Что такое мехатроник в dsg 7. Что такое коробка ДСГ — преимущества и недостатки КПП двойного сцепления

Слово «мехатроника» образовано из двух слов - «механика» и «электроника». Этот термин в 1969 году предложил старший разработчик фирмы Yaskawa Electric, японец по имени Тецуро Мори. В 20 веке компания Yaskawa Electric специализировалась на разработке и совершенствовании электроприводов и электродвигателей постоянного тока, в связи с чем достигла больших успехов на данном направлении, например первый двигатель постоянного тока с дисковым якорем был разработан именно там.

Далее последовали разработки, касаемые первых аппаратных систем ЧПУ. А в 1972 году здесь же был зарегистрирован бренд «Мехатроника». Вскоре компания сильно преуспела в развитии техники электропривода. Позже от слова «Мехатроника», как от торговой марки, в компании решили отказаться, поскольку термин получил очень широкое распространение как в Японии, так и по всему миру.

В любом случае, именно Япония является родиной наиболее активного становления такого подхода в технике, когда для реализации высокоточного управления электроприводом стало необходимым объединить механические элементы, электрические машины, силовую электронику, микропроцессоры и ПО.

Распространенным графическим символом мехатроники стала диаграмма с вебсайта RPI (Rensselaer Polytechnic Institute, NY,USA):

Мехатроника - это компьютерное управление движением.

Цель мехатроники - создание качественно новых модулей движения, мехтронных модулей движения, интеллектуальных мехатронных модулей, а на их основе - движущихся интеллектуальных машин и систем.

Исторически мехатроника развилась из электромеханики и, опираясь на ее достижения, идет дальше путем системного объединения электромеханических систем с компьютерными устройствами управления, встроенными датчиками и интерфейсами.

Электронные, цифровые, механические, электротехнические, гидравлические, пневматические и информационные элементы - могут входить в состав мехатронной системы, как изначально элементы разной физической природы, однако собранные вместе для получения от системы качественно нового результата, которого невозможно было бы достичь от каждого элемента как от отдельного исполнителя.


Отдельный шпиндельный двигатель не сможет сам выдвинуть лоток DVD-плеера, но под управлением схемы с ПО на микроконтроллере, да будучи правильно соединенным с винтовой передачей - все легко получится, и выглядеть будет так, словно это - простая монолитная система. Тем не менее, несмотря на внешнюю простоту, одна мехатронная система по определению включает в себя несколько мехатронных узлов и модулей, связанных друг с другом, и совместно взаимодействующих для выполнения конкретных функциональных действий, для решения какой-то определенной задачи.

Один мехатронный модуль - это самостоятельное изделие (конструктивно и функционально), предназначенное для осуществления движений с взаимопроникновением и одновременной целенаправленной аппаратно-программной интеграцией его составляющих.

Типичная мехатронная система представляет собой объединенные друг с другом электромеханические компоненты и компоненты силовой электроники, которые в свою очередь управляются ПК или микроконтроллерами.

При проектировании и построении такой мехатронной системы, стараются избежать лишних узлов и интерфейсов, стремятся сделать все лаконично и как можно более цельно, не только для того чтобы улучшить массо-габаритные характеристики устройства, но и для повышения надежности системы в целом.

Иногда инженерам приходится непросто, они вынуждены находить очень необычные решения именно в силу того, что разные узлы находятся в разных рабочих условиях, делают совершенно разное. Например, кое-где обычный подшипник не подойдет, и его заменяют на электромагнитный подвес (так сделано, в частности, в турбинах, качающих газ по трубам, поскольку обычный подшипник быстро вышел бы здесь из строя из-за проникновения в его смазку газа).


Так или иначе, сегодня мехатроника проникла всюду, начиная от бытовой техники, заканчивая строительной робототехникой, оружием и космической авиацией. Все станки с ЧПУ, жесткие диски, электрические замки, система АБС в вашем автомобиле и т. д. - везде мехатроника оказывается не просто полезной, а необходимой. Уже редко где можно встретить ручное управление, все идет к тому, что нажал на кнопку без фиксации или просто дотронулся до сенсора - получил результат - вот, пожалуй, самый примитивный пример того, что сегодня представляет собой мехатроника.

Схема иерархии уровней интеграции в мехатронике

Первый уровень интеграции образуют мехатронные устройства и их элементы. Второй уровень интеграции образуют интегрированные мехатронные модули. Третий уровень интеграции образуют интеграционные мехатронные машины. Четвертый уровень интеграции образуют комплексы мехатронных машин. Пятый уровень интеграции образуют на единой интеграционной платформе комплексы мехатронных машин и роботы, которые предполагают формирование реконфигурируемых гибких производственных систем.

Сегодня мехатронные модули и системы находят широкое применение в следующих областях:

    станкостроение и оборудование для автоматизации, технологических процессов в машиностроении;

    промышленная и специальная робототехника;

    авиационная и космическая техника;

    военная техника, машины для полиции и спецслужб;

    электронное машиностроение и оборудование для быстрого прототипирования;

    автомобилестроение (приводные модули «мотор-колесо», антиблокировочные устройства тормозов, автоматические коробки передач, системы автоматической парковки);

    нетрадиционные транспортные средства (электромобили, электровелосипеды, инвалидные коляски);

    офисная техника (например, копировальные и факсимильные аппараты);

    периферийные устройства компьютеров (например, принтеры, плоттеры, дисководы CD-ROM);

    медицинское и спортивное оборудование (биоэлектрические и экзоскелетные протезы для инвалидов, тонусные тренажеры, управляемые диагностические капсулы, массажеры и т. д.);

    бытовая техника (стиральные, швейные, посудомоечные машины, автономные пылесосы);

    микромашины (для медицины, биотехнологии, средств связи и телекоммуникации);

    контрольно-измерительные устройства и машины;

    лифтовое и складское оборудование, автоматические двери в отелях и аэропортах; фото- и видеотехника (проигрыватели видеодисков, устройства фокусировки видеокамер);

    тренажеры для подготовки операторов сложных технических систем и пилотов;

    железнодорожный транспорт (системы контроля и стабилизации движения поездов);

    интеллектуальные машины для пищевой и мясомолочной промышленности;

    полиграфические машины;

    интеллектуальные устройства для шоу-индустрии, аттракционы.

Соответственно возрастает потребность в кадрах, владеющих мехатронными технологиями.

Представляя собой электронно-гидравлический блок, мехатроник является неотъемлемой частью современной преселективной коробки. Этот прибор располагается непосредственно в картере КПП и справедливо считается самым важным узлом трансмиссии.

Устройство блока

Мехатроник имеет довольно сложную конструкцию, объединяющую в себе:

  • Электронный блок управления;
  • Электрогидравлические компоненты (исполнительные механизмы);
  • Входные датчики.

Только при исправном состоянии всех этих элементов возможна бесперебойная работа модуля. Задачей датчиков является сбор данных, таких как показатели температуры масла, уровня давления, а также частоты вращения на выходе/входе КПП. Электронный блок управления выполняет анализ полученных сведений, и в соответствии с заложенной программой, координирует электрогидравлический блок. Последний, в свою очередь, адаптирует гидравлический контур согласно поступившим с ЭБУ командам.

Mechatronic: функции

Без преувеличения можно сказать, что мехатроник полностью управляет коробкой передач. Собирая сигналы со всех систем автомобиля, прибор выбирает момент переключения передач и полностью регулирует выполнение этого процесса. Кроме того, он контролирует работу фрикционной муфты и выступает связующим звеном с другими блоками управления.

Так, в случае поломки mechatronic, порой машина попросту не сможет сдвинуться с места.
Однако, даже если сбой кажется несерьезным, следует временно отказаться от активной эксплуатации авто и посетить специалистов. Сбои в работе модуля могут привести к размыканию сцеплений во время движения, а также стать причиной серьезной поломки. Не откладывайте ремонт и записывайтесь на визит в нашу мастерскую ‒ профессиональное обслуживание и адекватные расценки позволят Вам забыть о любых неисправностях.

Устройство любой роботизированной коробки, подразумевает наличие мехатроннного модуля.
Он по праву считается самым сложным и важным узлом трансмиссии.
Но чтобы понять, что такое мехатроник и какую роль он выполняет в КПП, сперва стоит ознакомиться с его конструкцией.

Разбираем устройство блока

Мехатрон размещается непосредственно в корпусе РКПП, и имеет довольно небольшие размеры.
Однако это не мешает агрегату объединять в себе:

  • Электронный блок управления (процессор, имеющий вид электронной платы);
  • Гидравлическую часть (гидроблок с отдельным масляным контуром);
  • Датчиковую аппаратуру;
  • Набор механических тяг и сервоприводов.

Эти компоненты образуют единую цепочку, и в случае неисправности любого из них, весь модуль начинает работать некорректно.

В процессе движения, более 10-ти входных датчиков фиксируют скорость вращения валов, обороты мотора, температуру масла, уровень давления и другие параметры.
Эти данные передаются на ЭБУ, где мгновенно обрабатываются.
Затем, процессор отправляет сигналы на приводы и гидравлический контур, определяя алгоритм работы.

Данный блок не имеет определенного эксплуатационного ресурса.
Некоторые водители сталкиваются с поломками спустя 30 000 - 40 000 км пробега, а другие не замечают неполадок даже после 200 000 км.
Но в среднем, сбои возникают уже на первой сотне тысяч пробега.

Электронный «мозг» КПП

Фактически, мехатроник полностью управляет трансмиссией.
Прибор определяет необходимость перехода на другую ступень, подключает сцепления, координирует работу других блоков.
Именно от его исправности зависит плавность и своевременность переключения передач, а также «поведение» коробки-робота.

В случае повреждения или сбоя, возможны задержки, рывки, вибрации по кузову, посторонние шумы и удары. Даже если машина остается на ходу, игнорировать проблему нельзя - это неизбежно приведет к поломке всех сопутствующих механизмов.

Чем отличаются мехатроники?

Mechatronic не является универсальным модулем. Для каждой модификации коробки-робота, разрабатывается своя версия мехатрона, и они не взаимозаменяемы.
Более того, даже машины одного года выпуска и с идентичным типом DSG, могут оснащаться приборами разных поколений.

Ключевое отличие кроется в программном обеспечении, которое адаптировано под специфику конкретной машины (объем двигателя, передаточные соотношения и т.д.).
Если же Вы хотите установить на свое авто «не родной» мехатрон - его необходимо перепрошить.
Специалисты нашей мастерской готовы оказать профессиональную помощь в этом вопросе. Также к нам можно обратиться как для замены, так и с целью ремонта (восстановления) модуля.

Вопрос 001:
Q: Что такое DSG? Какие бывают DSG? Чем отличаются? На какие автомобили устанавливаются?

A: DSG (от нем. DirektSchaltGetriebe или англ. Direct Shift Gearbox ) - семейство преселективных роботизированных трансмиссий со сдвоенными сцеплениями, устанавливаемых на автомобили концерна VAG (Audi, Volkswagen, Skoda, Seat).
Тип Сцепления Расположение двигателя Объемы двигателей Привод Момент На какие модели автомобилей устанавливается
DSG7 0AM (DQ200) "сухие" поперечное 1.2 -1.8 передний 250Нм Audi: A1, A3(8P - до 2013г), TT;
VW: Golf6, Jetta, Polo, Passat, Passat CC, Scirocco, Touran, Ameo;
Skoda: Octavia(1Z - до 2013г), Yeti, Superb, Fabia, Roomster, Rapid;
Seat: Altea, Leon(1P - до 2013г), Toledo.
DSG6 02E (DQ250) "мокрые" поперечное 1.4 - 3.2 передний/полный 350Нм Audi: A3(8P - до 2013г), TT, Q3;
VW: Golf, Passat, Touran, Scirocco, Sharan, Tiguan;
Skoda: Octavia(1Z - до 2013г), Yeti, Superb;
Seat: Altea, Leon(1P - до 2013г), Toledo, Alhambra.
DSG7 0B5 (DL501) "мокрые" продольное 2.0 - 4.2 полный 550Нм Audi: A4(до 2015г), A5, A6, A7, Q5, RS4, RS5.
DSG7 0BT/0BH (DQ500) "мокрые" поперечное 2.0 - 2.5 передний/полный 600Нм Audi: Q3, RS3, TTRS;
VW: Transporter/Multivan/Caravelle, Tiguan.
DSG7 0CW (DQ200) "сухие" поперечное 1.2 - 1.8 передний 250Нм Audi: A3(8V - с 2013г), Q2;
VW: Golf7, Passat (с 2015г), Touran (с 2016г); T-Roc.
Skoda: Octavia(5E - c 2013г), Rapid(с 2013г), Karoq, Scala (с 2019г);
Seat: Leon (5F - с 2013г).
DSG6 0D9 (DQ250) "мокрые" поперечное 1.4 - 2.0 передний/полный 350Нм Audi: A3(8V - с 2013г), Q2;
VW: Golf7, Passat (с 2015г), Touran (с 2016г) ;
Skoda: Octavia(5E - c 2013г), Kodiaq;
Seat: Leon (5F - с 2013г), Ateca.
DSG7 0DL (DQ500) "мокрые" поперечное 2.0 передний/полный 600Нм VW: Arteon, Passat (c 2017г), Tiguan (с 2016г) ;
Skoda: Kodiaq.
DSG7 0GC (DQ381) "мокрые" поперечное 2.0 передний/полный 420Нм Audi: A3 (c 2017г), Q2;
VW: Arteon, Golf (с 2017г), Passat (c 2017г); T-Roc.
Skoda: Karoq;
Seat: Ateca.
DSG7 0CK (DL382-7F) "мокрые" продольное 1.4 - 3.0 передний 400Нм Audi: A4(8W - c 2016г), A6(c 2011г), A7(с 2016г), Q5(с 2013г).
DSG7 0CL (DL382-7Q) "мокрые" продольное 2.0 - 3.0 полный 400Нм Audi: A4(8W - с 2016г).
DSG7 0СJ "мокрые" продольное 2.0 полный
(Ulta Quattro, c электромеханической муфтой)
400Нм
Audi: A4(8W - с 2016г).
Взглянув на таблицу можно сделать некоторые нехитрые выводы:
1. DSG c "сухими" сцеплениями, как правило, устанавливаются на менее мощные двигатели, т.к. способны "переварить" меньший момент.
2. Если у вас полный привод, то у вас "мокрые" сцепления.
3. Если у вас DSG и мотор "вдоль", то у вас Audi:-)
4. Судя по всему, век легендарного полного привода Audi Quattro со знаменитым дифференциалом Torsen, подходит к концу .
Вопрос 002:
Q: Как узнать какая коробка установлена на моём автомобиле?
A: Вариант 1: Подключиться диагностическим прибором к автомобилю, зайти в блок 02 - Электроника КП и считать идентификационные данные. Первые три символа идентификаторов коробки и мехатроника обозначают вашу коробку.
Например: 0AM 300049H - семиступенчатая DSG с "сухими" сцеплениями типа 0AM. Или 02E 300051R - шестиступенчатая DSG с "мокрыми" сцеплениями типа 02E и т.п.
Вариант 2: Посмотреть по VIN-коду автомобиля в электронном каталоге запчастей ETKA.
Вариант 3: Отправить VIN-код автомобиля на наш адрес , мы проверим и пришлем вам ответ.

Вопрос 003:
Q: Чем S-tronic для ауди отличается от DSG для фольксваген/шкода/сеат?
A:
Ничем. За исключением коробок 0B5, 0CK/0CL и 0СJ которые устанавливаются только на ауди.

Вопрос 004:
Q: Какое масло заливается в DSG?
A: Для удобства мы сформулировали ответ в виде таблицы:

Тип Масло Интервал замены (рекомендуемый производителем)
DSG7 0AM (DQ200)
на весь срок службы
DSG6 02E (DQ250)
Объемы заправки:
до 6.9л - полная заправка
до 5.5л - замена масла
Фильтрующий элемент: 02E 305 051 C
60 000
DSG7 0B5 Масло для КП DSG G 052 529
до 7.5л - полная заправка
до 6.7л - замена масла
Фильтрующий элемент: 0B5 325 330 A
60 000
DSG7 0BT/0BH (DQ500) Масло для КП DSG G 052 182
до 7.6 - полная заправка
до 6.0л - замена масла
Фильтрующий элемент: 0BH 325 183 B
60 000
DSG7 0CW (DQ200) В коробке: Масло КП G 052 512 - 1.9л
В мехатронике: Гидравлическое масло G 004 000 - 1л
на весь срок службы
DSG7 0D9 (DQ250) В коробке: Масло для КП DSG G 052 182
Объемы заправки:
до 6.9л - полная заправка
до 5.5л - замена масла
Фильтрующий элемент: 02E 305 051 C

В раздатке: G 052 145 - 0.9л

60 000
DSG7 0DL (DQ500) В коробке: Масло для КП DSG G 052 182
Фильтрующий элемент: 0BH 325 183 B

В раздатке: G 052 145
60 000
DSG7 0GC (DQ381) Масло ATF: G 055 529 60 000
DSG7 0CK (DL382-7F) Масло ATF: G 055 549 A2
4.35л - полная заправка
3.5л - замена масла
60 000
DSG7 0CL (DL382-7Q) Масло ATF: G 055 549 A2
4.35л - полная заправка
3.5л - замена масла
Масло MTF: G 055 529 A2 - 3.8л
60 000
Вопрос 005:
Q: Что такое мехатроник?
A: Мехатроник (mechatronik, мехатрон, гидроблок, мозг) - электронно-гидравлический блок управления КП. Пожалуй самый важный, но в то же время самый ненадежный узел во всей трансмиссии.

Вопрос 006:
Q: Чем отличаются мехатроники?
A:
У каждого типа DSG свой тип мехатроника. Мехатроники от различных типов DSG не взаимозаменяемы. Более того, для некоторых типов DSG существуют несколько поколений мехатроников, которые также отличаются друг от друга. И для каждого типа и поколения мехатроников существует множество версий программного обеспечения, рассчитанного на различные двигатели и разные передаточные соотношения в КП. В некоторых случаях мехатроники одного типа можно перепрограммировать (перепрошить) для установки на разные автомобили. Подробнее о прошивке можно прочитать .

Вопрос 007:
Q: Какая DSG лучше/надежнее?
A:
Однозначного ответа на этот вопрос не существует. У каждого типа DSG есть свои преимущества и недостатки. А продолжительность "жизни" любой DSG в большей части зависит от условий её эксплуатации, как то:
- Температура окружающей среды. Все DSG не любят перегревы, особенно это касается DSG с "сухими" сцеплениями, в которых мехатроник имеет отдельный масляный контур и отсутствует какое-либо охлаждение
;
- Режим движения. У тех кто каждый день по нескольку часов проводит в пробках, шансов приехать на замену мехатроника больше чем у тех кто в основном ездит по трассе на дальние расстояния;
- Стиль вождения. У любителей "дать угла" и "зажечь на светофоре", вероятность попасть на замену сцепления и дифференциала, сильно выше чем у тех кто предпочитает спокойную езду.

Вопрос 008:
Q: У меня DSG7 0AM. Нужно ли переключать селектор в нейтраль когда стоишь на светофоре или в пробке?
A: Не нужно.
В отличие от обычных механических КП, в DSG7 0AM сцепление является нормально разомкнутым. И замыкается только когда мехатроник начинает выдвигать штоки выжима сцеплений. Когда вы (или автохолд) нажав тормоз удерживаете машину на месте, штоки сцеплений мехатроника убраны и сцепления разомкнуты. Соответственно никакой нагрузки на КП или сцепление не передается. В каком положении при этом находится ручка селектора - не важно.

Вопрос 009:
Q: Со временем появились рывки при переключении передач. Раньше машина ездила нормально, переключения были плавными, но в последнее время появились рывки и удары при переключении передач. Можно ли это исправить перепрограммированием ЭБУ коробки (обновлением программного обеспечения)?
A: Нет нельзя. Программное обеспечение не может со временем "испортиться" и послужить причиной неправильной работы КП. Если автомобиль ранее ездил корректно, а потом перестал, то проблема кроется в аппаратной части, а не в программной.
Перепрограммирование мехатроника может помочь только в том случае, если меняли мехатроник и установили блок с неверным программным обеспечением. Подробнее о перепрограммировании можно прочитать .

Вопрос 010:
Q: Как узнать версию программного обеспечения в мехатронике?
Вопрос 011:
Q: Ручка переключения передач DSG7 заблокирована в положении P, как её разблокировать, для того чтобы переключить коробку в нейтраль?
A: Краткая инструкция по разблокировке селектора DSG7 0AM .


Вопрос 012:
Q: Поможет ли замена масла в мехатронике DSG7 0AM(0CW) убрать "пинки" на переключениях передач?
A: Нет, не поможет. Подобные неисправности устраняются ремонтом гидравлической части мехатроника. В начальных стадиях может помочь проведение адаптации (базовой установки), но скорее как исключение, нежели правило.




Вопрос 014:
Q: После замены мехатроника DSG7 0AM, в регистраторе событий висят ошибки "06247 P1867 - Шина данных Привод отсутствие сообщений от электроники рулевой колонки - J527" и "06227 P1853 Шина данных Привод недостоверное сообщение от блока управления ABS". Как их удалить?
A: Нужно сбросить информацию об установленных компонентах (подрулевые переключатели, электрический стояночный тормоз, и т.п.). Для этого нужно сделать базовую установку по каналу 69. После выполнения базовой установки ошибки перейдут из состояния "постоянно" в состояние "спорадически" и их можно будет удалить.

При использовании ПО VCDS (VAG-COM, ВАСЯ-Диагност и т.п.):
"02-Электроника КП" -> "Базов. параметры - 04" -> В поле "Группа" ввести значение 69 -> Нажать "Прочитать".

При использовании ПО VAS-PC:
"Самодиагностика" ->
"02-Электроника КП" -> "006-Базовая установка" -> В поле "Группа" ввести значение 69 -> Нажать "Q" .

При использовании ПО ODIS:
"Самодиагностика" -> "02-Электроника КП" -> "Базовая установка" -> Ввести значение 69 -> Нажать "Выбор канала".

После проведения базовой установки следует очистить регистратор событий.


Вопрос 015:
Q: Коструктивно DSG7 0AM м DSG7 0CW - практически одинаковые трансмиссии (семейство DQ200), есть ли какая-то разница между устанавливаемыми на них мехатрониками?
A:
Основным отличием являются физические и программные изменения электронной платы управления. В частности, платы 0CW имеют приязку к системе иммобилайзера автомобиля. Более подробно об отличиях в мехатрониках 0AM и 0CW можно прочитать .

], область науки и техники, основанная на синергетическом объединении узлов точной механики с электронными, электротехническими и компьютерными компонентами, обеспечивающая проектирование и производство качественно новых модулей, систем и машин с интеллектуальным управлением их функциональными движениями. Термин «Мехатроника» (англ. «Mechatronics», нем. «Mechatronik») был введён японской фирмой « Yaskawa Electric Corp. » в 1969 году и зарегистрирован как торговая марка в 1972 году. Отметим, что в отечественной технической литературе ещё в 1950-х гг. использовался подобным же образом образованный термин – «механотроны» (электронные лампы с подвижными электродами, которые применялись в качестве датчиков вибраций и т. п.). Мехатронные технологии включают проектно-конструкторские, производственные, информационные и организационно-экономические процессы, которые обеспечивают полный жизненный цикл мехатронных изделий.

Предмет и метод мехатроники

Главная задача мехатроники как направления современной науки и техники состоит в создании конкурентоспособных систем управления движением разнообразных механических объектов и интеллектуальных машин, которые обладают качественно новыми функциями и свойствами. Метод мехатроники заключается (при построении мехатронных систем) в системной интеграции и использовании знаний из ранее обособленных научных и инженерных областей. К их числу относятся прецизионная механика, электротехника, гидравлика, пневматика, информатика, микроэлектроника и компьютерное управление. Мехатронные системы строятся путём синергетической интеграции конструктивных модулей, технологий, энергетических и информационных процессов, начиная со стадии их проектирования и заканчивая производством и эксплуатацией.

В 1970–80-х гг. три базисных направления – оси мехатроники (точная механика, электроника и информатика) интегрировались попарно, образовав три гибридных направления (на рис. 1 показаны боковыми гранями пирамиды). Это электромеханика (объединение механических узлов с электротехническими изделиями и электронными блоками), компьютерные системы управления (аппаратно–программное объединение электронных и управляющих устройств), а также системы автоматизированного проектирования (САПР) механических систем. Затем – уже на стыке гибридных направлений – возникает мехатроника, становление которой как нового научно-технического направления начинается с 1990-х гг.

Элементы мехатронных модулей и машин имеют различную физическую природу (механические преобразователи движений, двигатели, информационные и электронные блоки, управляющие устройства), что определяет междисциплинарную научно-техническую проблематику мехатроники. Междисциплинарные задачи определяют и содержание образовательных программ по подготовке и повышению квалификации специалистов, которые ориентированы на системную интеграцию устройств и процессов в мехатронных системах.

Принципы построения и тенденции развития

Развитие мехатроники является приоритетным направлением современной науки и техники во всём мире. В нашей стране мехатронные технологии как основа построения роботов нового поколения включены в число критических технологий РФ.

К числу актуальных требований к мехатронным модулям и системам нового поколения следует отнести: выполнение качественно новых служебных и функциональных задач; интеллектуальное поведение в изменяющихся и неопределённых внешних средах на основе новых методов управления сложными системами; сверхвысокие скорости для достижения нового уровня производительности технологических комплексов; высокоточные движения с целью реализации новых прецизионных технологий, вплоть до микро- и нанотехнологий; компактность и миниатюризация конструкций на основе применения микромашин; повышение эффективности многокоординатных мехатронных систем на базе новых кинематических структур и конструктивных компоновок.

Построение мехатронных модулей и систем основывается на принципах параллельного проектирования (англ. – concurrent engineering), исключения многоступенчатых преобразований энергии и информации, конструктивного объединения механических узлов с цифровыми электронными блоками и управляющими контроллерами в единые модули.

Ключевым принципом проектирования является переход от сложных механических устройств к комбинированным решениям, основанным на тесном взаимодействии более простых механических элементов с электронными, компьютерными, информационными и интеллектуальными компонентами и технологиями. Компьютерные и интеллектуальные устройства придают мехатронной системе гибкость, поскольку их легко перепрограммировать под новую задачу, и они способны оптимизировать свойства системы при изменяющихся и неопределённых факторах, действующих со стороны внешней среды. Важно отметить, что за последние годы цена таких устройств постоянно снижается при одновременном расширении их функциональных возможностей.

Тенденции развития мехатроники связаны с появлением новых фундаментальных подходов и инженерных методов решения задач технической и технологической интеграции устройств различной физической природы. Компоновка нового поколения сложных мехатронных систем формируется из интеллектуальных модулей («кубиков мехатроники»), объединяющих в одном корпусе исполнительные и интеллектуальные элементы. Управление движением систем осуществляется с помощью информационных сред для поддержки решений мехатронных задач и специального программного обеспечения, реализующего методы компьютерного и интеллектуального управления.

Классификация мехатронных модулей по структурным признакам представлена на рис. 2.

Модуль движения – конструктивно и функционально самостоятельный электромеханический узел, включающий в себя механическую и электрическую (электротехническую) части, который можно использовать как сепаратный блок, так и в различных комбинациях с другими модулями. Главным отличием модуля движения от общепромышленного электропривода является использование вала двигателя в качестве одного из элементов механического преобразователя движения. Примерами модулей движения являются мотор-редуктор, мотор-колесо , мотор-барабан, электрошпиндель станка.

Мотор-редукторы являются исторически первыми по принципу своего построения мехатронными модулями, которые стали серийно выпускать, и до настоящего времени находят широкое применение в приводах различных машин и механизмов. В мотор-редукторе вал является конструктивно единым элементом для двигателя и преобразователя движения, что позволяет исключить традиционную соединительную муфту, добиваясь таким образом компактности; при этом существенно уменьшается количество присоединительных деталей, а также затраты на установку, отладку и запуск. В мотор-редукторах в качестве электродвигателей наиболее часто используют асинхронные двигатели с короткозамкнутым ротором и регулируемым преобразователем частоты вращения вала, однофазные двигатели и двигатели постоянного тока. В качестве преобразователей движения применяются зубчатые цилиндрические и конические, червячные, планетарные, волновые и винтовые передачи. Для защиты от действия внезапных перегрузок устанавливают ограничители вращающего момента.

Мехатронный модуль движения – конструктивно и функционально самостоятельное изделие, включающее в себя управляемый двигатель, механическое и информационное устройства (рис. 2). Как следует из данного определения, по сравнению с модулем движения, в состав мехатронного модуля движения дополнительно встроено информационное устройство. Информационное устройство включает датчики сигналов обратных связей, а также электронные блоки для обработки сигналов. Примерами таких датчиков могут служить фотоимпульсные датчики (энкодеры), оптические линейки, вращающиеся трансформаторы, датчики сил и моментов и т. д.

Важным этапом развития мехатронных модулей движения стали разработки модулей типа «двигатель-рабочий орган». Такие конструктивные модули имеют особое значение для технологических мехатронных систем, целью движения которых является реализация целенаправленного воздействия рабочего органа на объект работ. Мехатронные модули движения типа «двигатель-рабочий орган» широко применяют в станках под названием мотор-шпиндели.

Интеллектуальный мехатронный модуль (ИММ) – конструктивно и функционально самостоятельное изделие, построенное путём синергетической интеграции двигательной, механической, информационной, электронной и управляющей частей.

Таким образом, по сравнению с мехатронными модулями движения, в конструкцию ИММ дополнительно встраиваются управляющие и силовые электронные устройства, что придаёт этим модулям интеллектуальные свойства (рис. 2). К группе таких устройств можно отнести цифровые вычислительные устройства (микропроцессоры, сигнальные процессоры и т. п.), электронные силовые преобразователи, устройства сопряжения и связи.

Применение интеллектуальных мехатронных модулей даёт мехатронным системам и комплексам ряд принципиальных преимуществ: способность ИММ выполнять сложные движения самостоятельно, без обращения к верхнему уровню управления, что повышает автономность модулей, гибкость и живучесть мехатронных систем, работающих в изменяющихся и неопределённых условиях внешней среды; упрощение коммуникаций между модулями и центральным устройством управления (вплоть до перехода к беспроводным коммуникациям), что позволяет добиваться повышенной помехозащищённости мехатронной системы и ее способности к быстрой реконфигурации; повышение надёжности и безопасности мехатронных систем благодаря компьютерной диагностике неисправностей и автоматической защите в аварийных и нештатных режимах работы; создание на основе ИММ распределённых систем управления с применением сетевых методов, аппаратно-программных платформ на базе персональных компьютеров и соответствующего программного обеспечения; использование современных методов теории управления (адаптивных, интеллектуальных, оптимальных) непосредственно на исполнительном уровне, что существенно повышает качество процессов управления в конкретных реализациях; интеллектуализация силовых преобразователей, входящих в состав ИММ, для реализации непосредственно в мехатронном модуле интеллектуальных функций по управлению движением, защите модуля в аварийных режимах и диагностики неисправностей; интеллектуализация сенсоров для мехатронных модулей позволяет добиться более высокой точности измерения, программным путём обеспечив в самом сенсорном модуле фильтрацию шумов, калибровку, линеаризацию характеристик вход/выход, компенсацию перекрёстных связей, гистерезиса и дрейфа нуля.

Мехатронные системы

Мехатронные системы и модули вошли как в профессиональную деятельность, так и в повседневную жизнь современного человека. Сегодня они находят широкое применение в самых различных областях: автомобилестроение (автоматические коробки передач, антиблокировочные устройства тормозов, приводные модули «мотор-колесо», системы автоматической парковки); промышленная и сервисная робототехника (мобильные, медицинские, домашние и другие роботы); периферийные устройства компьютеров и офисная техника: принтеры, сканеры, CD-дисководы, копировальные и факсимильные аппараты; производственное, технологическое и измерительное оборудование; домашняя бытовая техника: стиральные, швейные, посудомоечные машины и автономные пылесосы; медицинские системы (например, оборудование для робото-ассистированной хирургии, коляски и протезы для инвалидов) и спортивные тренажёры; авиационная, космическая и военная техника; микросистемы для медицины и биотехнологии; лифтовое и складское оборудование, автоматические двери в отелях аэропортах, вагонах метро и поездов; транспортные устройства (электромобили, электровелосипеды, инвалидные коляски); фото- и видеотехника (проигрыватели видеодисков, устройства фокусировки видеокамер); движущиеся устройства для шоу-индустрии.

Выбор кинематической структуры является важнейшей задачей при концептуальном проектировании машин нового поколения. Эффективность её решения во многом определяет главные технические характеристики системы, её динамические, скоростные и точностные параметры.

Именно мехатроника дала новые идеи и методы для проектирования движущихся систем с качественно новыми свойствами. Эффективным примером такого решения стало создание машин с параллельной кинематикой (МПК) (рис. 3).

В основе их конструктивной схемы лежит обычно платформа Гью-Стюарта (разновидность параллельного манипулятора, имеющая 6 степеней свободы; используется октаэдральная компоновка стоек). Машина состоит из неподвижного основания и подвижной платформы, которые соединены между собой несколькими стержнями с управляемой длиной. Стержни соединены с основанием и платформой кинематическими парами, которые имеют соответственно две и три степени подвижности. На подвижной платформе устанавливается рабочий орган (например, инструментальная или измерительная головка). Программно регулируя длины стержней с помощью приводов линейного перемещения, можно управлять перемещениями и ориентацией подвижной платформы и рабочего органа в пространстве. Для универсальных машин, где требуется перемещение рабочего органа как твёрдого тела по шести степеням свободы, необходимо иметь шесть стержней. В мировой литературе такие машины называются «гексаподы» (от греч. ἔ ξ – шесть).

Основными преимуществами машин с параллельной кинематикой являются: высокая точность исполнения движений; высокие скорости и ускорения рабочего органа; отсутствие традиционных направляющих и станины (в качестве несущих элементов конструкции используются приводные механизмы), отсюда и улучшенные массогабаритные параметры, и низкая материалоёмкость; высокая степень унификации мехатронных узлов, обеспечивающая технологичность изготовления и сборки машины и конструктивную гибкость.

Повышенные точностные показатели МПК обусловлены следующими ключевыми факторами:

в гексаподах, в отличие от кинематических схем с последовательной цепью звеньев, не происходит суперпозиции (наложения) погрешностей позиционирования звеньев при переходе от базы к рабочему органу;

стержневые механизмы обладают высокой жесткостью, так как стержни не подвержены изгибающим моментам и работают только на растяжение-сжатие;

применяются прецизионные датчики обратной связи и измерительные системы (например, лазерные), а также используются компьютерные методы коррекции перемещений рабочего органа.

Благодаря повышенной точности МПК могут применяться не только как обрабатывающее оборудование, но и в качестве измерительных машин. Высокая жёсткость МПК позволяет применять их на силовых технологических операциях. Так, на рис. 4 показан пример гексапода, выполняющего гибочные операции в составе технологического комплекса «HexaBend» для производства сложных профилей и труб.

Компьютерное и интеллектуальное управление в мехатронике

Применение ЭВМ и микроконтроллеров, реализующих компьютерное управление движением разнообразных объектов, является характерной особенностью мехатронных устройств и систем. Сигналы от разнообразных датчиков, несущие информацию о состоянии компонентов мехатронной системы и приложенных к этой системе воздействий, поступают в управляющую ЭВМ. Компьютер перерабатывает информацию в соответствии с заложенными в него алгоритмами цифрового управления и формирует управляющие воздействия на исполнительные элементы системы.

Компьютеру отводится ведущая роль в мехатронной системе, поскольку компьютерное управление даёт возможность достичь высокой точности и производительности, реализовать сложные и эффективные алгоритмы управления, учитывающие нелинейные характеристики объектов управления, изменения их параметров и влияние внешних факторов. Благодаря этому мехатронные системы приобретают новые качества при увеличении долговечности и снижении размеров, массы и стоимости таких систем. Достижение нового, более высокого уровня качества систем благодаря возможности реализации высокоэффективных и сложных законов компьютерного управления позволяет говорить о мехатронике как о возникающей компьютерной парадигме современного развития технической кибернетики.

Характерным примером мехатронной системы с компьютерным управлением является прецизионный следящий привод на основе бесконтактной многофазной электрической машины переменного тока с векторным управлением. Наличие группы датчиков, в том числе высокоточного датчика положения вала двигателя, цифровых методов обработки информации, компьютерной реализации законов управления, преобразований, основанных на использовании математической модели электрической машины, и быстродействующего контроллера позволяет построить прецизионный быстродействующий привод, обладающий сроком службы до 30–50 тысяч часов и более.

Компьютерное управление оказывается весьма эффективным при построении многокоординатных нелинейных мехатронных систем. В этом случае ЭВМ анализирует данные о состоянии всех компонентов и внешних воздействиях, производит вычисления и формирует управляющие воздействия на исполнительные компоненты системы с учётом особенностей её математической модели. В результате достигается высокое качество управления согласованным многокоординатным движением, например, рабочего органа мехатронной технологической машины или мобильного робота.

Особую роль в мехатронике играет интеллектуальное управление, которое является более высокой ступенью развития компьютерного управления и реализует различные технологии искусственного интеллекта. Они дают возможность мехатронной системе воспроизводить в той или иной мере интеллектуальные способности человека и на этой основе принимать решения о рациональных действиях для достижения цели управления. Наиболее эффективными технологиями интеллектуального управления в мехатронике являются технологии нечёткой логики, искусственных нейронных сетей и экспертных систем.

Применение интеллектуального управления даёт возможность обеспечить высокую эффективность функционирования мехатронных систем при отсутствии подробной математической модели объекта управления, при действии различных неопределённых факторов и при опасности возникновения непредвиденных ситуаций в работе системы.

Преимущество интеллектуального управления мехатронными системами состоит и в том, что часто для построения таких систем не требуются их подробная математическая модель и знание законов изменения действующих на них внешних воздействий, а управление строится на основе опыта действий высококвалифицированных специалистов-экспертов.