Почему невозможно создать вечный двигатель. Определение и классификация вечных двигателей

Согласно историческим записям, первым человеком, предложившим построить подобную машину был ученый, живший в 12 веке. Именно в это время начались Крестовые походы европейцев на Святую Землю. Развитие ремесла, хозяйства и техники потребовало разработки новых источников энергии. Популярность идеи вечного двигателя стала стремительно расти. Ученые пытались построить его, но их попытки не увенчались успехом.

Еще более популярной эта идея стала в 15-16 веках с развитием мануфактурного производства. Проекты вечного двигателя предлагались всеми, кому не лень: от простых ремесленников, мечтавших наладить свою небольшую фабрику, до крупных ученых. Леонардо да Винчи, Галилео Галилей и другие великие исследователи после многочисленных попыток создать вечный двигатель пришли к общему мнению, что это в принципе невозможно.

К такому же мнению пришли ученые, жившие в 19 веке. Среди них был Герман Гельмгольц и Джеймс Джоуль. Они независимо друг от друга сформулировали закон сохранения энергии, характеризующий протекание всех процессов во Вселенной.

Вечный двигатель первого рода

Из этого фундаментального закона следует невозможность создания вечного двигателя первого рода. Закон сохранения энергии гласит, что энергия ниоткуда не появляется и никуда бесследно не исчезает, а лишь принимает новые для себя формы.

Вечный двигатель первого рода - воображаемая система, способна совершать работу (т.е. производить энергию) неограниченное время без доступа энергии извне. Реальная подобная система может совершать работу только засчет своей внутренней энергии. Но эта работа будет ограничена, так как запасы внутренней энергии системы не бесконечны.

Тепловой двигатель для производства энергии должен выполнять определенный цикл, а значит - каждый раз возвращаться в начальное состояние. Первое начало термодинамики гласит, что двигатель для совершения работы должен получать энергию извне. Вот почему невозможно построить вечный двигатель первого рода.

Вечный двигатель второго рода

Принцип работы вечного двигателя второго рода заключался в следующем: отнимать у океана энергию, понижая при этом его температуру. Это не противоречит закону сохранения энергии, но построение такого двигателя также невозможно.

Все дело в том, что это противоречит второму началу термодинамики. Оно заключается в том, что энергия от более холодного тела не может передаваться более горячему в общем случае. Вероятность такого события стремится к нулю, так как оно нерационально.

Физическая химия: конспект лекций Березовчук А В

7. Невозможность вечного двигателя

Даже в самой современной высокопроизводительной машине часть теплоты не может быть превращена в работу. Чтобы это осуществить, нужна машина, работающая в пределах температуры теплоприемника и более низкой температуры теплоотдатчика.

Значит, невозможно построить двигатель, в котором рабочее тело совершало бы работу, вступая в теплообмен с одним только, и при-чем единственным, источником теплоты, то есть нельзя осущест-вить вечный двигатель второго рода. Из этой формулировки логически вытекает следующая: нельзя превратить теплоту какого-либо тела в работу, не производя никакого другого изменения, кроме охлаждения этого тела. Это доказывает одно: что невозможно при помощи кругового изотермического процесса произвести работу. Попробуем сформулировать неосуществимость вечного двигателя первого рода. Ее можно рассматривать двояко: с одной стороны, «работу нельзя создать из ничего», с другой стороны, «работу нельзя превратить в ничто». Хаотическое тепловое движение частиц более вероятно, чем их направленное движение. «Появление» теплоты всегда знаменуется превращением энергии в малоэффективную форму. Вероятность того, что молекулы, движущиеся хаотично, получат определенную ориентацию, ничтожна. Если бы это существовало на самом деле, то привело бы к появлению направленной силы, способной совершать работу. Поэтому переход без ограничений теплоты в работу невозможен, хотя работа может перейти в теплоту целиком. Итак, при отсутствии теплоприемника запас энергии теплоотдатчика не может быть использован. Нельзя использовать безграничные запасы энергии воздуха, морей, океанов и т. д.

Могилевский М. Леонардо да Винчи и принцип невозможности вечного двигателя //Квант. - 1999. - № 5. - С. 14-18.

По специальной договоренности с редколлегией и редакцией журнала "Квант"

Представление о невозможности вечного двигателя является одним из самых важных положений физики, которые школа надежно вкладывает в учащихся. И у многих создается внутренняя убежденность, что тот, кто пытается построить вечный двигатель, - или неграмотный, или сумасшедший. При таком подходе мы незаслуженно принижаем роль в развитии науки и техники многих поколений средневековых ученых.

Между тем мотивы попыток построения вечного двигателя вполне понятны. Во-первых, создание эффективных и недорогих машин и источников энергии есть одна из важнейших задач общества. (Интересно отметить, что идей и попыток разработки вечного двигателя не было в Античном мире, несмотря на существование развитых научных школ. Причина проста: широкое использование дешевой рабочей силы - рабов.) Первые изобретения в этой области отмечаются в различных странах в XII - XIII веках в связи с потребностями ремесленного производства. Во-вторых, имеется очень сильный психологический фактор - тот, кому удастся решить эту проблему, облагодетельствует человечество, и его имя останется в веках. И наконец, в- третьих, каждый может наблюдать вечные, безостановочные движения в природе: движение Луны, планет, течение рек. Если такое движение имеет место в природе, неужели же человек с техническим опытом и научными знаниями не сможет создать искусственный, рукотворный вечный двигатель? Если твоя модель не работает, попытайся внести усовершенствования. Такие мысли, возможно, подвигали многих людей, связанных с наукой и техникой, к активным поискам конструкции вечного двигателя.

Предшественники

Считается, что первая схема вечного двигателя была предложена индийцем Бхаскара около 1150 года. Как показано на рисунке 1,а, устройство должно было представлять колесо с набором трубок с тяжелой жидкостью (ртутью), закрепленных под некоторым углом к радиусу. По мнению изобретателя, перетекание жидкости в трубках должно было создать несимметрию в распределении грузов, которая и обеспечивала бы вечное вращение. Известный французский архитектор и инженер Виллар д"Оннекур примерно через сто лет предложил аналогичную схему вечного двигателя, показанную на рисунке 1,б. Предполагалось, что нечетное число грузов на колесе обеспечит несимметрию и будет причиной вечного движения. По-видимому, попытки сделать двигатель именно в виде «вечного колеса» опирались на наиболее распространенный в средневековой Европе двигатель - водяное колесо. Одна из модификаций схемы (рис. 1,в) была предложена в 1438 году Мариано ди Жакопо из Сиены (город недалеко от Флоренции - родины Леонардо да Винчи).

Рис. 1. Различные схемы «вечного колеса»

Работа Леонардо над проблемой вечного двигателя

Было бы удивительно, если бы Леонардо да Винчи (1452 - 1519) оказался в стороне от такой важнейшей проблемы, как создание вечного двигателя. И он, неизменно добивавшийся успешного понимания практически любых явлений, за которые брался, действительно неоднократно обращался к ней. Сохранившиеся трактаты и записные книжки Леонардо позволяют увидеть последовательное нарастание уровня его проникновения в эту сложнейшую проблему.

Первый уровень - изучение известных или слегка измененных схем вечного двигателя типа колеса с грузами . Леонардо неоднократно бывал в крупнейших университетских центрах Италии - Болонье, Парме, Пизе, Риме, работал в библиотеках, активно общался с коллегами. Не исключено, что он изготавливал и исследовал модели различных известных двигателей. Однако ни один из них почему-то не работал. «Препятствия не могут согнуть меня. Любое препятствие вызывает усилие », - и Леонардо пошел дальше.

Второй уровень - существенные изменения в схеме колеса . Внутренняя убежденность в возможности разработки конструкции для получения вечного движения заставила Леонардо да Винчи попытаться добиться положительного результата посредством разумных существенных модификаций известных схем «вечного колеса». «Следы» таких попыток можно найти в его записях, из которых легко понять общую идею - добиться несимметрии вращающего момента с помощью введения дополнительного физического эффекта. Так, в схеме, изображенной на рисунке 2, нижняя часть колеса погружалась в воду, и выталкивающие силы, действующие на полые коробки, должны были бы создать дополнительные усилия, обеспечивающие вращение колеса.

Рис.2. Схема вечного двигателя с дополнительной несимметрией за счет выталкивающей силы

Третий уровень - разработка принципиально новых схем для получения вечного движения . На рисунке 3 показана страница из записной книжки Леонардо, датируемой 1487 годом, - здесь предложены модификации вечного двигателя с винтом Архимеда. Предполагалось, что вода будет подниматься первым винтом малого диаметра на некоторую высоту, сливаться в чашу, а затем возвращаться по второму винту (или вращая колесо, как показано на нижней схеме слева) на исходный уровень. Существенной особенностью этих модификаций двигателя является больший радиус возвращающего воду винта (что действительно должно было создать больший вращающий момент, чем на первом колесе, но отнюдь не большую работу за цикл). Комментарий к чертежу - «вода по винту... возвращается на первый винт и повторяет этот процесс неограниченно долго » - свидетельствует, что в то время Леонардо не сомневался в возможности осуществления вечного двигателя.

Рис.3. Схемы вечного двигателя на основе винта Архимеда

Четвертый уровень - анализ распределения нагрузок в схеме «вечного колеса» . Многочисленные неудачи в попытках получения вечного движения, несмотря на различные способы усовершенствования схемы, заставили Леонардо да Винчи остановиться и попытаться найти причину неудач. Трудность решения такой задачи современному читателю станет более ясной, если напомнить, что на рубеже XIV - XV веков еще даже не было таких физических понятий, как работа и энергия. И все же Леонардо смог показать, почему не может работать наиболее популярный вечный двигатель в виде колеса с несимметричным распределением грузов. В его записных книжках сохранились рисунки, свидетельствующие, что для анализа поведения колеса при повороте Леонардо внимательно изучил, как изменяется причина вращения - несимметрия распределения грузов относительно оси (т.е. вращающий момент) в более простых для анализа системах из небольшого числа грузов для разных вариантов колеса. В таких упрощенных схемах ученый смог заметить, что определяющим является не избыток числа грузов с одной стороны относительно оси, а их расстояние до оси, т.е. положение центра масс.

На рисунке 4 представлен знаменитый чертеж колеса с вычислениями положения центра масс. Здесь показано, что горизонтальная координата центра масс системы грузов совпадает с положением оси (справа от оси центр масс 4 грузов находится на расстоянии 7 интервалов, слева - центр масс 7 грузов на расстоянии 4 интервалов от оси). Следовательно, вместо ожидавшегося perpetuum mobile схема представляет собой perpetuum stabile .

Рис.4. Расчет положения центра масс колеса с откидывающимися грузами

Пятый уровень - заключение о невозможности вечного двигателя . Итак, Леонардо да Винчи в течение нескольких лет пытался создать непрерывно работающий двигатель, проводя существенные улучшения известных конструкций и изобретая принципиально новые схемы. Затем он детально разобрался во внутренних причинах, запрещающих работу наиболее типичного двигателя в форме колеса с откидывающимися грузами (возможно также и с некоторыми другими схемами с использованием воды). И вот теперь он, не считая более необходимым детально разбираться в причинах, мешающих работе других двигателей, формулирует в жесткой форме заключение о невозможности реализации непрерывного движения в схеме любого типа, т.е. впервые формулирует принцип невозможности создания вечного двигателя:

«Я пришел к выводу о невозможности нахождения непрерывного движения, а также вечного колеса. Поиск конструкции вечного колеса - источника вечного движения - можно назвать одним из наиболее бессмысленных заблуждений человека. В течение веков все, кто имел дело с гидравликой, военными машинами и прочим, тратили много времени и денег на поиски вечного двигателя. Но со всеми ними случалось то же, что с искателями золота <алхимиками>: всегда находилась какая-либо мелочь, которая мешала успеху. Моя небольшая работа принесет им пользу: им не придется больше спасаться бегством от королей и правителей, не выполнив обещания».

Далее следует довольно пространное упоминание о, по-видимому, хорошо известном в то время скандале, связанном с попыткой построить в Венеции установку, работающую на неподвижной воде. В комментарии по тому же поводу, написанном позднее сбоку мелким почерком, вода названа дословно «спокойной, на уровне моря ». В основном тексте и в других местах Леонардо употребляет образный термин «мертвая вода » («aqua morta »).

Запись о неработающем двигателе на «мертвой воде » неупомянутой схемы (поскольку теперь уже для Леонардо это не имеет значения) есть свидетельство его убежденности в общности сделанного вывода.

«Какая-либо мелочь (!)» - этими словами Леонардо да Винчи декларирует, что в любой известной схеме вечного двигателя и в любой схеме, которая может быть предложена в будущем, существуют некоторые внутренне присущие эффекты, накладывающие вето на вечный двигатель. На современном языке физики слова «какая-либо мелочь» могут означать разные виды неучтенных потерь или превращений энергии - таких, как тепловая энергия (нагревание, плавление, испарение), возбуждение механических и электромагнитных волн и т.п. вплоть до излучения нейтрино в ядерных процессах.

Комментарий 1

Как сам Леонардо оценивал значение вывода о невозможности вечного двигателя

Карло Педретти - крупнейший специалист по работам Леонардо да Винчи - считает, что запись о невозможности построения вечного двигателя, находящаяся в составленном Леонардо Мадридском кодексе , датируется 1493 годом. К этому же времени относится заметка из другого сборника, аналогичная по силе утверждения, но с менее общим утверждением об обязательном присутствии эффектов, мешающих успеху:

«Какие бы грузы ни были приложены к колесу, когда они приведут к вращению, вне всякого сомнения центр тяжести окажется ниже оси вращения; и ни в каком инструменте, придуманном человеком для вращения, этот эффект не может быть устранен».

Применял ли Леонардо да Винчи сформулированный им важнейший закон природы - принцип невозможности вечного двигателя - в своих исследованиях? Многочисленные сохранившиеся записи позволяют дать утвердительный ответ:

«Невозможно, чтобы груз, который опускается, мог поднять в течение какого бы то ни было времени другой, ему равный, на ту высоту, с какой он ушел».

«Если колесо движет машину, невозможно ему приводить в движение две, не употребляя вдвое больше времени, то есть сделать столько же в час, сколько делает оно двумя машинами тоже в час. Таким образом, одно колесо может вращать бесконечное число машин, но в течение бесконечно долгого времени они сделают не более, чем одна в час».

Следует отметить также запись Леонардо о создании работающей модели вечного двигателя. Вернемся к рисунку 2, на котором показана схема с нижней частью колеса, погруженной в воду. Любопытен комментарий к этому рисунку: «сделай модель под большим секретом и широко объяви об ее демонстрации ». В чем же состоит секрет модели? Из последующих пояснений становится ясно, что поскольку «мертвая вод а» не может заставить машину работать, Леонардо намеревается организовать незаметный поток «живой воды » («aqua viva »), который закрутит колесо. На рисунке показан один из возможных вариантов секретного решения: наличие отверстия в стенке сосуда (справа). Осуществил ли Леонардо да Винчи этот замысел? Видимо, да, поскольку в круг служебных обязанностей Леонардо при княжеском дворе входила организация различных празднеств и развлечений, к тому же это соответствовало бы его репутации талантливого ученого и инженера. Но какова была цель демонстрации? Попытка показать свое всемогущество? Исключено, ему не нужна была мистическая поддержка репутации ученого. Но тогда остается лишь альтернативное объяснение: привлечение внимания к модели работающего вечного двигателя, а затем объяснение секрета и пропаганда крупного научного достижения - вывода о невозможности построения вечного двигателя.

Комментарий 2

Последователи

Из ближайших после Леонардо да Винчи ученых, выступавших против возможности создания вечного двигателя, называют обычно итальянского математика и врача Джероламо Кардано (150А -1576), нидерландского математика и инженера Симона Стевина (1548-1620) и Галилео Галилея (1564-1642). Кардано заявил о невозможности сделать часы, которые заводились бы сами собою и сами поднимали бы гири, двигающие механизм. Стевин получил на основании аргумента о невозможности вечного двигателя условие равновесия тел на гладких наклонных плоскостях: тело удерживается в равновесии силой, которая действует в направлении наклонной плоскости и во столько раз меньше его веса, во сколько длина наклонной плоскости больше ее высоты. Галилео заявлял: «Машины не создают силу; они только ее превращают. Кто надеется на противоположное, тот ничего не понимает в механике».

Следует отметить существенное различие между отношением Леонардо да Винчи и его ближайших последователей к обсуждаемой проблеме. Леонардо пытается понять, почему двигатели различных систем не работают, утверждает неотвратимость существования каких-либо внутренне присущих и мешающих работе эффектов. Кардано, Стевин и Галилей используют принцип невозможности вечного двигателя, уже как твердо установленный закон природы, при анализе частных проблем.

Можно с достаточным основанием говорить о влиянии Леонардо да Винчи по крайней мере в отношении Кардано. Его дядя Фацио Кардано - миланский юрист и естествоиспытатель - был другом Леонардо и, конечно же, был информирован о важнейших результатах ученого. После смерти Леонардо его рукописи по завещанию перешли Франческо Мельци, который в 1523 году вернулся в Милан и посвятил долгие годы (умер Мельци около 1570 г.) систематизации работ учителя и, в частности, подготовил к печати Трактат о живописи. Джероламо Кардано сам мог изучать рукописи Леонардо да Винчи в собрании Мельци, тем более что среди них находились известные трактаты по анатомии и физиологии, представлявшие профессиональный интерес для врача Кардано.

В 1775 году Французская Академия приняла решение не рассматривать предложения вечных двигателей: «(1*) Построение вечного двигателя абсолютно невозможно: (2*) если даже трение и сопротивление среды не уменьшат длительность Бездействия действующей силы, она не сможет произвести равный эффект. Причина следующая: если мы хотим получить эффект конечной силы за бесконечное время, эффект должен быть бесконечно мал. Предположим, что тело, которому сообщили движение, при отсутствии трения и сопротивления способно сохранить это движение постоянно; но при этом не идет речь о других телах. Это вечное движение... было бы совершенно бесполезно по отношению к другим объектам, предлагаемым обычно творцами вечного движения... (3*) Такие работы слишком расточительны: они уже разрушили очень много семей. Часты случаи, когда механик, который мог бы занять достойное место, растрачивал на это свою славу, время и талант.

Таковы принципы, на которых основано решение Академии: постановляя, что она больше не будет заниматься этими вопросами, Академия заявляет о своем мнении об их бесполезности... (4*) Часто говорят, что, занимаясь химерическими проблемами, люди открывали полезные истины. Такая точка зрения была бы обоснована в те времена, когда метод поиска истины был неизвестен во всех областях. В настоящее время, когда он известен, наиболее верный способ поиска истины - искать ее».

Сравнение этого текста с приведенной выше формулировкой Леонардо принципа невозможности вечного двигателя позволяет отметить поразительную близость между ними по существу и порядку акцентов: сначала дается жесткая формулировка невозможности построения вечного двигателя (1*); затем (2*) - попытка «обоснования» (наличие в любой схеме какой-либо мелочи, т.е. каких-то потерь, - у Леонардо и более ограниченная по существу формулировка Академии, сводящая возможные потери лишь к трению и сопротивлению среды); и наконец, (3*) - тезис о незавидной судьбе изобретателей (не очень обязательный в научном документе) и (4*) - тезис о том, что верный путь поиска истины известен (кажется не очень убедительным).

Такое совпадение едва ли можно считать случайным. Французские академики, несомненно, имели возможность познакомиться с работами Леонардо да Винчи, которые ценились высоко и с начала XVII века уже имелись в крупных и вполне доступных библиотеках. Можно отметить, что через 20 лет после того решения Французской Академии, в 1795 году, когда Наполеон ненадолго стал королем Италии, 12 кодексов Леонардо были вывезены из Милана в Париж и лишь Атлантический кодекс был позднее, в 1815 году, возвращен в Миланскую библиотеку Амброзиана. Что касается Мадридского кодекса, он с начала XVIII века находился в дворцовой библиотеке Испанских королей, затем был утерян в 1830 году, т.е. значительно позже даты заседания Французской Академии, и вновь найден лишь через 135 лет. По-видимому, именно выпадением из поля зрения ученых Мадридского кодекса, с четкой формулировкой невозможности вечного двигателя, и доступностью лишь кратких заявлений, типа цитированных выше, объясняется недооценка роли Леонардо да Винчи в обосновании фундаментального закона природы - принципа сохранения энергии.

Человеческая натура такова, что испокон веков люди пытались создать нечто, работающее само по себе, безо всяких воздействий извне. Впоследствии этому устройству дали определение Perpetum Mobile

Человеческая натура такова, что испокон веков люди пытались создать нечто, работающее само по себе, безо всяких воздействий извне. Впоследствии этому устройству дали определение Perpetuum Mobile или Вечный двигатель. Многие знаменитые ученые разных времен безуспешно пытались его создать, включая и великого Леонардо да Винчи. Он потратил несколько лет на создание вечного двигателя, как путем усовершенствования уже имеющихся моделей, так и пытаясь создать что-то принципиально новое. В конце концов разобравшись, почему же ничего не работает, он первым сформулировал заключение о невозможности создания подобного механизма. Однако изобретателей его формулировка не убедила, и они до сих пор пытаются создать невозможное.

Колесо Бхаскара и подобные проекты вечных двигателей

Доподлинно неизвестно, кто и когда первый попытался создать вечный двигатель, но первое упоминание о нем в рукописях датируется XII веком. Рукописи принадлежат индийскому математику Бхаскаре. В них в стихотворной форме описывается некое колесо, с прикрепленными к нему по периметру трубками, наполовину заполненными ртутью. Считалось, что за счет перетекания жидкости, колесо будет само по себе вращаться бесконечно. Примерно на том же принципе было сделано еще несколько попыток создать вечный двигатель. Как обычно, безуспешно.


Вечный двигатель из цепочки поплавков

Другой прототип вечного двигателя основывается на использовании закона Архимеда. В теории считалось, что цепь, состоящая из полых резервуаров, за счет выталкивающей силы станет вращаться. Не было учтено лишь одно – давление водяного столба на самый нижний бак будет компенсировать выталкивающую силу.


Еще одним изобретателем вечного двигателя является нидерландский математик Симон Стевин. По его теории цепочка из 14 шаров, перекинутая через треугольную призму, должна прийти в движение, потому что с левой стороны шаров в два раза больше, чем с правой, а нижние шары уравновешивают друг друга. Но и тут коварные законы физики помешали планам изобретателя. Несмотря на то, что четыре шара в два раза тяжелее, чем два, они катятся по более пологой поверхности, следовательно, сила тяжести, действующая на шары справа, уравновешивается силой тяжести, действующей на шары слева, и система остается в равновесии.


Вечный двигатель на постоянных магнитах

С появлением постоянных (и особенно неодимовых) магнитов, изобретатели вечных двигателей вновь активизировались. Существует множество вариаций электрогенераторов на основе магнитов, а один из первых их изобретателей, Майкл Брэди, в 90-х годах прошлого века даже запатентовал эту идею.


А на видео ниже представлена довольно простая конструкция, которую каждый может сделать у себя дома (если наберете достаточное количество магнитов). Неизвестно, насколько долго будет крутится эта штука, но даже если не учитывать потери энергии от трения, этот двигатель можно считать лишь условно вечным, потому что мощность магнитов со временем ослабевает. Но все равно, зрелище завораживает.

Конечно, мы рассказали далеко не о всех вариантах вечных двигателей, потому что людская фантазия, если и не бесконечна, то весьма изобретательна. Однако все существующие модели вечных двигателей объединяет одно – они не вечны. Именно поэтому Парижская академия наук с 1775 года решила не рассматривать проекты вечных двигателей, а Патентное ведомство США не выдает подобные патенты уже более ста лет. И все же в Международной патентной классификации до сих пор остаются разделы для некоторых разновидностей вечных двигателей. Но это касается лишь новизны конструкторских решений.

Подводя итог, можно сказать лишь одно: несмотря на то, что до сих пор считается, что создание действительно вечного двигателя невозможно, никто не запрещает стараться, изобретать и верить в неосуществимое.

Первый закон термодинамики и невозможность создания вечного двигателя первого рода

Первый закон термодинамики является законом сохранения энергии применительно к тепловым процессам. Этот закон утверждает невозможность создания вечного двигателя первого рода, который бы производил работу без подведения энергии. Этот закон утверждает, что тепловая энергия, подведенная к замкнутой системе, расходуется на увеличение ее внутренней энергии и работу, производимую против внешних сил.

Согласно первому закону термодинамики, могут протекать только такие процессы, при которых полная энергия системы остается постоянной. Например, превращение тепловой энергии полностью в механическую не связано с нарушением первого закона термодинамики, но тем не менее оно невозможно. Второй закон термодинамики еще больше ограничивает возможности процессов превращения.

Второй закон термодинамики утверждает, что не может быть создан вечный двигатель второго рода, который бы производил работу за счет тепла окружающей среды, без каких-либо изменений в окружающих телах. То есть в природе не может быть процессов, единственным результатом которых было бы превращение теплоты в работу. Этот закон утверждает, что во всех явлениях природы теплота сама переходит от более нагретых тел к менее нагретым. Если система замкнута и невозможны никакие ее самопроизвольные превращения, то энтропия достигает максимума. Состояние с наибольшей энтропией соответствует статическому равновесию. Энтропия является мерой вероятности осуществления данного термодинамического состояния или мерой отклонения системы от статического равновесия.

Второй закон термодинамики можно сформулировать как закон, согласно которому энтропия теплоизолированной системы будет увеличиваться при необратимых процессах или оставаться постоянной, если процессы обратимы. Это положение касается только изолированных систем.

Второй закон термодинамики говорит о том, что в замкнутой системе при отсутствии каких-либо процессов не может сама по себе возникнуть разность температур, т.е. теплота не может самопроизвольно перейти от более холодных частей к более горячим.

Согласно второму закону термодинамики, любые замкнутые системы должны перейти в более вероятное состояние, характеризуемое термодинамическим равновесием с наименьшей свободной энергией и с наибольшей величиной энтропии. Поэтому явление спонтанного (самопроизвольного) перехода вещества из симметричного состояния в асимметричное, сопровождаемое повышением упорядоченности и энергетического уровня системы и понижением ее энтропии, кажется просто нереальным. Однако трудности термодинамического характера в вопросе происхождения жизни до сих пор не определены. Решения пока нет.



ПРИНЦИП МИНИМУМА ДИССИПАЦИИ ЭНЕРГИИ

В мировом процессе развития принцип минимума диссипации энергии играет особую роль. Суть его: если допустимо не единственное состояние системы, а целая совокупность состояний, согласных с законами сохранения и принципами, а также связями, наложенными на систему, то реализуется то состояние, которому соответствует минимальное рассеивание энергии, или, что то же самое, минимальный рост энтропии («рыба ищет, где глубже, а человек – где лучше»).

Принцип минимума диссипации энергии является частным случаем более общего принципа «экономии энтропии». В природе все время возникают структуры, в которых энтропия не только не растет, но и локально уменьшается. Этим свойством обладают многие открытые системы, в том числе и живые, где за счет притока извне вещества и энергии возникают так называемые квазистационарные (стабильные) состояния.

Таким образом, если в данных конкретных условиях возможны несколько типов организации материи, согласующихся с другими принципами отбора, то реализуется та структура, которой соответствует минимальный рост энтропии. Так как убывание энтропии возможно только за счет поглощения внешней энергии, то реализуются те из возможных форм организации материи, которые способны в максимальной форме поглощать энергию.

Область применения принципа минимума диссипации энергии непрерывно расширяется. На протяжении всей истории человечества стремление овладеть источниками энергии и вещества было одним из важнейших стимулов развития и устремления человеческих интересов И поэтому всегда было источником разнообразных конфликтов.

По мере развертывания научно-технического прогресса, истощения природных ресурсов возникает тенденция к экономному расходованию этих ресурсов, возникновению безотходных технологий, развитию производства, требующего небольших энергозатрат и материалов.

Если говорить об иерархии принципов отбора, то он играет роль как бы завершающего, замыкающего принципа: когда другие принципы не выделяют единственного устойчивого состояния, а определяют целое их множество, то этот принцип служит дополнительным принципом отбора. Проблема экономии энтропии, этой меры разрушения организации и необратимого рассеяния энергии, решается в мире живой природы. Существует теорема о минимуме воспроизводства энтропии, которая утверждает, что производство энтропии системой, находящейся в стационарном состоянии, достаточно близком к равновесному состоянию, минимально. Этот принцип можно рассматривать в качестве универсального. В живом веществе он проявляется не как закон, а как тенденция. В живой природе противоречие между тенденцией к локальной стабильности и стремлением в максимальной степени использовать внешнюю энергию и материю является одним из важнейших факторов создания новых форм организации материального мира.