момента поршневого двигателя внутреннего сгорания, в котором имеется камера сгорания переменного объема и управляемые клапаны, причем предлагаемый способ обеспечивает устранение вышеупомянутых недостатков и приводит к повышению кпд двигателя и снижению воздействия на окружающую среду.

Сущность изобретения

Цели настоящего изобретения достигаются в вышеупомянутом способе, отличающемся тем, что крутящий момент, который необходим для заданных условий работы, достигается путем выбора объема камеры сгорания в комбинации с выбором времени открытия и времени закрытия впускных клапанов в комбинации с выбором частоты, с которой выполняются рабочие ходы поршня.

Насколько известно изобретателю, ранее никто не предлагал объединить в одном и том же двигателе использование переменной степени сжатия и управляемых приводов клапанов. Предпочтительно при максимальной нагрузке используется максимальный объем камеры сгорания. При понижении нагрузки объем уменьшают, причем одновременно используют более раннее закрытие впускных клапанов, до такой степени, когда достигается оптимальная эффективность, которая является максимальной для требуемого рабочего режима. При продолжении снижения нагрузки используют частотно-модулированный крутящий момент, когда требуемая нагрузка достигается путем выбора системой управления частоты рабочих ходов, при поддержании характеристики или параметров, соответствующих уровню нагрузки, при котором была достигнута оптимальная мощность двигателя. Если при малой скорости вращения двигателя необходим большой крутящий момент, предпочтительно используют работу с двухтактным циклом. Поскольку согласно изобретению использование переменной степени сжатия скомбинировано с использованием управляемых приводов клапанов, достигаются синергетические эффекты, например большее снижение расхода топлива, чем сумма снижений расхода топлива, которые могут быть достигнуты при использовании по отдельности переменной степени сжатия или управляемых приводов клапанов.

Переменной степенью сжатия называется изменение объема между поршнем и потолком цилиндра в верхней мертвой точке поршня.

Управляемыми клапанами, или управляемыми приводами клапанов, называются клапаны, временем открытия и закрытия, а также высотой подъема и площадью которых управляют посредством исполнительных элементов, которые приводятся в действие сигналами, поступающими из системы управления клапанами. Управляемые клапаны имеют исполнительные элементы, которые приводятся в действие с помощью пневматических, гидравлических, электромагнитных или любых других аналогичных средств.

Рабочим ходом называется ход поршня, в течение которого энергия массы газа, расширяющегося в процессе сгорания, превращается в механическую работу. Рабочие ходы могут входить в циклы, которые являются оптимальными или обычными, как в современных двигателях.

Холостым ходом называется ход поршня без какого-либо газообмена, подачи воздуха или сгорания; в процессе холостого хода никакой работы не производится. В течение такого хода имеют место небольшие потери из-за трения и тепловые потери. В течение холостого хода через двигатель не прокачивается никакой воздух или воздушно-топливная смесь. Холостой ход предполагает, что по меньшей мере впускные клапаны являются управляемыми и удерживаются закрытыми в течение холостого хода, препятствуя поступлению воздуха, до того момента, когда они открываются вновь. Однако согласно изобретению предпочтительно, чтобы выпускные клапаны также являлись управляемыми.

Частота рабочих ходов может изменяться между 0 и 100% от частоты оборотов двигателя. Эта частота может быть выбрана путем выполнения рабочего хода во время каждого n-го оборота двигателя, при этом оставшиеся ходы являются холостыми ходами. Альтернативно выполняется последовательность рабочих ходов, а холостой ход выполнялся во время каждого n-го оборота двигателя. Требуемый крутящий момент измеряется датчиком и передается в систему управления, которая выбирает частоту выполнения рабочих ходов.

Оптимальным рабочим ходом называется ход поршня, в течение которого выполняемая работа является максимально возможной с учетом существующих экономических и экологических условий и потребления топлива. При обеспечении требуемого крутящего момента путем выбора частоты оптимальных рабочих ходов достигается наилучшая экономичность работы.

При работе с четырехтактным циклом оптимальный рабочий ход включает опережающее закрытие впускных клапанов, цикл Миллера, в отличие от обычных современных двигателей, и задержанное открытие выпускных клапанов, цикл Аткинсона, в отличие от традиционной практики. Объем камеры сгорания выбирают из соображений получения по возможности наилучшего результата при заданных условиях, и в результате объем камеры сгорания составляет приблизительно 20-80% от максимального объема камеры сгорания, а предпочтительно - 30-50% от указанного максимального объема.

Посредством экспериментов с двигателем можно определить значения соответствующих параметров для каждой скорости вращения двигателя. Альтернативно система управления может быть адаптивной, то есть самообучающейся.

Оптимальный рабочий ход при двухтактном цикле отличается от оптимального рабочего хода при четырехтактном цикле, поскольку давление в цилиндре, которое имеется при открытии выпускных клапанов, должно использоваться для осуществления газообмена. Быстрое открытие выпускных клапанов приводит к созданию импульса выходящих отработанных газов, который, в свою очередь, создает в цилиндре низкое давление, т.е. давление ниже 1 атмосферы. Выпускные клапаны закрывают, а затем открывают впускные клапаны, причем в такой момент, чтобы наилучшим образом использовать закрытие выпускных клапанов и низкое давление для впуска должного количества воздуха перед следующим тактом сжатия и следующим рабочим ходом. Оптимальные рабочие ходы могут также выполняться при помощи выходных каналов, которые открываются или остаются открытыми при достижении поршнем нижней мертвой точки.

В течение двухтактного цикла можно использовать продувочный насос, отвечающий за газообмен полностью или частично, в комбинации с низким давлением в цилиндре.

В определенных рабочих режимах может возникнуть необходимость отступления от оптимальных рабочих ходов, например когда требуется максимальная отдача или в других предельных условиях.

Двигатель и его система управления могут быть разработаны с возможностью задания более чем одного набора параметров оптимального рабочего хода для заданной скорости вращения двигателя при использовании двух или более типов топлива, которым вследствие различия их свойств соответствуют разные оптимальные рабочие ходы. Примерами таких комбинаций являются бензин и этиловый спирт. Для каждой скорости вращения имеется один набор оптимальных параметров рабочего хода для бензина и другой - для этилового спирта.

Согласно настоящему изобретению системы подачи воздуха и топлива заранее настроены так, что в каждом рабочем ходе при определенной скорости вращения двигателя для сгорания используются одинаковые массы воздуха и топлива и такая же смесь воздуха и топлива, как и при других рабочих ходах при той же скорости вращения. Кроме того, для рабочих ходов возможные количества рециркулируемого отработанного газа одинаковы. Поскольку условия сгорания повторяются и не изменяются, это приводит к тому, что за каждый рабочий ход, происходящий при постоянной скорости вращения двигателя, выполняется одинаковая работа, а химический состав отработанных газов остается постоянным, что облегчает очистку отработанного газа.

В обычных поршневых двигателях внутреннего сгорания, работающих с четырехтактным циклом, сгорание с рабочим ходом происходит при каждом втором обороте двигателя, а в двигателе, работающем с двухтактным циклом, оно происходит при каждом обороте двигателя. Газообменные системы таких двигателей приводят к тому, что другие интервалы ходов являются невозможными, поскольку воздух, остатки топлива, например несгоревшие углеводороды, прокачиваются через двигатель, в результате чего его эффективность снижается, а воздействие на окружающую среду возрастает. Для использования изобретения и даваемых им преимуществ клапаны и каналы, служащие для газообмена, должны иметь возможность закрываться в течение одного или нескольких последовательных холостых ходов, что часто используется при неполной нагрузке. Соответственно для осуществления изобретения требуются управляемые клапаны, по меньшей мере управляемые впускные клапаны.

При использовании управляемых клапанов, открытием и закрытием и, возможно, высотой подъема которых управляют посредством системы цифрового управления с датчиками, определяющими положение коленчатого вала и/или положение поршня и скорость вращения двигателя, и соответствующих электронных средств и программного обеспечения газообмен и рабочие ходы могут выполняться только при необходимости. В остальное время клапаны, по меньшей мере впускные клапаны, остаются закрытыми. Это подразумевает, что частота оптимальных рабочих ходов выбирается для достижения требуемого крутящего момента.

В способе управления используется система цифрового управления, которая определяет запрошенный крутящий момент в каждый момент времени. Если этот крутящий момент находится в пределах области, в которой он может быть достигнут с помощью оптимальных рабочих ходов, предпочтительно от работы на холостом ходу до 50% нагрузки, то система управления выбирает определенную частоту рабочих ходов, а именно ту, которая должна обеспечить достижение требуемого крутящего момента. При заданном значении скорости вращения рабочие ходы обеспечивают совершение одинаковой работы за каждый производимый рабочий ход. Поэтому такая частота является искомой частотой рабочих ходов для достижения требуемого значения крутящего момента.

Управляемые клапаны обеспечивают подачу воздуха и топлива и удаление отработанных газов, а также газообмен непосредственно до и после рабочих ходов. При выборе частоты, при которой рабочий ход выполняется при каждом обороте, газообмен также должен происходить при каждом обороте, как в двухтактном двигателе. Газообмен может также выполняться как в современных четырехтактных двигателях, то есть с применением такта впуска, в результате чего рабочий ход выполняется при каждом втором обороте двигателя. Согласно настоящему изобретению обеспечение заданного крутящего момента происходит путем выбора частоты двухтактных циклов или четырехтактных циклов или такой частоты, при которой один или несколько двухтактных циклов сочетаются с одним или несколькими четырехтактными циклами. Согласно настоящему изобретению можно выбрать разные частоты рабочих ходов для различных цилиндров двигателя. Если впускные клапаны являются управляемыми, а выпускные клапаны нет, то можно выполнять только четырехтактные циклы.

Система управления в ответ на запрос на увеличение или уменьшение крутящего момента со стороны водителя, например, использующего для этого педаль акселератора обычным или аналогичным способом, управляет долей рабочих ходов по отношению к количеству холостых ходов двигателя. Таким образом, рабочие ходы оптимизируются в соответствии с вышеупомянутым определением, поскольку система управления способна также управлять объемом камеры сгорания в пределах управляемого диапазона, а также количеством подаваемого воздуха путем выбора времени открытия и закрытия впускных клапанов и, возможно, величины подъема клапана.

Двигателем управляют путем изменения количества рабочих ходов по отношению к количеству холостых ходов для каждого цилиндра и путем разного изменения этого отношения от цилиндра к цилиндру. Система управления управляет двигателем путем управления открытием и закрытием впускных и выпускных клапанов соответственно в камере сгорания каждого цилиндра или открытия и закрытия только впускных клапанов, если выпускные клапаны не являются управляемыми. Таким образом, открытие и закрытие впускных клапанов и, возможно, также выпускных клапанов основано на крутящем моменте, который запрошен со стороны водителя. Управление выполняют посредством управляющих сигналов из блока управления, относящегося к системе управления. Если выпускные клапаны не являются управляемыми, рабочие ходы должны выполняться в рамках четырехтактного цикла. Если и впускные, и выпускные клапаны являются управляемыми клапанами, система управления может быть выполнена с возможностью переключения между четырехтактными циклами и двухтактными циклами в цилиндрах двигателя. Например, один цилиндр мог бы работать с двухтактным циклом, а другой - с четырехтактным циклом. Система управления должна быть способна вычислить, при каких условиях двухтактные циклы или четырехтактные циклы являются наиболее эффективными, и на этой основе выбрать один из этих видов циклов и использовать определенную частоту рабочих ходов. Соответственно способ управления включает выбор между двухтактным циклом и четырехтактным циклом на основе этих заданных условий. Система управления включает блок управления, который содержит соответствующую компьютерную программу, записанную на носителе информации. Блок управления функционально связан с некоторой схемой, например, для пневматической, гидравлической, электромагнитной или любой другой активации исполнительных элементов, которые управляют работой по меньшей мере впускных клапанов, но, возможно, также и выпускных клапанов. Блок управления может быть выполнен, например, так, что он управляет соленоидами, установленными в схеме приведения в действие исполнительных элементов, которые действуют на впускные или выпускные клапаны двигателя. Блок управления функционально связан с элементом, выдающим запрос на крутящий момент, например с педалью акселератора, посредством которой водитель дает запрос на увеличение или уменьшение крутящего момента двигателя. Система управления для частотно-модулированного крутящего момента может быть частью некоторой системы, например частью, соответствующей режиму экономичной работы, в большей системе управления, которая управляет также другими характеристиками или параметрами рассматриваемого двигателя.

Чем ниже нагрузка, тем значительнее относительное сокращение расхода топлива и уменьшение воздействия на окружающую среду, достигаемое с использованием настоящего изобретения. Двигатель и его система управления могут быть разработаны так, чтобы охватывать как весь диапазон работы двигателя с различными частотами оптимальных рабочих ходов, так и управление только одним параметром.

Без выхода за рамки настоящего изобретения можно сделать так, чтобы в течение одного или нескольких оборотов двигателя в цилиндр поступал и в нем накапливался только воздух или комбинация топлива и воздуха, например, для улучшения смешивания и/или превращения топлива в газ. Изобретение не ограничено выбором только абсолютных оптимальных рабочих ходов или выбором оптимальной частоты.

Таким образом, в соответствии с изобретением предложен способ управления для модуляции крутящего момента поршневого двигателя внутреннего сгорания, в котором имеется камера сгорания переменного объема и управляемые впускные клапаны, в котором крутящий момент, запрошенный для заранее заданного рабочего режима, достигается путем выбора объема камеры сгорания в комбинации с выбором времени открытия и времени закрытия впускных клапанов в комбинации с выбором частоты, с которой выполняются рабочие ходы.

При этом предпочтительно:

При максимальной нагрузке используют максимальный объем камеры сгорания,

При уменьшении нагрузки уменьшают объем камеры сгорания, а закрытие впускных клапанов выполняют раньше, и

При дальнейшем уменьшении нагрузки производят выбор частоты выполнения рабочих ходов.

Выбор частоты рабочих ходов предпочтительно выполняют, начиная от работы на холостом ходу до 50% максимальной нагрузки.

Предпочтительно выпускные клапаны являются управляемыми, а объем камеры сгорания выбирают в комбинации с выбором времени открытия и времени закрытия как впускных клапанов, так и выпускных клапанов, а также в комбинации с выбором частоты выполнения рабочих ходов.

Предпочтительно в двигателе имеется множество цилиндров, и для разных цилиндров выбирают различные частоты рабочих ходов.

Рабочие ходы можно выполнять с опережающим закрытием впускных клапанов. Рабочие ходы также можно выполнять с задержанным открытием выпускных клапанов.

Например, объемом камеры сгорания управляют так, что он составляет 20-80% от ее максимального объема, когда выбирают частоту рабочих ходов. Предпочтительно объем камеры сгорания составляет 30-50% от ее максимального объема, когда выбирают частоту рабочих ходов.

При заранее заданной скорости вращения двигателя, которая не зависит от крутящего момента, при каждом рабочем ходе предпочтительно сжигают по существу такую же массу воздуха и топлива и по существу с таким же соотношением воздуха и топлива, как и при других рабочих ходах.

Кроме того, в зависимости от запрошенного крутящего момента в предложенном способе управления выбирают двухтактный или четырехтактный цикл, и рабочие ходы выполняют с двухтактным и с четырехтактным циклом.

Кроме того, в предложенном способе управления используют систему управления с компьютерной программой, которая посредством сигнального управления на основе значения крутящего момента, запрошенного водителем, выбирает частоту рабочих ходов, время срабатывания клапана, высоту подъема клапана, объем камеры сгорания и работу с двухтактным циклом или четырехтактным циклом.

Краткое описание чертежей

На чертеже схематично показан двигатель, в котором реализован способ согласно настоящему изобретению.

Краткое описание варианта осуществления изобретения

На чертеже схематично показан цилиндр 1 с поршнем 2. В течение такта впуска четырехтактного цикла поршень 2 перемещается, и воздух, возможно вместе с топливом, течет через открытый впускной клапан 3. Выпускной клапан 4 закрыт. Для изменения объема камеры 6 сгорания используется поршень 5 переменной степени сжатия, указанный объем представляет собой объем между поршнем 2 и потолком цилиндра 1 в верхней мертвой точке поршня 2. Для активации приводов с целью управления клапанами 3 и 4 и поршнем 5 переменной степени сжатия используется пневматическая схема 7. Блок 8 управления функционально связан со схемой 7 для управления этой схемой с помощью сигналов и управления клапанами 3 и 4, связанными со схемой 7, а также поршнем 5 переменной степени сжатия. Элемент 9, например педаль акселератора, функционально связан с блоком 8 управления с целью обеспечения запроса на создание крутящего момента. Датчик 10, расположенный около градуированного диска 12, который установлен на коленчатом валу 11, функционально связан с блоком 8 управления и выдает последнему информацию о скорости вращения и положении коленчатого вала и/или положении поршня 2 в цилиндре 1. Блок 8 управления решает, когда управляемые клапаны 3 и 4 должны открыться или закрыться и в каком положении должен быть поршень 5 переменной степени сжатия, когда поршень 2 находится в своей верхней мертвой точке. Управляемые клапаны 3 и 4 приводятся в действие с помощью, например, электромагнитных, гидравлических или пневматических средств. Поршень 5 переменной степени сжатия перемещается, например, с помощью электромагнитных, гидравлических или пневматических средств. Поршень 5 переменной степени сжатия может быть связан с коленчатым валом 11 (не показано) и может быть выполнен с возможностью осуществления изменяемого возвратно-поступательного перемещения в координации с перемещением поршня 2. Кроме того, в автоматической системе управления поршень 5 переменной степени сжатия может непрерывно производить поиск положения, в котором достигается оптимальное сжатие.

1. Способ управления для модуляции крутящего момента поршневого двигателя внутреннего сгорания, в котором имеется камера (6) сгорания переменного объема и управляемые впускные клапаны (3), отличающийся тем, что крутящий момент, запрошенный для заранее заданного рабочего режима, достигается путем выбора объема камеры (6) сгорания в комбинации с выбором времени открытия и времени закрытия впускных клапанов (3) в комбинации с выбором частоты, с которой выполняются рабочие ходы.

2. Способ управления по п.1, отличающийся тем, что при максимальной нагрузке используют максимальный объем камеры сгорания, при уменьшении нагрузки уменьшают объем камеры сгорания, а закрытие впускных клапанов (3) выполняют раньше и при дальнейшем уменьшении нагрузки производят выбор частоты выполнения рабочих ходов.

3. Способ управления по п.1 или 2, отличающийся тем, что выбор частоты рабочих ходов выполняют, начиная от работы на холостом ходу до 50% максимальной нагрузки.

4. Способ управления по п.1, отличающийся тем, что выпускные клапаны являются управляемыми, а объем камеры (6) сгорания выбирают в комбинации с выбором времени открытия и времени закрытия как впускных клапанов (3), так и выпускных клапанов (4), а также в комбинации с выбором частоты выполнения рабочих ходов.

5. Способ управления по п.1, отличающийся тем, что в двигателе имеется множество цилиндров (1), и для разных цилиндров (1) выбирают различные частоты рабочих ходов.

6. Способ управления по п.1, отличающийся тем, что рабочие ходы выполняют с опережающим закрытием впускных клапанов (3).

7. Способ управления по п.4, отличающийся тем, что рабочие ходы выполняют с задержанным открытием выпускных клапанов (4).

8. Способ управления по п.1, отличающийся тем, что объемом камеры (6) сгорания управляют так, что он составляет 20-80% от ее максимального объема, когда выбирают частоту рабочих ходов.

9. Способ управления по п.1, отличающийся тем, что объем камеры (6) сгорания составляет 30-50% от ее максимального объема, когда выбирают частоту рабочих ходов.

10. Способ управления по п.1, отличающийся тем, что при заранее заданной скорости вращения двигателя, которая не зависит от крутящего момента, при каждом рабочем ходе сжигают по существу такую же массу воздуха и топлива и по существу с таким же соотношением воздуха и топлива, как и при других рабочих ходах.

11. Способ управления по любому из пп.4-10, отличающийся тем, что в зависимости от запрошенного крутящего момента выбирают двухтактный или четырехтактный цикл и рабочие ходы выполняют с двухтактным и с четырехтактным циклом.

12. Способ управления по п.1, отличающийся тем, что в нем используют систему (8) управления с компьютерной программой, которая посредством сигнального управления на основе значения крутящего момента, запрошенного водителем, выбирает частоту рабочих ходов, время срабатывания клапана, высоту подъема клапана, объем камеры (6) сгорания и работу с двухтактным циклом или четырехтактным циклом.

Недавно на автосалоне в Париже марка Infiniti (читай, альянс Renault-Nissan) представила двигатель с изменяемой степенью сжатия. Фирменная технология Variable Compression-Turbocharged (VC-T) позволяет варьировать эту самую степень, буквально высасывая все соки из двигателя.

В «идеальной вселенной» правило простое - чем выше степень сжатия топливо-воздушной смеси, тем лучше. Смесь максимально расширяется, поршни движутся как заведенные, следовательно, мощность и КПД мотора максимальны. Другими словами, топливо сжигается чрезвычайно эффективно.

Все было бы замечательно, если б не сама природа топлива. В ходе издевательств его терпению когда-то наступает предел: чем ровнее сгорает смесь - тем лучше, но при высоких нагрузках (высокая степень сжатия, большие обороты) смесь начинает взрываться, а не сгорать. Такое явление называется детонацией, и эта штука весьма разрушительна. Стенки камеры сгорания и сам поршень испытывают серьезные ударные нагрузки и постепенно, но довольно быстро разрушаются. Кроме того, падает эффективность мотора - нормальное рабочее давление на поршень падает.

Таким образом, наиболее выгодный вариант - когда двигатель в любом режиме работает на грани детонации, не допуская этого явления. Инженеры Infiniti составили график, на котором обозначили для себя эффективные режимы работы двигателя в зависимости от нагрузки, величины оборотов и степени сжатия топливо-воздушной смеси. (На самом деле эффективность сгорания топлива можно повышать и другими способами, например, увеличением количества клапанов на цилиндр, настройкой графика их работы, даже выбором места над поршнем, куда направляется впрыск порции топлива. Конечно, мы об этом помним.) Первые два параметра, понятно, зависят как от внешних факторов, так и от тщательного подбора трансмиссии. А третий - степень сжатия - также решено было изменять в пределах от 8:1 до 14:1.


Технически это выглядит как введение в конструкцию кривошипно-шатунного механизма дополнительного элемента - коромысла между шатуном и коленвалом. Коромысло управляется электромотором - рычаг можно сдвигать таким образом, что диапазон хода поршня варьируется в пределах 5 мм. Этого достаточно для существенного изменения степени сжатия.

Достоинств без недостатков не бывает. На первый взгляд, они очевидны: увеличение сложности конструкции, некоторая прибавка в весе... Однако насчет этих минусов грех жаловаться - двигатель получился очень сбалансированным, благодаря чему из конструкции были выведены балансировочные валы. Вероятно также, что двигатель особо чувствителен к марке и качеству топлива. Думается, эта проблема - во всяком случае, в значительной степени - решается программными методами.

Поскольку в названии технологии присутствует слово Turbocharged, очевидно, что такие моторы будут турбированными. Первый из них - двухлитровый 270-сильный встанет под капот кроссовера Infiniti QX50. Уверяют, что двигатель с изменяемой степенью сжатия потребляет на целых 27% меньше топлива, чем обычный мотор аналогичного объема. Цифра крайне внушительная. Надо думать, что и экологичность (количество выбросов вредных веществ) у него на высоте.


Изобретение относится к машиностроению, прежде всего к тепловым машинам, а именно к поршневому двигателю внутреннего сгорания (ДВС) с переменной степенью сжатия. Технический результат изобретения заключается в усовершенствовании кинематики механизма передачи усилий поршневого ДВС, таким образом, чтобы обеспечивать возможность регулирования степени сжатия при одновременном снижении реакции в опорах и сил инерции второго порядка. ДВС согласно изобретению имеет подвижно установленный в цилиндре поршень, который шарнирно соединен с шатуном. Движение шатуна передается на кривошип коленчатого вала. При этом, с целью обеспечения возможности управляемого изменения степени сжатия и хода поршня, между шатуном и кривошипом предусмотрено передаточное звено, которое выполнено с возможностью управления его движением с помощью управляющего рычага. Передаточное звено выполнено в виде поперечного рычага, соединенного с кривошипом посредством шарнира, который расположен в промежуточном положении на участке между двумя опорными точками. В одной из опорных точек поперечный рычаг соединен с шатуном, а в другой - с управляющим рычагом. Управляющий рычаг также шарнирно соединен с дополнительным кривошипом или эксцентриком, которые осуществляют управляющие движения, смещая ось качения управляющего рычага, чем обеспечивают изменение степени сжатия ДВС. Помимо этого ось качения управляющего рычага может совершать непрерывное циклическое движение, синхронизированное с вращением коленчатого вала. При этом, в случае соблюдения определенных геометрических соотношений между отдельными звенья механизма передачи усилий, могут быть уменьшены нагрузки на них и повышена плавность работы ДВС. 12 з.п. ф-лы, 10 ил.

Рисунки к патенту РФ 2256085

Настоящее изобретение относится к машиностроению, прежде всего к тепловым машинам. Изобретение относится, в частности, к поршневому двигателю внутреннего сгорания (ДВС), имеющему поршень, который подвижно установлен в цилиндре и который шарнирно соединен с шатуном, движение которого передается на кривошип коленчатого вала, при этом между шатуном и кривошипом предусмотрено передаточное звено, которое выполнено с возможностью управления его движением с помощью управляющего рычага с целью обеспечить управляемое перемещение поршня, прежде всего обеспечить возможность изменения степени сжатия и хода поршня, и которое выполнено в виде поперечного рычага, который соединен с кривошипом шарниром, который расположен в промежуточном положении на участке между опорной точкой, в которой поперечный рычаг соединен с шатуном, и опорной точкой, в которой поперечный рычаг соединен с управляющим рычагом, и на некотором удалении от линии, соединяющей между собой обе эти опорные точки, в которых поперечный рычаг соединен с управляющим рычагом и шатуном соответственно.

Из работы Wirbeleit F.G., Binder К. и Gwinner D., "Development of Piston with Variable Compression Height for Incrising Efficiency and Specific Power Output of Combustion Engines", SAE Techn. Pap., 900229, известен ДВС подобного типа с автоматически регулируемой степенью сжатия (ПАРСС) за счет изменения высоты поршня, который состоит из двух частей, между которыми сформированы гидравлические камеры. Изменение степени сжатия осуществляется автоматически путем изменения положения одной части поршня относительно другой за счет перепуска масла из одной такой камеры в другую с помощью специальных перепускных клапанов.

К недостаткам этого технического решения относится то, что системы типа ПАРСС предполагают наличие механизма регулирования степени сжатия, расположенного в высокотемпературной и весьма нагруженной зоне (в цилиндре). Опыт работы с системами типа ПАРСС показал, что на переходных режимах, в частности при разгоне автомобиля, работа ДВС сопровождается детонацией, поскольку гидравлическая система управления не позволяет обеспечить быстрое и одновременное по всем цилиндрам изменение степени сжатия.

Стремление вынести механизм регулирования степени сжатия из высокотемпературной и механически нагруженной зоны привело к появлению иных технических решений, предполагающих изменение кинематической схемы ДВС и введение в нее дополнительных элементов (звеньев), управлением которых обеспечивается изменение степени сжатия.

Так, например, у Jante A., "Kraftstoffverbrauchssenkung von Verbrennungsmotoren durch kinematische Mittel", Automobil-Industrie, № 1 (1980), с.с.61-65, описан ДВС (кинематическая схема которого показана на фиг.1), у которого между кривошипом 15 и шатуном 12 установлены два промежуточных звена - дополнительный шатун 13 и коромысло 14. Коромысло 14 совершает качательное движение с центром качания в шарнирной точке Z. Регулирование степени сжатия осуществляется за счет изменения положения точки А путем поворота эксцентрика 16, закрепленного на корпусе. Эксцентрик 16 поворачивается в зависимости от нагрузки двигателя, при этом центр качания, расположенный в шарнирной точке Z, перемещается по дуге окружности, изменяя таким образом положение верхней мертвой точки поршня.

Из работы Christoph Bolling и др., "Kurbetrieb fur variable Verdichtung", MTZ 58 (11) (1997), Сс.706-711, известен также двигатель типа FEV (кинематическая схема которого показана на фиг.2), у которого между кривошипом 17 и шатуном 12 установлен дополнительный шатун 13. Шатун 12, кроме того, связан с коромыслом 14, которое совершает качательное движение с центром качания в шарнирной точке Z. Регулирование степени сжатия осуществляется за счет изменения положения шарнирной точки Z путем поворота эксцентрика 16, закрепленного на корпусе двигателя. Эксцентрик 16 поворачивается в зависимости от нагрузки двигателя, при этом центр качания, расположенный в шарнирной точке Z, перемещается по дуге окружности, изменяя таким образом положение верхней мертвой точки поршня.

Из заявки DE 4312954 А1 (21.04.1993) известен двигатель типа IFA (кинематическая схема которого показана на фиг.3), у которого между кривошипом 17 и шатуном 12 установлен дополнительный шатун 13. Шатун 12, кроме того, связан с одним из концов коромысла 14, второй конец которого совершает качательное движение с центром качания в шарнирной точке Z. Регулирование степени сжатия осуществляется за счет изменения положения шарнирной точки Z путем поворота эксцентрика 16, который закреплен на корпусе двигателя. Эксцентрик 16 поворачивается в зависимости от нагрузки двигателя, при этом центр качания, расположенный в шарнирной точке Z, перемещается по дуге окружности, изменяя таким образом положение верхней мертвой точки поршня.

К недостаткам, присущим двигателям вышеописанных конструкций (известным из работы Jante А., из работы Christoph Bolling и др. и из заявки DE 4312954 А1), следует отнести в первую очередь недостаточно высокую плавность их работы, обусловленную высокими силами инерции второго порядка при возвратно-поступательном движении масс, что связано с особенностями кинематики механизмов и приводит к чрезмерному увеличению общей ширины или общей высоты силового агрегата. По этой причине такие двигатели практически не пригодны для их использования в качестве двигателей для транспортных средств.

Регулирование степени сжатия в поршневом ДВС позволяет решить следующие задачи:

Повысить среднее давление Ре путем увеличения давления наддува без увеличения максимального давления сгорания сверх заданных пределов за счет уменьшения степени сжатия по мере увеличения нагрузки двигателя;

Снизить расход топлива в диапазоне малых и средних нагрузок за счет увеличения степени сжатия по мере уменьшения нагрузки двигателя;

Повысить плавность работы двигателя.

Регулирование степени сжатия позволяет в зависимости от типа ДВС достичь следующих преимуществ (для ДВС с принудительным (искровым) зажиганием):

При сохранении достигнутого уровня экономичности двигателя при малых и средних нагрузках обеспечивается дальнейшее повышение номинальной мощности двигателя за счет увеличения давления наддува при уменьшении степени сжатия (см. фиг.4а, где кривые, обозначенные позицией х, относятся к обычному двигателю, а кривые, обозначенные позицией у, относятся к двигателю с переменной степенью сжатия);

При сохранении достигнутого уровня номинальной мощности двигателя обеспечивается снижение расхода топлива при малых и средних нагрузках за счет увеличения степени сжатия до допустимого по детонации предела (см. фиг.4б, где кривые, обозначенные позицией х, относятся к обычному двигателю, а кривые, обозначенные позицией у, относятся к двигателю с переменной степенью сжатия);

При сохранении достигнутого уровня номинальной мощности двигателя повышается экономичность при малых и средних нагрузках, а также снижается уровень шума двигателя при одновременном снижении номинальной частоты вращения коленчатого вала (см. фиг.4в, где кривые, обозначенные позицией х, относятся к обычному двигателю, а кривые, обозначенные позицией у, относятся к двигателю с переменной степенью сжатия).

Аналогично ДВС с искровым зажиганием регулирование степени сжатия в дизельном двигателе может вестись в трех следующих равноправных направлениях:

При неизменном рабочем объеме и номинальной частоте вращения мощность двигателя повышают за счет увеличения давления наддува. В этом случае повышается не экономичность, а мощность транспортного средства (см. фиг.5а, где кривые, обозначенные позицией х, относятся к обычному двигателю, а кривые, обозначенные позицией у, относятся к двигателю с переменной степенью сжатия);

При неизменном рабочем объеме и номинальной мощности повышают среднее давление Ре при снижении номинальной частоты вращения. В этом случае при сохранении мощностных характеристик транспортного средства повышается экономичность двигателя за счет повышения механического КПД (см. фиг.5б, где кривые, обозначенные позицией х, относятся к обычному двигателю, а кривые, обозначенные позицией у, относятся к двигателю с переменной степенью сжатия);

Существующий двигатель большого рабочего объема на заменяют на двигатель малого рабочего объема, но той же мощности (см. фиг.5в, где кривые, обозначенные позицией х, относятся к обычному двигателю, а кривые, обозначенные позицией у, относятся к двигателю с переменной степенью сжатия). В этом случае повышается экономичность двигателя в диапазоне средних и полных нагрузок, а также уменьшается масса и габариты двигателя.

В основу настоящего изобретения была положена задача усовершенствовать кинематику поршневого ДВС таким образом, чтобы при малых конструктивных затратах обеспечивать возможность регулирования степени сжатия при одновременном снижении реакции в опорах и сил инерции второго порядка.

В отношении поршневого ДВС указанного в начале описания типа эта задача решается согласно изобретению благодаря тому, что длина стороны, расположенной между опорной точкой, в которой поперечный рычаг соединен с управляющим рычагом, и опорной точкой, в которой поперечный рычаг соединен с шатуном, длина стороны, расположенной между опорной точкой, в которой поперечный рычаг соединен с управляющим рычагом, и шарниром, которым поперечный рычаг соединен с кривошипом, и длина стороны, расположенной между опорной точкой, в которой поперечный рычаг соединен с шатуном, и шарниром, которым поперечный рычаг соединен с кривошипом, удовлетворяют в пересчете на радиус кривошипа следующим соотношениям:

Согласно одному из предпочтительных вариантов выполнения предлагаемого в изобретении поршневого ДВС поперечный рычаг выполнен в виде треугольного рычага, в вершинах которого расположены опорные точки, в которых поперечный рычаг соединен с управляющим рычагом и шатуном, и шарнир, которым поперечный рычаг соединен с кривошипом.

Предпочтительно, чтобы длина l шатуна и длина k управляющего рычага, а также расстояние е между осью вращения коленчатого вала и продольной осью цилиндра удовлетворяли в пересчете на радиус г кривошипа следующим соотношениям:

В том случае, когда управляющий рычаг и шатун расположены по одну сторону поперечного рычага, расстояние f между продольной осью цилиндра и точкой шарнирного соединения управляющего рычага с корпусом ДВС и расстояние р между осью коленчатого вала и указанной точкой шарнирного соединения предпочтительно должны удовлетворять в пересчете на радиус r кривошипа следующим соотношениям:

В том же случае, когда управляющий рычаг и шатун расположены по разные стороны поперечного рычага, расстояние f между продольной осью цилиндра и точкой шарнирного соединения управляющего рычага и расстояние р между осью коленчатого вала и указанной точкой шарнирного соединения предпочтительно должны удовлетворять в пересчете на радиус г кривошипа следующим соотношениям:

В соответствии со следующим предпочтительным вариантом выполнения предлагаемого в изобретении поршневого ДВС точка шарнирного соединения управляющего рычага имеет возможность перемещения по управляемой траектории.

Предпочтительно также предусмотреть возможность фиксации точки шарнирного соединения управляющего рычага в различных регулируемых угловых положениях.

В соответствии еще с одним предпочтительным вариантом выполнения предлагаемого в изобретении поршневого ДВС предусмотрена возможность регулирования углового положения точки шарнирного соединения управляющего рычага в зависимости от характеризующих режим работы ДВС величин и рабочих параметров ДВС.

Согласно еще одному предпочтительному варианту выполнения предлагаемого в изобретении поршневого ДВС предусмотрена возможность синхронизированного с вращением коленчатого вала движения точки шарнирного соединения управляющего рычага по управляемой траектории.

В другом предпочтительном варианте выполнения предлагаемого в изобретении поршневого ДВС предусмотрена возможность синхронизированного с вращением коленчатого вала движения точки шарнирного соединения управляющего рычага по управляемой траектории и возможность регулирования фазового сдвига между движением этой точки и вращением коленчатого вала в зависимости от характеризующих режим работы ДВС величин и рабочих параметров ДВС.

В соответствии со следующим предпочтительным вариантом выполнения предлагаемого в изобретении поршневого ДВС предусмотрена возможность синхронизированного с вращением коленчатого вала движения точки шарнирного соединения управляющего рычага по управляемой траектории, при этом предусмотрена возможность изменения передаточного отношения между движением указанной точки и вращением коленчатого вала.

Предлагаемый в изобретении поршневой ДВС 1 показан на фиг.6а и 6б и имеет корпус 2 с цилиндром 3 и установленным в нем поршнем 4, шатун 6, который шарнирно соединен одним концом с поршнем 4, кривошип 8 коленчатого вала, установленного в корпусе 2, прицепной шатун 10, называемый также управляющим рычагом 10 и шарнирно соединенный одним его концом с корпусом 2, и треугольный поперечный рычаг 7, который одной его вершиной шарнирно соединен со вторым концом шатуна 6, второй его вершиной шарнирно соединен с кривошипом 8, а третьей его вершиной шарнирно соединен с прицепным шатуном 10. Для регулирования степени сжатия ось качания прицепного шатуна 10, т.е. точка Z его шарнирного соединения имеет возможность перемещения по управляемой траектории, определяемой, например, эксцентриком или дополнительным кривошипом 11.

В зависимости от положения оси качания прицепного шатуна предлагаемый в изобретении поршневой ДВС имеет два варианта конструктивного исполнения (см. фиг.6а и 6б):

В первом варианте (фиг.6а) горизонтальная плоскость, в которой лежит ось качания прицепного шатуна 10, т.е. точка Z его шарнирного соединения расположена выше точки соединения кривошипа 8 с поперечным рычагом 7 при нахождении кривошипа в его верхней мертвой точке или, иными словами, прицепной шатун 10 и шатун 6 расположены по одну сторону поперечного рычага 7;

Во втором варианте (фиг.6б) горизонтальная плоскость, в которой лежит ось качания прицепного шатуна 10, т.е. точка Z его шарнирного соединения расположена ниже точки соединения кривошипа 8 с поперечным рычагом 7 при нахождении кривошипа в его верхней мертвой точке или, иными словами, прицепной шатун 10 и шатун 6 расположены по разные стороны поперечного рычага 7.

Изменение положения точки Z шарнирного соединения прицепного рычага, т.е. его оси качания, позволяет за счет простого управляющего движения, осуществляемого дополнительным кривошипом, соответственно регулирующим эксцентриком, изменять степень сжатия. Помимо этого точка Z шарнирного соединения прицепного рычага, т.е. его ось качания может совершать непрерывное циклическое движение, синхронизированное с вращением коленчатого вала.

Как показано на фиг.7, предлагаемый в изобретении поршневой ДВС обладает значительными преимуществами перед известными системами (описанными у Jante А., у Christoph Bolling и др. и в DE 4312954 А1), а также перед обычным кривошипно-шатунным механизмом (СМ) касательно плавности его работы.

Однако указанные преимущества могут быть достигнуты только при соблюдении определенных геометрических соотношений, а именно, при правильном подборе длин отдельных элементов и их положений относительно оси коленчатого вала.

Согласно настоящему изобретению важное значение имеет определение размеров отдельных элементов (по отношению к радиусу кривошипа) и координат отдельных шарниров механизма передачи усилий, чего можно достичь за счет оптимизации такого механизма путем кинематического и динамического анализа. Цель оптимизации подобного, описываемого девятью параметрами механизма (фиг.8) состоит в уменьшении сил (нагрузки), действующих на его отдельные звенья, до минимально возможного уровня и в повышении плавности его работы.

Ниже со ссылкой на фиг.9 (9а и 9б), где изображена кинематическая схема ДВС, показанного на фиг.6 (6а и 6б соответственно), поясняется принцип работы регулируемого кривошипно-шатунного механизма. В процессе работы ДВС его поршень 4 совершает в цилиндре возвратно-поступательное движение, которое передается на шатун 6. Движение шатуна 6 передается через опорную (шарнирную) точку В на поперечный рычаг 7, свобода перемещения которого ограничена за счет его соединения с прицепным шатуном 10 в опорной (шарнирной) точке С. Если точка Z шарнирного соединения прицепного шатуна 10 неподвижна, то опорная точка С поперечного рычага 7 может совершать движение по дуге окружности, радиус которой равен длине прицепного шатуна 10. Положение такой круговой траектории движения опорной точки С относительно корпуса двигателя определяется положением точки Z. При изменении положения точки Z шарнирного соединения прицепного шатуна изменяется положение круговой траектории, по которой может перемещаться опорная точка С, что позволяет влиять на траектории движения других элементов кривошипно-шатунного механизма, прежде всего на положение в.м.т. поршня 4. Точка Z шарнирного соединения прицепного шатуна предпочтительно перемещается по круговой траектории. Однако точка Z шарнирного соединения прицепного шатуна может также перемещаться и по любой иной заданной управляемой траектории, при этом возможна также фиксация точки Z шарнирного соединения прицепного шатуна в любом положении траектории ее перемещения.

Поперечный рычаг 7 шарниром А соединен также с кривошипом 8 коленчатого вала 9. Этот шарнир А движется по круговой траектории, радиус которой определяется длиной кривошипа 8. Шарнир А занимает промежуточное положение, если смотреть вдоль линии, соединяющей между собой опорные точки В и С поперечного рычага 7. Наличие кинематической связи опорной точки С с прицепным шатуном 10 позволяет влиять на ее поступательное движение вдоль продольной оси 5 поршня 4. Перемещение опорной точки В вдоль продольной оси 5 поршня определяется траекторией движения опорной точки С поперечного рычага 7. Влияние на перемещение опорной точки В позволяет управлять возвратно-поступательным движением поршня 4 через шатун 6 и тем самым регулировать положение в.м.т. поршня 4.

В показанном на фиг.9а варианте прицепной шатун 10 и шатун 6 расположены по одну сторону поперечного рычага 7.

Поворотом выполненного в виде дополнительного кривошипа 11 регулирующего звена из показанного на фиг.9а примерно горизонтального положения, например, в обращенное вертикально вниз положение позволяет сместить положение в.м.т. поршня 4 вверх и тем самым увеличить степень сжатия.

На фиг.9б показана кинематическая схема выполненного по другому варианту ДВС, отличающаяся от показанной на фиг.9а схемы лишь тем, что прицепной шатун 10 вместе с выполненным в виде дополнительного кривошипа 11, соответственно регулирующего эксцентрика регулирующим звеном и шатун 6 расположены по разные стороны поперечного рычага 7. Во всем остальном принцип действия показанного на фиг.9б кривошипно-шатунного механизма аналогичен принципу действия показанного на фиг.9а кривошипно-шатунного механизма, у которого прицепной шатун 10 и шатун 6 расположены по одну сторону поперечного рычага 7.

На фиг.10 показана еще одна кинематическая схема кривошипно-шатунного механизма поршневого ДВС, на которой представлены положения определенных точек этого кривошипно-шатунного механизма и на которой штриховкой обозначены оптимальные области, в пределах которых с учетом упомянутых выше оптимальных областей значений для длин и положений элементов кривошипно-шатунного механизма могут перемещаться опорная точка В шарнирного соединения поперечного рычага 7 с шатуном 6, опорная точка С шарнирного соединения поперечного рычага 7 с прицепным шатуном 10 и точка Z шарнирного соединения прицепного шатуна 10. Для обеспечения особо плавной работы ДВС с исключительно малой нагрузкой на отдельные элементы и звенья его кривошипно-шатунного механизма геометрические параметры (длина и положение) элементов и звеньев этого кривошипно-шатунного механизма должны удовлетворять определенным, предпочтительным соотношениям. Длины сторон a, b и с треугольного поперечного рычага 7, где а обозначает длину стороны, расположенной между опорной точкой В шатуна и опорной точкой С прицепного шатуна, b обозначает длину стороны, расположенной между шарниром А кривошипа и опорной точкой С прицепного шатуна, а с обозначает расстояние между шарниром А кривошипа и опорной точкой В шатуна, можно описать следующими неравенствами в зависимости от радиуса г, который равен длине кривошипа 8:

Длина l шатуна 6, длина k прицепного шатуна 10 и расстояние е между осью вращения коленчатого вала 9 и продольной осью 5 цилиндра 3, которая одновременно является и продольной осью поршня, перемещающегося в этом цилиндре, согласно предпочтительному варианту удовлетворяют следующим соотношениям:

Для показанного на фиг.9а варианта, в котором шатун 6 и прицепной шатун 10 располагаются по одну сторону поперечного рычага 7, также можно задать оптимальное соотношение размеров. При этом расстояние f между продольной осью 5 цилиндра и точкой Z шарнирного соединения прицепного рычага 10 к его регулирующему звену, а также расстояние р между осью коленчатого вала и указанной точкой Z шарнирного соединения согласно предпочтительному варианту удовлетворяют следующим соотношениям:

При расположении прицепного шатуна и шатуна по разные стороны поперечного рычага оптимальное расстояние f между продольной осью поршня и точкой Z шарнирного соединения прицепного рычага к его регулирующему звену, а также оптимальное расстояние р между осью коленчатого вала и указанной точкой Z шарнирного соединения можно выбирать исходя из следующих соотношений:

ФОРМУЛА ИЗОБРЕТЕНИЯ

1. Поршневой двигатель внутреннего сгорания (ДВС), имеющий поршень (4), который подвижно установлен в цилиндре и который шарнирно соединен с шатуном (6), движение которого передается на кривошип (8) коленчатого вала (9), при этом между шатуном (6) и кривошипом (8) предусмотрено передаточное звено, которое выполнено с возможностью управления его движением с помощью управляющего рычага (10) с целью обеспечить управляемое перемещение поршня, прежде всего обеспечить возможность изменения степени сжатия и хода поршня, и которое выполнено в виде поперечного рычага (7), который соединен с кривошипом (8) шарниром (А), который расположен в промежуточном положении на участке между опорной точкой (В), в которой поперечный рычаг (7) соединен с шатуном (6), и опорной точкой (С), в которой поперечный рычаг (7) соединен с управляющим рычагом (10), и на некотором удалении от линии, соединяющей между собой обе эти опорные точки (В, С), в которых поперечный рычаг (7) соединен с управляющим рычагом (10) и шатуном (6) соответственно, отличающийся тем, что длина стороны (а), расположенной между опорной точкой (С), в которой поперечный рычаг (7) соединен с управляющим рычагом (10), и опорной точкой (В), в которой поперечный рычаг (7) соединен с шатуном (6), длина стороны (b), расположенной между опорной точкой (С), в которой поперечный рычаг (7) соединен с управляющим рычагом (10), и шарниром (А), которым поперечный рычаг (7) соединен с кривошипом (8), и длина стороны (с), расположенной между опорной точкой (В), в которой поперечный рычаг (7) соединен с шатуном (6), и шарниром (А), которым поперечный рычаг (7) соединен с кривошипом (8), удовлетворяют в пересчете на радиус (r) кривошипа следующим соотношениям:

6. Поршневой ДВС по п.4 или 5, отличающийся тем, что точка (Z) шарнирного соединения управляющего рычага (10) имеет возможность перемещения по управляемой траектории.

7. Поршневой ДВС по п.4 или 5, отличающийся тем, что предусмотрена возможность регулирования положения точки (Z) шарнирного соединения управляющего рычага (10) с помощью опирающегося на шарнир дополнительного кривошипа.

8. Поршневой ДВС по п.4 или 5, отличающийся тем, что предусмотрена возможность регулирования положения точки (Z) шарнирного соединения управляющего рычага (10) с помощью эксцентрика.

9. Поршневой ДВС по п.4 или 5, отличающийся тем, что предусмотрена возможность фиксации точки (Z) шарнирного соединения управляющего рычага (10) в различных регулируемых угловых положениях.

10. Поршневой ДВС по п.4 или 5, отличающийся тем, что предусмотрена возможность регулирования углового положения точки (Z) шарнирного соединения управляющего рычага (10) в зависимости от характеризующих режим работы ДВС величин и рабочих параметров ДВС.

11. Поршневой ДВС по п.4 или 5, отличающийся тем, что предусмотрена возможность синхронизированного с вращением коленчатого вала движения точки (Z) шарнирного соединения управляющего рычага (10) по управляемой траектории.

12. Поршневой ДВС по п.4 или 5, отличающийся тем, что предусмотрена возможность синхронизированного с вращением коленчатого вала (9) движения точки (Z) шарнирного соединения управляющего рычага (10) по управляемой траектории и возможность регулирования фазового сдвига между движением этой точки (Z) и вращением коленчатого вала (9) в зависимости от характеризующих режим работы ДВС величин и рабочих параметров ДВС.

13. Поршневой ДВС по п.4 или 5, отличающийся тем, что предусмотрена возможность синхронизированного с вращением коленчатого вала (9) движения точки (Z) шарнирного соединения управляющего рычага (10) по управляемой траектории, при этом предусмотрена возможность изменения передаточного отношения между движением указанной точки (Z) и вращением коленчатого вала (9).

Двигатель VC-T. Изображение: Nissan

Японский автопроизводитель Nissan Motor представил новый тип бензинового двигателя внутреннего сгорания, который по некоторым параметрам превосходит продвинутые современные дизельные двигатели.

Новый двигатель Variable Compression-Turbo (VC-T) способен при необходимости изменять степень сжатия газообразной горючей смеси, то есть изменять шаг хода поршней в цилиндрах ДВС. Этот параметр обычно является фиксированным. Судя по всему, VC-T станет первым в мире ДВС с изменяемой степенью сжатия смеси.

Степень сжатия - отношение объёма надпоршневого пространства цилиндра двигателя внутреннего сгорания при положении поршня в нижней мёртвой точке (полный объём цилиндра) к объёму надпоршневого пространства цилиндра при положении поршня в верхней мёртвой точке, то есть к объёму камеры сгорания.

Повышение степени сжатия в общем случае повышает его мощность и увеличивает КПД двигателя, то есть способствует снижению расхода топлива.

В обычных бензиновых двигателях степень сжатия обычно составляет от 8:1 до 10:1, а в спортивных машинах и гоночных болидах может достигать 12:1 или больше. При повышении степени сжатия двигатель нуждается в топливе с бóльшим октановым числом.


Двигатель VC-T. Изображение: Nissan

На иллюстрации показана разница в шаге поршней на разной степени сжатия: 14:1 (слева) и 8:1 (справа). В частности, демонстрируется механизм изменения степени сжатия от 14:1 к 8:1. Он происходит таким образом.

  1. В случае необходимости изменить степень сжатия активируется модуль Harmonic Drive и сдвигает рычаг актуатора.
  2. Рычаг актуатора поворачивает приводной вал (Control Shaft на схеме).
  3. Когда приводной вал поворачивается, он изменяет угол наклона многорычажной подвески (Multi-link на схеме)
  4. Многорычажная подвеска определяет высоту, на которую каждый поршень способен подняться в своём цилиндре. Таким образом, изменяется степень сжатия. Нижняя мёртвая точка поршня, судя по всему, остаётся прежней.

Изменение степени сжатия в ДВС можно в каком-то смысле сравнить с изменением угла атаки в винтах регулируемого шага - концепции, которая много десятилетий применяется в воздушных и гребных винтах. Изменяемый шаг винта позволяет поддерживать эффективность движителя близкой к оптимальной вне зависимости от скорости движения носителя в потоке.

Технология изменения степени сжатия ДВС даёт возможность сохранить мощность двигателя при соблюдении строгих нормативов к экономичности двигателя. Вероятно, это вообще самый реальный способ соблюсти эти нормативы. «Все сейчас работают над изменяемой степень сжатия и другими технологиями, чтобы значительно улучшить экономичность бензиновых двигателей, - говорит Джеймс Чао (James Chao), управляющий директор по Азиатско-Тихоокеанскому региону и консультант IHS, - По крайней мере последние двадцать лет или около того». Стоит упомянуть, что в 2000 году компания Saab показывала прототип такого двигателя Saab Variable Compression (SVC) для Saab 9-5, за который удостоилась ряда наград на технических выставках. Затем шведскую фирму купил концерн General Motors и прекратил работу над прототипом.


Двигатель Saab Variable Compression (SVC). Фото: Reedhawk

Двигатель VC-T обещают вывести на рынок в 2017 году с автомобилями марки Infiniti QX50. Официальная презентация назначена на 29 сентября на Парижском автосалоне. Этот двухлитровый четырёхцилиндровый двигатель будет обладать примерно такой же мощностью и крутящим моментом, что и 3,5-литровый двигатель V6, место которого займёт, но обеспечит экономию топлива 27%, по сравнению с ним.

Инженеры Nissan говорят также, что VC-T будет дешевле, чем современные продвинутые дизельные двигатели с турбонаддувом, и будет полностью соответствовать современным нормам на выбросы оксида азота и других выхлопных газов - такие правила действуют в Евросоюзе и некоторых других странах.

После Infiniti новыми двигателями планируется оснащать другие автомобили Nissan и, возможно, партнёрской компании Renault.


Двигатель VC-T. Изображение: Nissan

Можно предположить, что усложнённая конструкция ДВС в первое время вряд ли будет отличаться надёжностью. Есть смысл выждать несколько лет, прежде чем покупать автомобиль с двигателем VC-T, если только вы не хотите участвовать в тестировании экспериментальной технологии.