Устройство и принцип работы многодисковой фрикционной муфты. Конструктивные особенности фрикционных тормозов в катушках и технология их настройки

Главный фрикцион (см. рис. 62). Главный фрикцион двухдисковый, сухого трения, предназначен для кратковременного отключения двигателя от коробки передач, для плавного трогания машины с места и предохранения агрегатов силовой передачи и двигателя от перегрузок при резком изменении нагрузок на ведущих колесах.

Главный фрикцион размещается в общем картере с коробкой передач и отделен от нее внутренней перегородкой.

Главный фрикцион состоит из ведущих и ведомых частей и механизма выключения.

Ведущие части жестко связаны с коленчатым валом двигателя. К ним относятся опорный диск 19, ведущий барабан 17 с внутренними зубьями и кожух 14, крепящийся вместе с опорным диском болтами 18 к маховику

двигателя. В зацепление с зубьями ведущего барабана входят зубья ведущего диска 20 и нажимного диска 22. В кожухе 14 закреплены девять стаканов 24, в которых размещены по две концентрических спиральных нажимных пружины 16.

К ведомым частям относятся два стальных ведомых диска 21 с внутренними зубьями с прикрепленными к ним с обеих сторон дисками трения, изготовленными из специальной фрикционной массы КФ-2 ГОСТ 1786-57, и ведомый барабан 23, на зубьях которого сидят ведомые диски.

Ведомый барабан связан шлицами с полым валом 7, изготовленным заодно с ведущей конической шестерней коробки передач.

Механизм выключения состоит из бустера 9 с поршнем 10, корпуса 13 с радиально-упорным подшипником 12, трех оттяжных пружин 5 трех двуплечих рычагов 1, закрепленных на осях в кожухе 14.

Рис. 62. Главный фрикцион:

1 - двуплечий рычаг; 2 - вилка; 3 - регулировочная гайка; 4 - стопорная планка; 5 - оттяжная пружина; 6 - пробка отверстия для смазки; 7 - ведущий вал коробки передач; 8 - самоподжимная манжета; 9 - бустер главного фрикциона; 10 - поршень бустера; 11 - корпус уплотнения; 12 - подшипник; 13 - корпус подшипника механизма выключения; 14 - кожух главного фрикциона; 15 - картер коробки передач;16 - нажимные пружины; 17 - ведущий барабан; 18 - болт; 19 - опорный диск; 20 - ведущий диск трения; 21 - ведомый диск трения; 22 - нажимной диск; 23 - ведомый барабан; 24 - стакан пружин; 25 - ведущий валик масляного насоса; 26 - кольцо-ограничитель хода поршня; 27 и 29 - резиновые кольца; 28 - кожух; 30 - болт крепления стопорной планки; 31 - крышка корпуса подшипника; а - полость.

Назначение, общее устройство планетарных механизмов поворота с остановочными тормозами, коробки передач, стояночного тормоза и бортовой передачи БМП-2

Назначение планетарных механизмов поворота - передача крутящего момента от коробки передач к бортовым передачам, осуществление поворота и кратковременное увеличение тягового усилия на ведущих колесах без переключения передач (включение замедленной передачи).


Механизмы поворота - планетарные, двухступенчатые. На машине установлены два планетарных механизма поворота с остановочными тормозами одинаковых по конструкции. Они подсоединены к коробке передач с двух сторон картера.

Назначение остановочных тормозов - остановка, торможение машины, осуществление крутого поворота и удержание машины в остановленном состоянии.

Остановочные тормоза - ленточные, плавающие.

Устройство планетарных механизмов поворота . Каждый механизм поворота состоит из однорядного планетарного редуктора, блокировочного фрикциона и дискового тормоза ПМП.

Планетарный редуктор состоит из эпициклической шестерни 19 (см. рис. 62), установленной на грузовом валу КП, водила 34 с тремя сателлитами 8 на осях, солнечной шестерни 35, которая жестко соединена с наружным барабаном 21 блокировочного фрикциона, а также деталей крепления планетарного редуктора.

Блокировочный фрикцион соединяет (блокирует) эпициклическую шестерню 19 с солнечной шестерней 35, обеспечивая прямую передачу крутящего момента от грузового вала КП к бортовой передаче, и разъединяет солнечную и эпициклическую шестерни для получения замедленной передачи.

Блокировочный фрикцион состоит из четырех ведущих дисков 18 с металлокерамическими поверхностями трения, трех ведомых дисков 17, наружного барабана 21, нажимного диска 7, нажимных пружин 20, опорного диска и внутреннего барабана (эпициклической шестерни 19). Блокировочный фрикцион - постоянно замкнутый.

Тормоз ПМП служит для остановки солнечной шестерни 35 для получения замедленной передачи в планетарном механизме поворота. Он состоит из дискового тормоза 24 (трех стальных дисков и четырех дисков с металлокерамическими поверхностями трения), наружного барабана 23, внутреннего барабана, который представляет одно целое с наружным барабаном 21 блокировочного фрикциона, нажимного диска 27, опорного диска 5, пружин 25, поршня 28. Тормоз ПМП - постоянно разомкнутый.

Остановочный тормоз состоит из тормозной ленты, составленной из двух половин, к внутренней поверхности которых приклепаны армированные фрикционные накладки, оттяжных пружин, которые крепятся к кронштейнам и к тормозной ленте, двух гидроцилиндров, пружин, регулировочной гайки, рычага, упора и тормозного барабана.

Устройство привода управления планетарными механизмами поворота. Привод управления поворотом машины предназначен для осуществления поворота машины. Он состоит из руля, расположенного в рулевой колонке, валика, рычагов, тяг, золотников и левого и правого поворота.

На валике жестко закреплен подвижной упор, а к трубе рулевой колонки приварена планка, на которой имеются регулируемые ограничители. Подвижной упор и ограничители исключают возможность ударов золотников о корпус золотниковой коробки при отклонении руля до упора.

На валике запрессованы два штифта, которые входят в пазы, имеющиеся на ступицах рычагов. При отклонении руля один штифт упирается в край паза и перемещает рычаг, а второй штифт в это время передвигается по пазу другого рычага, который удерживается пружиной и не поворачивается.

Привод замедленной передачи предназначен для одновременного выключения блокировочных фрикционов и включения тормозов обоих ПМП при прямолинейном движении, что обеспечивает увеличение крутящего момента в 1,44 раза и соответственное уменьшение скорости на каждой передаче.

Привод управления планетарными механизмами может находиться в исходном положении, в положении включенной замедленной передачи и в положениях, соответствующих повороту.

Работа планетарных механизмов поворота и привода управления. В исходном положении руль находится в горизонтальном положении, рычаг замедленной передачи в верхнем положении, рычаги золотниковой коробки пружинами оттянуты в заднее крайнее положение, блокировочные фрикционы включены, а тормоза ПМП выключены. При этом солнечные шестерни ПМП сблокированы с эпициклами, они представляют собой одно целое.

При включенной передаче водила ПМП вращаются с той же скоростью, что и грузовой вал коробки передач. Машина движется со скоростью, определяемой передачей, включенной в КП.

При перемещении рычага вниз через валик, тяги и рычаги перемещаются золотники золотниковой коробки и открывают каналы подвода масла к бустерам блокировочных фрикционов и тормозов ПМП. Под давлением масла блокировочные фрикционы выключаются, а тормоза ПМП включаются.

При включенной передаче вращение от грузового вала КП передается через сателлиты, которые, обкатываясь вокруг солнечных шестерен, вращают водила. Машина движется прямолинейно со скоростью в 1,44 раза меньше скорости, определяемой передачей, включенной в КП.

Поворот машины производится поворотом руля влево или вправо. Изменение радиуса поворота машины происходит плавно, чем больше угол поворота руля от исходного положения, тем с меньшим радиусом будет производиться поворот машины.

При повороте руля на небольшой угол влево через валик поворачивается рычаг, который через тягу поворачивает рычаг золотниковой коробки.

Рис. 63. Планетарный механизм поворота:

1 - наружная уплотнительная манжета; 2 - бронзовая втулка (подшипник); 3 - опорный палец; 4, 11 - прокладки; 5 - опорный диск; 6 - опора бустера; 7 - нажимной диск блокировочного фрикциона; 8 - сателлит; 3 - игольчатый подшипник; 10 - ось сателлита; 12 - игольчатый подшипник водила; 13 - грузовой вал коробки передач; 14 - шпилька крепления картера; 15 - гайка: 16 - проставка; 17 - ведомый диск блокировочного фрикциона; 18 - ведущий диск; 19 - эпициклическая шестерня планетарного ряда (внутренний барабан); 20 - пружина блокировочного фрикциона; 21 - наружный барабан; 22 - болты крепления барабана к проставке; 23 - барабан; 24 - дисковый тормоз; 25 - оттяжная пружина тормоза; 26 - тормозной барабан; 27 - нажимной диск тормоза; 28 - поршень; 29 - уплотнительные кольца; 30 - шарикоподшипник; 31 - манжета; 32 - зубчатая муфта; 33 - пробка водила; 34 - водило планетарного ряда; 35 - солнечная шестерня; 36 - внутренняя уплотнительная манжета поршня.

При повороте рычага золотник перемещается и открывает канал подвода масла к бустеру блокировочного фрикциона левого ПМП.

Масло под воздействием постепенно увеличивающегося давления за счет скоса на золотнике начинает перемещать нажимной диск. Сила сжатия дисков уменьшается, диски пробуксовывают. По мере уменьшения силы сжатия величина крутящего момента, передаваемого к ведомым дискам блокировочного фрикциона левого ПМП, а, следовательно и к левому ведущему колесу, уменьшается, левая гусеница начинает отставать и машина с большим радиусом поворачивается влево.

При повороте руля на больший угол золотник, перемещаясь, открывает канал подвода масла к бустеру тормоза левого ПМП, при этом канал подвода масла к бустеру блокировочного фрикциона остается открытым. Поршень 28 вместе с нажимным диском начинает перемещаться и сжимает диски трения тормоза ПМП.

Зазор между дисками трения постепенно уменьшается, диски начинают пробуксовывать, величина крутящего момента, передаваемого к водилу планетарного ряда, увеличивается, и левая гусеница будет все больше отставать от правой гусеницы, радиус поворота машины будет постепенно уменьшаться.

При полностью включенном тормозе и блокировочном фрикционе левого ПМП вращение передается через сателлиты, которые, обкатываясь вокруг заторможенной солнечной шестерни, вращают водило левого ПМП со скоростью в 1,44 раза меньше скорости вращения водила правого ПМП, машина будет поворачиваться с фиксированным радиусом поворота.

При повороте руля до упора золотник, перемещаясь, вначале открывает канал слива масла из бустера тормоза ПМП, при этом масло сливается в картер коробки передач, а поршень тормоза возвращается в исходное положение, освобождая диски трения. Блокировочный фрикцион остается выключенным. Затем золотник открывает канал подвода масла к гидроцилиндру левого остановочного тормоза.

Масло под давлением поступает в полость, поршень перемещается и своим штоком нажимает на ролик рычага стояночного тормоза. Рычаг поворачивается вокруг оси и затягивает тормозную ленту. Левая гусеница затормаживается, машина поворачивается на месте в левую сторону.

При установке руля в исходное положение золотник перемещается в первоначальное положение и открывает канал слива из бустера блокировочного фрикциона, при этом масло сливается в картер КП, а блокировочный фрикцион под действием пружин включается. При включенной передаче машина будет двигаться со скоростью, определяемой передачей, включенной в КП.

Привод управления остановочными тормозами. Привод управления остановочными тормозами состоит из педали, расположенной на педальном мостике и удерживаемой в исходном положении пружиной, рычага на педальном мостике, рычагов и на переходном мостике, тяги, золотникаостановочных тормозов, расположенного в золотниковой коробке, гидроцилиндров. Гидроцилиндры одинаковы по устройству и состоят из корпуса, поршня, штока и штуцеров.

Работа остановочных тормозов и привода управления . Для торможения машины остановочными тормозами необходимо нажать на педаль, при этом поворачивается труба, жестко соединенная с педалью, и рычаг.

Рычаг, поворачиваясь, через тягу перемещает золотник остановочных тормозов. Золотник, перемещаясь, открывает канал подвода масла к гидроцилиндрам. Масло под давлением поступает в полость гидроцилиндров, перемещая поршни и затягивая тормозные ленты. Давление в гидроцилиндрах нарастает плавно в зависимости от степени нажатия на педаль благодаря наличию следящего устройства.

При отсутствии необходимого давления масла в системе гидроуправления ленты остановочных тормозов затягиваются с помощью сжатого воздуха, поступающего из пневмосистемы машины: при нажатии на педаль остановочных тормозов рычаг мостика воздействует на конечный выключатель и замыкает его контакт. Напряжение через сигнализатор давления, контакт которого замыкается автоматически при падении давления в системе гидроуправления ниже 0,25 МПа (2,6 кгс/см2), и конечный выключатель подается к электропневмоклапану пневмосистемы, который открывается, и сжатый воздух по трубопроводам через штуцер поступает в полость гидроцилиндра. Поршень перемещается и нажимает на ролик рычага стояночного тормоза, ленты остановочных тормозов затягиваются.

Фрикционы (фрикционные диски, пакеты фрикционов) — элементы сцепления между передачами в , необходимые для включения и . Фрикцион состоит из основы (стального диска). На указанный диск наклеена специальная фрикционная накладка.

Основной задачей фрикционов является смыкание (сжатие) и размыкание (разжатие) в строго определенный момент, благодаря чему нужная шестерня , которая соответствует той или иной передаче, останавливается или начинает вращаться. Фрикционы сжимаются и разжимаются под давлением трансмиссионной жидкости ATF.

Читайте в этой статье

Устройство фрикционных дисков АКПП и принцип работы

Прежде всего, бывает два вида фрикционов:

  • металлические диски с фрикционной накладкой, которые находятся в зацеплении с корпусом автоматической коробки. Такие фрикционы неподвижны.
  • мягкие фрикционы, вращающиеся одновременно с солнечными шестернями. Такие фрикционы изготовлены из мягкого материала (например, прессованный картон) и имеют упрочняющее напыление (графитовое и т.д.)

Различные АКПП могут иметь разные типы фрикционов. Например, в автоматических коробках, произведенных в 20-м веке и которые сегодня устарели, фрикционные диски односторонние, без накладок. Фактически это означает, что диска два, причем один стальной, а другой картонный.

Более современные типы АКПП получили доработанные фрикционные диски с наладками, в результате чего увеличен ресурс фрикционов, улучшено теплоотведение и т.д. Набирают фрикционные диски так называемыми «пакетами» (пакет фрикционов), когда один диск из металла, а другой из мягкого материала. Указанные пары дублируются по нескольку раз, чтобы образовать готовый пакет. Например, простой 4-х ступенчатый автомат имеет 2 или 3 набора фрикционов.

Если говорить о принципах работы, нужно понимать, что в устройстве АКПП применяется так называемая планетарная передача. Итак, в двух словах, когда передача выключена, фрикционные диски вращаются без ограничений, то есть они не зажаты по причине отсутствия давления масла.

Однако в момент включения передачи трансмиссионная жидкость ATF под давлением проходит по каналам гидроблока, в результате чего диски сжимаются (фрикционы плотно прижаты друг к другу). В результате подключается нужная шестерня, при этом остальные шестерни в АКПП останавливаются.

Срок службы фрикционов и основные поломки

Многие автолюбители хорошо знают, что наиболее распространенной неисправностью коробки — автомат является износ фрикционных дисков (износ фрикционов). При этом избежать такого износа невозможно, однако грамотное обслуживание и эксплуатация АКПП позволяет увеличить ресурс пакетов фрикционов до 250-400 тыс. км. пробега.

Для этого необходимо своевременно менять масло в коробке автомат (каждые 40-50 тыс. км.), следить за уровнем масла в коробке, не допускать перегревов, не буксовать на машине с АКПП и т.д. Если же фрикционные диски вышли из строя, как правило, можно услышать, что фрикционы сгорели. На практике это проявляется таким образом, что передачи АКПП не включаются, передачи пробуксовывают и т.д. Давайте разбираться.

Итак, сами фрикционные диски вполне могут служить долго (вполне реален показатель пробега около 500 тыс. км.), так как вращаются указанные диски в масле. Так вот, именно от состояния масла в значительной степени зависит их ресурс. Если не менять масло в автомате и масляный фильтр, и при этом подвергать трансмиссию серьезным нагрузкам, вполне реально, что фрикционы также выйдут из строя уже к 80-150 тыс. км.

Причина — потеря свойств масла АТФ и старение, снижение давления, загрязнение самой жидкости продуктами износа КПП, проблемы с каналами гидроблока, соленоидами и т.д. В совокупности давление масла на фрикционы упадет, сжатие не будет таким эффективным и фрикционные диски в этом случае буксуют.

Получается, от трения они нагреваются и «подгорают», происходит разрушение фрикционных пакетов. Зачастую запах гари можно также заметить при анализе жидкости ATF, когда масло в коробке автомат пахнет горелым именно по причине проскальзывания и подгорания фрикционов.

Что в итоге

Как видно, фрикционные диски АКПП являются неким подобием сцепления в МКПП. При этом элемент достаточно надежен, однако только в том случае, если с давлением масла в коробке «автомат» все в порядке и сама жидкость чистая.

Снижение давления обычно происходит в случаях, когда:

  • уровень масла (ATF) в коробке не соответствует норме;
  • сама трансмиссионная жидкость потеряла свои свойства и/или сильно загрязнена;
  • возникли проблемы с маслонасосом, снижена пропускная способность фильтра масла АКПП или масляного радиатора;
  • забиты каналы гидроблока, некорректно работают соленоиды и т.п.

При наличии подобных неполадок передачи могут переключаться рывками, . Как правило, если проблеме не уделить внимания, первыми из строя выходят фрикционные диски, фрикционы проскальзывают и горят. В результате масло ATF в АКПП пахнет горелым, меняется цвет масла в коробке автомат и т.д.

Для решения проблемы в одних случаях может быть достаточно промывки масляного радиатора, замены масла в коробке автомат, а также масляного фильтра. В других ситуациях может потребоваться разборка АКПП для замены пакетов фрикционов, промывки каналов гидроблока, проверки работоспособности соленоидов.

Так или иначе, при выявлении первых признаков проскальзывания фрикционов, необходимо прекратить эксплуатацию ТС и доставить автомобиль на СТО с целью проведения углубленной диагностики АКПП.

Читайте также

Как работает коробка-автомат: классическая гидромеханическая АКПП, составные элементы, управление, механическая часть. Плюсы, минусы данного типа КПП.

  • Почему коробка-автомат пинается, дергается АКПП при переключении передач, в автоматической коробке возникают толчки рывки и удары: основные причины.
  • Автоматическая коробка передач (АКПП, АКП) "классического" типа с гидротрансформатором: устройство и принцип работы. Плюсы и минусы гидромеханической АКПП.
  • На гусеничных машинах обычно устанавливают дисковые сцепления (их называют главными фрикционами в отличие от бортовых фрикционов в механизмах поворота) с шариковым механизмом выключения. В изучаемых ТС применяются, как правило, двух- и многодисковые главные фрикционы.

    По устройству и принципу действия двухдисковые главные фрикционы гусеничных машин аналогичны рассмотренному ранее двухдисковому сцеплению автомобилей. Многодисковый главный фрикцион во многом подобен бортовому фрикциону.

    Рассмотрим привод управления главным фрикционом, имеющий сервомеханизм пружинного типа.

    Исходное положение педали 1 регулируется ограничительным болтом 9, а полный ход - упорным болтом 3. Для уменьшения усилия нажатия на педаль при выключении главного фрикциона служит сервомеханизм, который состоит из рычага 8, сервопружины 4, вилки 6, регулировочной гайки 5 и кронштейна 2. Величина сжатия сервопружины регулируется таким образом, чтобы педаль после включения главного фрикциона возвращалась в исходное положение.

    При включенном главном фрикционе педаль привода управления находится в крайнем заднем положении и упирается рычагом в ограничительный болт 9. Для выключения главного фрикциона необходимо нажать педаль, перемещение которой через валики, рычаги и тяги передается на рычаг 14. Перемещение педали, при котором полностью выбирается зазор в механизме выключения, называется свободным ходом педали. В эксплуатации принято измерять свободный ход продольной тяги 13. За свободным ходом следует рабочий ход педали (начинается сжатие пружин и перемещение нажимного диска), который продолжается до тех пор, пока рычаг педали не коснется упорного болта 3.

    Рис. Привод управления главным фрикционом:
    1 - педаль управления главным фрикционом; 2 - кронштейн сервопружины; 3, 9 - упорный и ограничительный болты; 4 - сервопружина; 5 - регулировочная гайка; 6 - вилка сервопружины; 7 - вал педали; 8 - рычаг; 10, 12, 13 - тяги; 11 - двуплечие рычаги; 14 - рычаг вилки механизма выключения главного фрикциона

    Выключение главного фрикциона облегчается пружиной сервомеханизма. В исходном положении (главный фрикцион включен) линия действия сервопружины 4 проходит правее оси поворота педали, поэтому сервопружина через рычаг 8 удерживает педаль в заднем положении и прижимает рычаг педали к заднему упорному болту. Во время свободного хода педали (когда усилие на сжатие нажимных пружин еще не затрачивается) сервопружина несколько сжимается и линия действия ее силы приближается к оси поворота педали. При дальнейшем ходе педали линия действия силы сервопружины перемещается левее оси поворота педали. Пружина начинает разжиматься и облегчает выключение фрикциона, так как направление ее усилия совпадаем р направлением усилия механика-водителя.

    Усилие механика-водителя, прикладываемое к педали для выключения главного фрикциона, в случае действия сервомеханизма уменьшается примерно на 30 %. При отпускании педали сила нажимных пружин главного фрикциона поворачивает подвижную чашку механизма выключения и через привод управления возвращает педаль в исходное положение - сервопружина препятствует резкому включению главного фрикциона.

    Устройство механизированной техники предполагает наличие переходных участков, через которые транслируется крутящий момент. В большинстве случаев эту функцию передачи энергии выполняют специальные муфты. Отчасти их можно рассматривать в качестве соединительных элементов, но в перечень задач такой оснастки входит и обеспечение привода. В полной мере эту работу выполняют фрикционные муфты, которые задействуются в транспортной технике, промышленных станках, инженерном оборудовании и так далее.

    Общее устройство муфты

    Конструкционно муфты различаются и могут иметь особенности устройства в зависимости от типа, но чаще всего в качестве базы для них используют пакет дисковых элементов с фрикционной функцией. Конкретное число дисков будет зависеть от частоты крутящего момента, который должен быть передан от одного вала другому. В традиционной муфте предусматривается два диска. Один из них фрикционный, а другой - стальной. Причем материал изготовления тоже может быть общим. Выраженное отличие имеет фрикционное покрытие. Его задача заключается в обеспечении надежной сцепки, за счет которой будет реализовано движение валов. В целях повышения коэффициента трения фрикционные муфты снабжаются углеродными элементами и высокопрочной керамикой. Существуют и модели без фрикционных покрытий. В таких случаях дисковые стальные компоненты крепятся в барабанной основе, смежной с управляемым валом, которому передается крутящий момент. Конструкция также может дополняться возвратными пружинами и поршнем. Задача поршня заключается как раз в усилении сцепки между фрикционным покрытием и ведомым валом. Что касается пружины, то она возвращает рабочий диск на место.

    Принцип работы

    Как уже отмечалось, муфты могут иметь разные задачи, но в целом принцип их работы остается одним - осуществление сопряжения и разъединения двух рабочих агрегатов. В процессе подключения к движению фрикционной муфты на управляемом валу постепенно нарастает сила прижатия. То есть фрикционная сторона осуществляет поступательное сцепление с ведомым валом. В этот момент важна не столько сама сцепка, сколько схождение двух сил прижатия на фоне совершаемой работы со стороны основного вала.

    Муфта для предохранения рассчитана на функцию безопасного разобщения валов при выходе пиковой величины крутящего момента за рамки стандартных значений. Подключаемый вал в дальнейшем будет продолжать стабильную плавную работу. Впрочем, это определит характер движения механизмов, которые обслуживает фрикционная муфта. Принцип работы дисков при осуществлении прямолинейного движения предполагает, что большое значение в качестве сопряжения будут иметь вспомогательные узлы и агрегаты, через которые также транслируется передача. Например, к таким могут относиться бортовые редукторы, сервомеханизм (при поворотах), а также вилка отключения муфты.

    Разновидности муфты

    Муфты различаются по конструкционному исполнению, способу оказания прижимного усилия и характеру обеспечения механики трения. Уже говорилось, что в качестве элементов муфты чаще всего выступают диски. Но также могут использоваться конусные, цилиндрические и барабанно-ленточные детали. Такие элементы обычно применяют в конструкциях, где реализуется нестандартная конфигурация прижима, например угловая. Техническим развитием традиционных механизмов стала многодисковая фрикционная муфта, которая выигрывает за счет плавности хода и обеспечения более высокой силы сцепления. Что касается способа оказания прижимного усилия, то оно может обеспечиваться гидравликой или пневматикой. В первом случае рабочей средой будет выступать техническая жидкость, а во втором - сжатый воздух от компрессора. Также современные муфты работают за счет электромагнитных потоков, но из-за высокой стоимости и сложности данное решение менее распространено. Механика трения, в свою очередь, обеспечивается по сухому или мокрому принципу. В первом случае движения выполняются без применения смазки, а во втором - с маслом, которое снижает негативные эффекты трения и отводит тепло.

    Муфта сцепления

    Данная разновидность муфты отвечает за плавное сцепление ведущего и ведомого валов. Сложность ее задачи обусловливается не столько физической сцепкой, сколько противодействием нагрузкам окружающей среды. Для понимания особенности таких муфт на фоне других деталей, обеспечивающих сцепку, можно сравнить их с аналогами в виде зубчатых и кулачковых компонентов соединительной цепи. В отличие от них, фрикционные муфты сцепления при большой разности в скоростях двух валов не дают сильных ударов и перегрузок. Они скорее затормаживают активность механизма, обеспечивая тем самым возможность соосного сопряжения в наиболее выгодный момент. Иными словами, они подстраиваются под оптимальные условия сопряжения.

    Предохранительная муфта

    Муфты этого типа служат для безопасного соединения или разъединения валов в том случае, если механизм работает под высокими нагрузками. Такие элементы способны автоматически восстанавливать функциональность агрегата после того, как пиковая перегрузка завершилась. Но важно иметь в виду, что из-за различий в коэффициентах трения дисков тонность работы предохранительной муфты достаточно невелика. Поэтому ее чаще используют при регулярных, но кратковременных перегрузках, когда работа механизма выходит за рамки нормативной частоты крутящего момента. Компенсация поглощаемой энергии обеспечивается пружиной, демпферными элементами устройства или теплоотводящими материалами, из которых может быть выполнена и основа конструкции.

    Используемые в конструкции материалы

    Традиционные технологии изготовления муфт базируются на использовании стальных сплавов с антикоррозийными покрытиями. В наши дни также развивается сегмент композитных углеродных материалов, кевларовые элементы и так далее. Самые же технически развитые детали изготавливают из специализированных фрикционных материалов. В частности, к таким можно отнести ретинакс, трибонит и пресс-композит. Первый представляет собой сплав барита, асбеста и фенолформальдегидных смол, дополненных стружкой из латуни. В состав трибонита также входят компоненты нефтепродуктов и композиты, благодаря которым диск фрикционной муфты может эксплуатироваться в условиях водной среды. Прессованные композиты отличаются тем, что в составе их структуры предусматриваются высокопрочные волокна, повышающие износостойкость деталей.

    Формы выпуска деталей

    Дисковые муфты представляют целый класс пластинчатых фрикционных деталей. В эту группу кроме стандартного форм-фактора также входят вкладыши, которые изготавливаются из вышеупомянутого ретинакса и композитных сплавов. Пластинчатая муфта сцепления может иметь и форму сектора. Такие элементы тоже имеют внутренний и внешний диаметры, но в конструкции предусматривается и угловой сектор, позволяющий интегрировать элемент в механизмы с нестандартной сцепкой.

    Заключение

    Хотя на смену традиционной механике приходят более эргономичные, функциональные и удобные в управлении приводные системы наподобие электромагнитных и пневматических, в некоторых сферах по-прежнему востребованы привычные силовые детали. К таким как раз относятся и фрикционные муфты, благодаря несложной форме которых простые технические устройства служат долго и исправно. Разумеется, есть свои сложности в обслуживании таких компонентов. Они изнашиваются, требуют ремонта и замены. Однако даже внедрение современных электромагнитных аналогов пока не способно в полной мере восполнить функцию стальной муфты с гидравликой. Другое дело, что есть спрос на повышение технико-эксплуатационных качеств за счет новых композитных материалов. Но и они принципиально отличаются лишь физико-химическими свойствами.

    Устройство главного фрикциона

    Главный фрикцион (рис. 3.2) состоит из ведущих частей, соединенных с маховиком двигателя, ведомых частей, соединенных с ведущим валом коробки передач, и механизма выключения.

    Ведущие части (рис. 3.3):

    Опорный диск;

    Ведущий барабан;

    Ведущий диск;

    Нажимной диск;

    Нажимные пружины.

    Опорный диск (рис. 3.3. б) стальной, по окружности диска выполнены отверстия для крепления к маховику коленчатого вала. Одна из поверхностей диска является поверхностью трения. В центре диска выполнена расточка для установки подшипника ведущего вала КП, и в ней шлицы – для установки валика привода масляного насоса системы гидроуправления.

    Рис. 3.2. Главный фрикцион:

    1 - двуплечий рычаг; 2 - вилка; 3 - регулировочная гайка; 4 - стопорная планка; 5 - оттяжная пружина; 6 - пробка отверстия для смазки; 7 - ведущий вал коробки передач; 8 - самоподжимная манжета; 9 - бустер главного фрикциона; 10 - поршень бустера; 11 - корпус уплотнения; 12 - подшипник; 13 - корпус подшипника механизма выключения; 14 - кожух главного фрикциона; 15 - картер коробки передач; 16 - нажимные пружины; 17 - ведущий барабан; 18 - болт; 19 - опорный диск; 20 - ведущий диск трения; 21 - ведомый диск трения; 22 - нажимной диск; 23 - ведомый барабан; 24 - стакан пружин; 25 - ведущий валик масляного насоса; 26 - кольцо-ограничитель хода поршня; 27 и 29 - резиновые кольца; 28 - кожух; 30 - болт крепления стопорной планки; 31 - крышка корпуса подшипника; а - полость.

    Ведущий барабан (рис. 3.3. а) стальной, болтами крепится к опорному диску. На внутренней окружности барабана нарезаны зубья для соединения с зубьями ведущего и нажимного дисков.

    Ведущий диск (рис. 3.3. д) стальной. На наружной поверхности имеет зубья для соединения с ведущим барабаном. Боковые поверхности диска являются поверхностями трения.

    Нажимной диск (рис. 3.3. г) стальной, на наружной поверхности имеет зубья для соединения с ведущим барабаном. Одна поверхность диска является поверхностью трения. На второй поверхности выполнены гнезда для установки нажимных пружин и три прилива для крепления двуплечих рычагов.

    Рис. 3.3. Ведущие части:

    а - ведущий барабан; б - опорный диск; в - кожух; г - нажимной диск; д - ведущий диск.

    Кожух (рис. 3.3. в) представляет собой стальную фигурную штамповку. По окружности кожуха выполнены отверстия для крепления к маховику и отверстия для установки стаканов, в которые установлены нажимные пружины. Кроме того, в кожухе выштамповано три выступа с отверстиями, в которые устанавливаются регулировочные болты двуплечих рычагов.

    Нажимные пружины (рис. 3.2) стальные, одним концом упираются в стаканы кожуха, другим – в гнезда нажимного диска, отжимая его в сторону маховика.

    Ведомые части (рис. 3.4):

    Ведомый барабан;

    Ведомые диски.

    Рис. 3.4. Ведомые части:

    а - ведомый барабан; б - ведомый диск.

    Ведомый барабан (рис. 3.4. а) стальной, ступицей установлен на шлицы ведущего вала КП. По окружности барабана нарезаны зубья для соединения с зубьями ведомых дисков.

    Ведомые диски (рис. 3.4. б) стальные, с двух сторон к ним приклепаны фрикционные накладки для повышения коэффициента трения.

    По внутренней окружности на дисках нарезаны зубья для соединения с ведомым барабаном. Один диск установлен между опорным диском и ведущим диском, второй – между ведущим и нажимным дисками.

    Механизм выключения (рис. 3.2):

    Двуплечие рычаги;

    Гидравлический цилиндр;

    Поршень с упорным подшипником;

    Оттяжные пружины.

    Двуплечие рычаги . Каждый рычаг шарнирно устанавливается на стойке, которая регулировочным болтом соединяется с кожухом. Наружный конец рычага шарнирно соединен с выступом нажимного диска, внутренние концы рычагов свободны. При нажатии на свободный конец рычага он поворачивается относительно стойки, перемещая нажимной диск. На регулировочный болт наворачивается регулировочная гайка, которая стопорится планкой. При отворачивании (заворачивании) гайки регулируется зазор в механизме выключения.

    Гидравлический цилиндр стальной, цилиндрической формы, с фланцем. Запрессован в переднюю перегородку картера КП, фланцем крепится к ней болтами. Внутри цилиндра установлен поршень с упорным подшипником. Подвод масла в цилиндр осуществляется через сверление в перегородке картера КП.

    Поршень с упорным подшипником кольцевого типа, помещен внутри цилиндра. Внутри поршня проходит ведущий вал КП. Уплотнение поршня осуществляется манжетами. На поршень напрессован упорный роликоподшипник, для его смазки в корпус ввернута масленка.

    Оттяжные пружины обеспечивают отведение поршня с упорным подшипником от нижних концов двуплечих рычагов. Одним концом соединены с корпусом подшипника, другим – со стойками, ввернутыми в перегородку картера КП.