Почему подвижный блок дает выигрыш. Чем отличается подвижный блок от неподвижного? Классификация по назначению подъемника

Темы кодификатора ЕГЭ: простые механизмы, КПД механизма.

Механизм - это приспособление для преобразования силы (её увеличения или уменьшения).
Простые механизмы - это рычаг и наклонная плоскость.

Рычаг.

Рычаг - это твёрдое тело, которое может вращаться вокруг неподвижной оси. На рис. 1 ) изображён рычаг с осью вращения . К концам рычага (точкам и ) приложены силы и . Плечи этих сил равны соответственно и .

Условие равновесия рычага даётся правилом моментов: , откуда

Рис. 1. Рычаг

Из этого соотношения следует, что рычаг даёт выигрыш в силе или в расстоянии (смотря по тому, с какой целью он используется) во столько раз, во сколько большее плечо длиннее меньшего.

Например, чтобы усилием 100 Н поднять груз весом 700 Н, нужно взять рычаг с отношением плеч 7: 1 и положить груз на короткое плечо. Мы выиграем в силе в 7 раз, но во столько же раз проиграем в расстоянии: конец длинного плеча опишет в 7 раз большую дугу, чем конец короткого плеча (то есть груз).

Примерами рычага, дающего выигрыш в силе, являются лопата, ножницы, плоскогубцы. Весло гребца - это рычаг, дающий выигрыш в расстоянии. А обычные рычажные весы являются равноплечим рычагом, не дающим выигрыша ни в расстоянии, ни в силе (в противном случае их можно использовать для обвешивания покупателей).

Неподвижный блок.

Важной разновидностью рычага является блок - укреплённое в обойме колесо с жёлобом, по которому пропущена верёвка. В большинстве задач верёвка считается невесомой нерастяжимой нитью.

На рис. 2 изображён неподвижный блок, т. е. блок с неподвижной осью вращения (проходящей перпендикулярно плоскости рисунка через точку ).

На правом конце нити в точке закреплён груз весом . Напомним, что вес тела - это сила, с которой тело давит на опору или растягивает подвес. В данном случае вес прило жен к точке , в которой груз крепится к нити.

К левому концу нити в точке приложена сила .

Плечо силы равно , где - радиус блока. Плечо веса равно . Значит, неподвижный блок является равноплечим рычагом и потому не даёт выигрыша ни в силе, ни в расстоянии: во-первых, имеем равенство , а во-вторых, в процессе движении груза и нити перемещение точки равно перемещению груза.

Зачем же тогда вообще нужен неподвижный блок? Он полезен тем, что позволяет изменить направление усилия. Обычно неподвижный блок используется как часть более сложных механизмов.

Подвижный блок.

На рис. 3 изображён подвижный блок , ось которого перемещается вместе с грузом. Мы тянем за нить с силой , которая приложена в точке и направлена вверх. Блок вращается и при этом также движется вверх, поднимая груз, подвешенный на нити .

В данный момент времени неподвижной точкой является точка , и именно вокруг неё поворачивается блок (он бы "перекатывается" через точку ). Говорят ещё, что через точку проходит мгновенная ось вращения блока (эта ось направлена перпендикулярно плоскости рисунка).

Вес груза приложен в точке крепления груза к нити. Плечо силы равно .

А вот плечо силы , с которой мы тянем за нить, оказывается в два раза больше: оно равно . Соответственно, условием равновесия груза является равенство (что мы и видим на рис. 3 : вектор в два раза короче вектора ).

Следовательно, подвижный блок даёт выигрыш в силе в два раза. При этом, однако, мы в те же два раза проигрываем в расстоянии: чтобы поднять груз на один метр, точку придётся переместить на два метра (то есть вытянуть два метра нити).

У блока на рис. 3 есть один недостаток: тянуть нить вверх (за точку ) - не самая лучшая идея. Согласитесь, что гораздо удобнее тянуть за нить вниз! Вот тут-то нас и выручает неподвижный блок.

На рис. 4 изображён подъёмный механизм, который представляет собой комбинацию подвижного блока с неподвижным. К подвижному блоку подвешен груз, а трос дополнительно перекинут через неподвижный блок, что даёт возможность тянуть за трос вниз для подъёма груза вверх. Внешнее усилие на тросе снова обозначено вектором .

Принципиально данное устройство ничем не отличается от подвижного блока: с его помощью мы также получаем двукратный выигрыш в силе.

Наклонная плоскость.

Как мы знаем, тяжёлую бочку проще вкатить по наклонным мосткам, чем поднимать вертикально. Мостки, таким образом, являются механизмом, который даёт выигрыш в силе.

В механике подобный механизм называется наклонной плоскостью. Наклонная плоскость - это ровная плоская поверхность, расположенная под некоторым углом к горизонту. В таком случае коротко говорят: "наклонная плоскость с углом ".

Найдём силу, которую надо приложить к грузу массы , чтобы равномерно поднять его по гладкой наклонной плоскости с углом . Эта сила , разумеется, направлена вдоль наклонной плоскости (рис. 5 ).


Выберем ось так, как показано на рисунке. Поскольку груз движется без ускорения, действующие на него силы уравновешены:

Проектируем на ось :

Именно такую силу нужно приложить, что двигать груз вверх по наклонной плоскости.

Чтобы равномерно поднимать тот же груз по вертикали, к нему нужно приложить силу, равную . Видно, что , поскольку . Наклонная плоскость действительно даёт выигрыш в силе, и тем больший, чем меньше угол .

Широко применяемыми разновидностями наклонной плоскости являются клин и винт.

Золотое правило механики.

Простой механизм может дать выигрыш в силе или в расстоянии, но не может дать выигрыша в работе.

Например, рычаг с отношением плеч 2: 1 даёт выигрыш в силе в два раза. Чтобы на меньшем плече поднять груз весом , нужно к большему плечу приложить силу . Но для поднятия груза на высоту большее плечо придётся опустить на , и совершённая работа будет равна:

т. е. той же величине, что и без использования рычага.

В случае наклонной плоскости мы выигрываем в силе, так как прикладываем к грузу силу , меньшую силы тяжести. Однако, чтобы поднять груз на высоту над начальным положением, нам нужно пройти путь вдоль наклонной плоскости. При этом мы совершаем работу

т. е. ту же самую, что и при вертикальном поднятии груза.

Данные факты служат проявлениями так называемого золотого правила механики.

Золотое правило механики. Ни один из простых механизмов не даёт выигрыша в работе. Во сколько раз выигрываем в силе, во столько же раз проигрываем в расстоянии, и наоборот.

Золотое правило механики есть не что иное, как простой вариант закона сохранения энергии.

КПД механизма.

На практике приходится различать полезную работу A полезн, которую нужно совершить при помощи механизма в идеальных условиях отсутствия каких-либо потерь, и полную работу A полн,
которая совершается для тех же целей в реальной ситуации.

Полная работа равна сумме:
-полезной работы;
-работы, совершённой против сил трения в различных частях механизма;
-работы, совершённой по перемещению составных элементов механизма.

Так, при подъёме груза рычагом приходится вдобавок совершать работу по преодолению силы трения в оси рычага и по перемещению самого рычага, имеющего некоторый вес.

Полная работа всегда больше полезной. Отношение полезной работы к полной называется коэффициентом полезного действия (КПД) механизма:

=A полезн/А полн.

КПД принято выражать в процентах. КПД реальных механизмов всегда меньше 100%.

Вычислим КПД наклонной плоскости с углом при наличии трения. Коэффициент трения между поверхностью наклонной плоскости и грузом равен .

Пусть груз массы равномерно поднимается вдоль наклонной плоскости под действием силы из точки в точку на высоту (рис. 6 ). В направлении, противоположном перемещению, на груз действует сила трения скольжения .


Ускорения нет, поэтому силы, действующие на груз, уравновешены:

Проектируем на ось X:

. (1)

Проектируем на ось Y:

. (2)

Кроме того,

, (3)

Из (2) имеем:

Тогда из (3) :

Подставляя это в (1) , получаем:

Полная работа равна произведению силы F на путь, пройденный телом вдоль поверхности наклонной плоскости:

A полн=.

Полезная работа, очевидно, равна:

А полезн=.

Для искомого КПД получаем.

Подвижный блок отличается от неподвижного тем, что его ось не закреплена, и он может подниматься и опускаться вместе с грузом.

Рисунок 1. Подвижный блок

Как и неподвижный блок, подвижный блок состоит всё из того же колеса с желобом для троса. Однако здесь закреплен один конец троса, а колесо подвижно. Колесо движется вместе с грузом.

Как заметил ещё Архимед, подвижный блок по сути является рычагом и работает по тому же принципу, давая выигрыш в силе за счёт разницы плеч.

Рисунок 2. Силы и плечи сил в подвижном блоке

Подвижный блок перемещается вместе с грузом, он как бы лежит на веревке. В таком случае точка опоры в каждый момент времени будет находиться в месте соприкосновения блока с веревкой с одной стороны, воздействие груза будет приложено к центру блока, где он и крепится на оси, а сила тяги будет приложена в месте соприкосновения с веревкой с другой стороны блока. То есть плечом веса тела будет радиус блока, а плечом силы нашей тяги -- диаметр. Правило моментов в этом случае будет иметь вид:

$$mgr = F \cdot 2r \Rightarrow F = mg/2$$

Таким образом, подвижный блок дает выигрыш в силе в два раза.

Обычно на практике применяют комбинацию неподвижного блока с подвижным (рис. 3). Неподвижный блок применяется только для удобства. Он, изменяет направление действия силы, позволяет, например, поднимать груз, стоя на земле, а подвижный блок обеспечивает выигрыш в силе.

Рисунок 3. Комбинация неподвижного и подвижного блоков

Мы рассмотрели идеальные блоки, то есть такие, в которых не учитывалось действие сил трения. Для реальных же блоков необходимо вводить поправочные коэффициенты. Используют такие формулы:

Неподвижный блок

$F = f 1/2 mg $

В этих формулах: $F$ - прилагаемое внешнее усилие (обычно это сила рук человека), $m$ - масса груза, $g$ - коэффициент силы тяжести, $f$ - коэффициент сопротивления в блоке (для цепей примерно 1,05, а для верёвок 1,1).

С помощью системы из подвижного и неподвижного блоков грузчик поднимает ящик с инструментами на высоту $S_1$ = 7 м, прикладывая силу $F$ = 160 Н. Какова масса ящика, и сколько метров верёвки придётся выбрать, пока груз поднимется? Какую работу выполнит в результате грузчик? Сравните её с работой, выполненной над грузом по его перемещению. Трением и массой подвижного блока пренебречь.

$m, S_2 , A_1 , A_2$ - ?

Подвижный блок даёт двойной выигрыш в силе и двойной проигрыш в перемещении. Неподвижный блок не даёт выигрыша в силе, но меняет её направление. Таким образом, приложенная сила будет вдвое меньше веса груза: $F = 1/2P = 1/2mg$, откуда находим массу ящика: $m=\frac{2F}{g}=\frac{2\cdot 160}{9,8}=32,65\ кг$

Перемещение груза будет вдвое меньше, чем длина выбранной верёвки:

Выполненная грузчиком работа равна произведению приложенного усилия на перемещение груза: $A_2=F\cdot S_2=160\cdot 14=2240\ Дж\ $.

Работа, выполненная над грузом:

Ответ: Масса ящика 32,65 кГ. Длина выбранной верёвки 14 м. Выполненная работа равна 2240 Дж и не зависит от способа подъёма груза, а только от массы груза и высоты подъёма.

Задача 2

Какой груз можно поднять с помощью подвижного блока весом 20 Н, если тянуть веревку с силой 154 Н?

Запишем правило моментов для подвижного блока: $F = f 1/2 (P+ Р_Б)$, где $f$ - поправочный коэффициент для верёвки.

Тогда $P=2\frac{F}{f}-P_Б=2\cdot \frac{154}{1,1}-20=260\ Н$

Ответ: Вес груза 260 Н.

Грузоподъемные машины призваны помочь человеку поднять что-либо тяжелое на высоту. В основе большинства подъемных механизмов лежит простая система блоков – полиспаст. Он был знаком еще Архимеду, но сейчас об этом гениальном изобретении многие не знают. Вспоминая курс физики, выясните, как работает такой механизм, его строение и область применения. Разобравшись в классификации, можно приступать к расчету. Чтобы все получилось – вашему вниманию инструкция по конструированию простой модели.

Изобретение полиспаста дало огромный толчок развитию цивилизаций. Система блоков помогла построить огромные сооружения, многие из которых сохранились по сей день и вызывают недоумение у современных строителей. Также совершенствовалось судостроение, люди смогли путешествовать на огромные расстояния. Пора разобраться, что это такое – полиспаст и выяснить, где можно найти ему применение сегодня.

Простота и эффективность механизма

Строение грузоподъемного механизма

Классический полиспаст представляет собой механизм, который состоит из двух основных элементов:

  • шкив;
  • гибкая связь.

Простейшая схема: 1 – подвижный блок, 2 – неподвижный, 3– канат

Шкив – это металлическое колесо, которое по внешнему краю имеет специальный желоб для троса. В качестве гибкой связи может применяться обычный трос или канат. Если груз будет достаточно тяжелый, используют тросы из синтетических волокон или стальные канаты и даже цепи. Для того чтобы шкив вращался легко, без скачков и заедания, используют роликовые подшипники. Все элементы, которые движутся, смазывают.

Один шкив называют блоком. Полиспаст – это система блоков для подъема грузов. Блоки в составе подъемного механизма могут быть неподвижными (жестко закрепленными) и подвижными (когда ось в процессе работы меняет положение). Одна часть полиспаста крепится к неподвижной опоре, другая – к грузу. Подвижные ролики располагаются на стороне груза.

Неподвижный блок

Роль неподвижного блока – изменение направления движения каната и действия прикладываемой силы. Роль подвижных – получение выигрыша в силе.

Подвижный блок

Принцип работы – в чем секрет

Принцип работы полиспаста подобен рычагу: усилие, которое необходимо приложить, становится меньше в несколько раз, при этом работа выполняется в том же объеме. Роль рычага играет трос. В работе полиспаста важен выигрыш в силе, поэтому возникающий проигрыш в расстоянии не принимается во внимание.

В зависимости от конструкции полиспаста, выигрыш в силе может быть разным. Простейший механизм из двух шкивов дает примерно двукратный выигрыш, из трех – трехкратный и так далее. По тому же принципу рассчитывается и увеличение расстояния. Для работы простого полиспаста нужен трос в два раза длиннее высоты подъема, а если используют комплекс из четырех блоков – то и длина троса увеличивается прямо пропорционально в четыре раза.

Принцип работы системы блоков

В каких областях применяется система блоков

Полиспаст – верный помощник на складе, на производстве, в транспортной сфере. Его используют везде, где нужно применять силу для перемещения всевозможных грузов. Система широко применяется в строительстве.

Несмотря на то что большую часть тяжелой работы выполняет строительная техника (подъемный кран), полиспасту нашлось место в конструкции грузозахватных механизмов. Система блоков (полиспаст) является составляющей таких подъемных механизмов, как лебедка, таль, строительная техника (краны разных типов, бульдозер, экскаватор).

Помимо строительной отрасли, полиспасты получили широкое применение в организации спасательных работ. Принцип работы остается прежним, но конструкция немного видоизменяется. Спасательное оборудование изготавливается из прочного троса, используются карабины. Для устройств такого назначения важно, чтобы вся система быстро собиралась и не требовала дополнительных механизмов.

Полиспаст в составе крюка подъемного крана

Классификация моделей по разным характеристикам

Существует множество исполнений одной задумки – системы блоков, объединенных канатом. Их дифференцируют в зависимости от способа применения и конструктивных особенностей. Познакомьтесь с разными типами подъемников, выясните, в чем заключается их назначение и чем отличается устройство.

Классификация в зависимости от сложности механизма

В зависимости от сложности механизма выделяют

  • простые;
  • сложные;
  • комплексные полиспасты.

Пример четных моделей

Простой полиспаст представляет собой систему последовательно соединенных роликов. Все подвижные и неподвижные блоки, а также сам груз объединяются одним тросом. Дифференцируют четные и нечетные простые полиспасты.

Четными называют те грузоподъемные механизмы, чей конец троса крепится к неподвижной опоре – станции. Все комбинации в таком случае будут считаться четными. А если конец веревки прикреплен непосредственно к грузу или месту прикладывания усилия, эта конструкция и все производные от нее будут называться нечетными.

Схема нечетного полиспаста

Сложный полиспаст можно называть системой полиспастов. В этом случае последовательно соединяются не отдельные блоки, а целые комбинации, которые вполне могут использоваться сами по себе. Грубо говоря, в этом случае один механизм приводит в движение другой подобный.

Комплексный полиспаст не относится ни к одному, ни к другому виду. Его отличительная черта – ролики, движущиеся навстречу грузу. В состав комплексной модели могут входить как простые, так и сложные полиспасты.

Объединение двукратного и шестикратного простого полиспаста дает сложный шестикратный вариант

Классификация по назначению подъемника

В зависимости от того, что хотят получить при использовании полиспаста, их подразделяют на:

  • силовые;
  • скоростные.

А – силовой вариант, Б — скоростной

Силовой вариант используется чаще. Как следует из названия, его задача – обеспечить выигрыш в силе. Так как для значительного выигрыша нужны столь же значительные потери в расстоянии, неизбежны и потери в скорости. К примеру, для системы 4:1 при поднятии груза на один метр нужно натянуть 4 метра троса, что замедляет работу.

Скоростной полиспаст по своему принципу представляет собой обратную силовому конструкцию. Он не дает выигрыша в силе, его цель – скорость. Применяется для ускорения работы в ущерб прикладываемому усилию.

Кратность – основная характеристика

Основной показатель, на который обращают внимание при организации подъема грузов –кратность полиспаста. Этот параметр условно обозначает, во сколько раз механизм позволяет выиграть в силе. Фактически, кратность показывает, на сколько ветвей каната распределен вес груза.

Кинематическая кратность

Кратность подразделяют на кинематическую (равную количеству перегибов каната) и силовую, которая рассчитывается с учетом преодоления тросом силы трения и неидеальным КПД роликов. В справочниках приведены таблицы, которые отображают зависимость силовой кратности от кинематической при разных КПД блоков.

Как видно из таблицы, силовая кратность существенно отличается от кинематической. При низком КПД ролика (94%) фактический выигрыш в силе полиспаста 7:1 будет меньше выигрыша шестикратного полиспаста с КПД блоков 96%.

Схемы полиспастов разной кратности

Как производить расчеты для полиспаста

Несмотря на то что теоретически конструкция полиспаста предельно простая, на практике не всегда ясно, как поднять груз с помощью блоков. Как понять, какая кратность понадобится, как выяснить КПД подъемника и каждого блока в отдельности. Для того чтобы найти ответы на эти вопросы, нужно выполнить расчеты.

Расчет отдельного блока

Расчет полиспаста нужно выполнять из-за того, что условия работы далеки от идеальных. На механизм действуют силы трения в результате движения троса по шкиву, в результате вращения самого ролика, какие бы подшипники ни применялись.

Кроме того, на стройплощадке и в составе строительной техники редко применяется гибкая и податливая веревка. Стальной канат или цепь обладают гораздо большей жесткостью. Так как для сгибания такого троса при набегании на блок требуется дополнительное усилие, его тоже нужно обязательно учитывать.

Для расчета выводят уравнение моментов для шкива относительно оси:

SсбегR = SнабегR + q SнабегR + Nfr (1)

В формуле 1 показаны моменты таких сил:

  • Sсбег – усилие со стороны сбегающего каната;
  • Sнабег – усилие со стороны набегающего каната;
  • q Sнабег – усилие, для сгибания/разгибания каната с учетом его жесткости q;
  • Nf – сила трения в блоке, с учетом коэффициента трения f.

Для определения момента все силы умножаются на плечо – радиус блока R или радиус втулки r.

Сила набегающего и сбегающего троса возникает в результате взаимодействия и трения нитей каната. Поскольку сила для сгибания/разгибания троса существенно меньше остальных, вычисляя воздействие на ось блока, этим значением часто пренебрегают:

N = 2 Sнабег×sinα (2)

В этом уравнении:

  • N – воздействие на ось шкива;
  • Sнабег – усилие со стороны набегающего каната (принимается примерно равным Sсбег;
  • α – угол отклонения от оси.

Блок полиспаста

Расчет полезного действия блока

Как известно, КПД – коэффициент полезного действия, то есть насколько результативна была выполненная работа. Его рассчитывают, как отношение выполненной и затраченной работ. В случае с блоком полиспаста применяется формула:

ηб = Sнабег/ Sсбег = 1/(1 + q + 2fsinα×d/D) (3)

В уравнении:

  • 3 ηб – КПД блока;
  • d и D – соответственно, диаметр втулки и самого шкива;
  • q – коэффициент жесткости гибкой связи (каната);
  • f – коэффициент трения;
  • α – угол отклонения от оси.

Из этой формулы видно, что на КПД влияет строение блока (посредством коэффициента f), его размер (через отношение d/D) и материал каната (коэф. q). Максимальное значение КПД можно получить, используя втулки из бронзы и подшипники качения (до 98%). Подшипники скольжения дадут до 96% коэффициент полезного действия.

На схеме изображены все силы S на разных ветвях каната

Как высчитать КПД всей системы

Подъемный механизм состоит из нескольких блоков. Суммарный КПД полиспаста не равен арифметической сумме всех отдельных составляющих. Для вычисления используют куда более сложную формулу, а точнее – систему уравнений, где все силы выражаются через значение первичной S0 и КПД механизма:

  • S1=ηп S0;
  • S2=(ηп)2 S0; (4)
  • S3=(ηп)3 S0;
  • Sn=(ηп)n S0.

КПД полиспаста при разной кратности

Поскольку значение КПД всегда меньше 1, с каждым новым блоком и уравнением в системе значение Sn будет стремительно уменьшаться. Суммарный КПД полиспаста будет зависеть не только от ηб, но и от количества этих блоков – кратности системы. По таблице можно найти ηп для систем с разным количеством блоков при разных значениях КПД каждого.

Как сделать подъемник своими руками

В строительстве во время проведения монтажных работ далеко не всегда есть возможность подогнать подъемный кран. Тогда возникает вопрос, как поднять груз веревкой. И здесь находит свое применение простой полиспаст. Для его изготовления и полноценной работы нужно сделать расчеты, чертежи, правильно подобрать веревку и блоки.

Разные схемы простых и сложных подъемников

Подготовка базы – схема и чертеж

Прежде чем приступать к сооружению полиспаста своими руками, нужно внимательно изучить чертежи и подобрать подходящую для себя схему. Опираться следует на то, как вам будет удобнее разместить конструкцию, какие блоки и трос имеются.

Случается, что грузоподъемности блоков полиспаста недостаточно, а сооружать сложный многократный подъемный механизм нет времени и возможности. Тогда применяют сдвоенные полиспасты, представляющие собой комбинацию из двух одинарных. Этим устройством также можно поднимать груз таким образом, чтобы он двигался строго вертикально, без перекосов.

Чертежи сдвоенной модели в разных вариациях

Как подобрать веревку и блок

Важнейшую роль в построении полиспаста своими руками играет веревка. Важно, чтобы она не растягивалась. Такие канаты называют статическими. Растяжение и деформация гибкой связи дает серьезные потери эффективности работы. Для самодельного механизма подойдет синтетический трос, толщина зависит от веса груза.

Материал и качество блоков – показатели, которые обеспечат самодельным подъемным устройствам расчетную грузоподъемность. В зависимости от подшипников, которые установлены в блоке, меняется его КПД и это уже учтено в расчетах.

Но как поднять груз на высоту своими руками и не уронить его? Чтобы обезопасить груз от возможного обратного хода, можно установить специальный фиксирующий блок, который позволяет веревке двигаться только в одном – нужном направлении.

Ролик, по которому движется канат

Пошаговая инструкция для подъема груза через блок

Когда веревка и блоки готовы, схема выбрана, а расчет произведен, можно приступать к сборке. Для простого двукратного полиспаста понадобятся:

  • ролик – 2 шт.;
  • подшипники;
  • втулка – 2 шт.;
  • обойма для блока – 2 шт.;
  • веревка;
  • крюк для подвеса груза;
  • стропы – если они нужны для монтажа.

Для быстрого соединения используют карабины

Пошагово подъем груза на высоту осуществляется так:

  1. Соединяют ролики, втулку и подшипники. Объединяют все это в обойму. Получают блок.
  2. Веревку запускают в первый блок;
  3. Обойма с этим блоком жестко крепится к неподвижной опоре (железобетонная балка, столб, стена, специально смонтированный вынос и пр.);
  4. Затем конец веревки пропускают через второй блок (подвижный).
  5. К обойме крепят крюк.
  6. Свободный конец веревки фиксируют.
  7. Стропят поднимаемый груз и соединяют его с полиспастом.

Самодельный подъемный механизм готов к использованию и обеспечит двойной выигрыш в силе. Теперь, чтобы поднять груз на высоту, достаточно потянуть за конец веревки. Огибая оба ролика, веревка поднимет груз без особых усилий.

Можно ли объединить полиспаст и лебедку

Если к самодельному механизму, который вы построите по этой инструкции, присоединить электрическую лебедку, получится самый настоящий подъемный кран, выполненный своими руками. Теперь для подъема груза не придется напрягаться совсем, лебедка все сделает за вас.

Даже ручная лебедка сделает подъем груза комфортнее – не нужно стирать руки о канат и переживать, чтобы веревка не выскользнула из рук. В любом случае, крутить ручку лебедки куда проще.

Полиспаст для лебедки

В принципе, даже вне стройплощадки умение в походных условиях с минимумом инструментов и материалов соорудить элементарный полиспаст для лебедки – очень полезный навык. Особенно оценят его автомобилисты, которым посчастливилось застрять на машине где-нибудь в непроходимом месте. Сделанный на скорую руку полиспаст значительно увеличит производительность лебедки.

Переоценить значение полиспаста в развитии современного строительства и машиностроения сложно. Понимать принцип действия и визуально представлять себе его конструкцию должен каждый. Теперь вам не страшны ситуации, когда нужно поднять груз, а специальной техники нет. Несколько шкивов, веревка и смекалка позволят обойтись без привлечения крана.

Блок состоит из одного или нескольких колес (роликов), огибаемых цепью, ремнем или тросом. Так же, как и рычаг, блок уменьшает усилие, необходимое для подъема груза, но плюс к этому может изменять направление прикладываемой силы.

За выигрыш в силе приходится расплачиваться расстоянием: чем меньшее усилие требуется для подъема груза, тем больше путь, который должна пройти точка приложения этого усилия. Система блоков увеличивает выигрыш в силе за счет использования большего количества грузонесущих цепей. Подобные силосберегающие устройства имеют очень широкий диапазон применения - от перемещения на высоту массивных стальных балок на строительных площадках до подъема флагов.

Как и в случае других простых механизмов, изобретатели блока неизвестны. Хотя, возможно, блоки существовали и раньше, первое упоминание о них в литературе относится к пятому веку до нашей эры и связано с использованием блоков древними греками на кораблях и в театрах.

Установленные на подвесном рельсе подвижные системы блоков (рисунок сверху) широко распространены на сборочных линиях, поскольку существенно облегчают перемещение тяжелых деталей. Прикладываемая сила (F) равна частному от деления веса груза (W) на используемое количество поддерживающих его цепей (n).

Одинарные неподвижные блоки

Этот простейший тип блока не уменьшает усилие, необходимое для подъема груза, но зато изменяет направление прикладываемой силы, как это показано на рисунках сверху и справа вверху. Неподвижный блок на верхней части флагштока облегчает подъем флага, позволяя тянуть шнур, к которому привязан флаг, вниз.

Одинарные подвижные блоки

Одинарный блок, имеющий возможность перемещения, уменьшает наполовину усилие, требующееся для подъема груза. Однако уменьшение вдвое прикладываемой силы означает, что точка ее приложения должна пройти в два раза больший путь. В данном случае сила равна половине веса (F=1/2W).

Системы блоков

При использовании комбинации неподвижного блока с подвижным прикладываемая сила кратна общему количеству грузонесущих цепей. В данном случае сила равна половине веса (F=1/2W).

Груз , подвешенный через блок вертикально, позволяет туго натягивать горизонтальные электрические провода.

Подвесной подъемник (рисунок сверху) состоит из цепи, обвитой вокруг одного подвижного и двух неподвижных блоков. Подъем груза требует прикладывания силы, составляющей всего лишь половину от его веса.

Полиспаст , обычно используемый в больших подъемных кранах (рисунок справа), состоит из комплекта подвижных блоков, к которому подвешивается груз, и комплекта неподвижных, прикрепленного к стреле крана. Получая выигрыш в силе от столь большого количества блоков, кран может поднимать очень тяжелые грузы, например, стальные балки. В данном случае сила (F) равна частному от деления веса груза (W) на количество поддерживающих тросов (n).

Подвижный блок отличается от неподвижного тем, что его ось не закреплена, и он может подниматься и опускаться вместе с грузом.

Рисунок 1. Подвижный блок

Как и неподвижный блок, подвижный блок состоит всё из того же колеса с желобом для троса. Однако здесь закреплен один конец троса, а колесо подвижно. Колесо движется вместе с грузом.

Как заметил ещё Архимед, подвижный блок по сути является рычагом и работает по тому же принципу, давая выигрыш в силе за счёт разницы плеч.

Рисунок 2. Силы и плечи сил в подвижном блоке

Подвижный блок перемещается вместе с грузом, он как бы лежит на веревке. В таком случае точка опоры в каждый момент времени будет находиться в месте соприкосновения блока с веревкой с одной стороны, воздействие груза будет приложено к центру блока, где он и крепится на оси, а сила тяги будет приложена в месте соприкосновения с веревкой с другой стороны блока. То есть плечом веса тела будет радиус блока, а плечом силы нашей тяги -- диаметр. Правило моментов в этом случае будет иметь вид:

$$mgr = F \cdot 2r \Rightarrow F = mg/2$$

Таким образом, подвижный блок дает выигрыш в силе в два раза.

Обычно на практике применяют комбинацию неподвижного блока с подвижным (рис. 3). Неподвижный блок применяется только для удобства. Он, изменяет направление действия силы, позволяет, например, поднимать груз, стоя на земле, а подвижный блок обеспечивает выигрыш в силе.

Рисунок 3. Комбинация неподвижного и подвижного блоков

Мы рассмотрели идеальные блоки, то есть такие, в которых не учитывалось действие сил трения. Для реальных же блоков необходимо вводить поправочные коэффициенты. Используют такие формулы:

Неподвижный блок

$F = f 1/2 mg $

В этих формулах: $F$ - прилагаемое внешнее усилие (обычно это сила рук человека), $m$ - масса груза, $g$ - коэффициент силы тяжести, $f$ - коэффициент сопротивления в блоке (для цепей примерно 1,05, а для верёвок 1,1).

С помощью системы из подвижного и неподвижного блоков грузчик поднимает ящик с инструментами на высоту $S_1$ = 7 м, прикладывая силу $F$ = 160 Н. Какова масса ящика, и сколько метров верёвки придётся выбрать, пока груз поднимется? Какую работу выполнит в результате грузчик? Сравните её с работой, выполненной над грузом по его перемещению. Трением и массой подвижного блока пренебречь.

$m, S_2 , A_1 , A_2$ - ?

Подвижный блок даёт двойной выигрыш в силе и двойной проигрыш в перемещении. Неподвижный блок не даёт выигрыша в силе, но меняет её направление. Таким образом, приложенная сила будет вдвое меньше веса груза: $F = 1/2P = 1/2mg$, откуда находим массу ящика: $m=\frac{2F}{g}=\frac{2\cdot 160}{9,8}=32,65\ кг$

Перемещение груза будет вдвое меньше, чем длина выбранной верёвки:

Выполненная грузчиком работа равна произведению приложенного усилия на перемещение груза: $A_2=F\cdot S_2=160\cdot 14=2240\ Дж\ $.

Работа, выполненная над грузом:

Ответ: Масса ящика 32,65 кГ. Длина выбранной верёвки 14 м. Выполненная работа равна 2240 Дж и не зависит от способа подъёма груза, а только от массы груза и высоты подъёма.

Задача 2

Какой груз можно поднять с помощью подвижного блока весом 20 Н, если тянуть веревку с силой 154 Н?

Запишем правило моментов для подвижного блока: $F = f 1/2 (P+ Р_Б)$, где $f$ - поправочный коэффициент для верёвки.

Тогда $P=2\frac{F}{f}-P_Б=2\cdot \frac{154}{1,1}-20=260\ Н$

Ответ: Вес груза 260 Н.