Вечные двигатели 1 2 рода. Вечный вопрос вечного двигателя

По мере развития науки ее законы охватывают все более широкие области, уточняются, приближаются к законам природы, делаются адекватными им. В обобщенном виде характер связи между законами природы и законами науки был четко выражен А. Эйнштейном: «Наши представления о физической реальности никогда не могут быть окончательными, и мы всегда должны быть готовы менять эти представления». П.Л. Капица, любивший парадоксы, говорил даже так: «Интересны не столько сами законы, сколько отклонения от них».

Но изобретатели perpetuum mobile не правы, рассчитывая на вполне возможное изменение законов науки, не разрешающих пока действие вечных двигателей. Дело в том, что законы науки (в частности, физики) не отменяются, а дополняются и развиваются.

Н. Бор сформулировал общее положение (1923 г.), отражающее эту закономерность развития науки: принцип соответствия , который гласит, что всякий более общий закон включает в себя старый закон как частный случай; он (старый) получается из нового при переходе к другим значениям определяющих его величин.

Утверждение закона сохранения энергии - первого начала термодинамики - сделало попытки создать вечный двигатель первого рода абсолютно безнадежным занятием. И хотя они все еще продолжались, основное направление мыслей создателей perpetuum mobile изменилось. Новые варианты вечных двигателей рождаются уже в полном согласии с первым началом термодинамики: сколько энергии поступает в такой двигатель, ровно столько же и выходит.

Как известно, закон сохранения энергии можно сформулировать в следующей несколько видоизмененной форме: при всех процессах преобразования энергии сумма всех видов энергии, участвующих в данном процессе, должна оставаться неизменной. Такая формулировка, хотя и не допускает возможности создания энергии из ничего, однако оставляет открытым другой путь реализации вечного двигателя, принцип работы которого основывался бы на идеальном преобразовании одной формы энергии в другую.

Было известно, что работа в двигателях совершается, когда горячее тело отдает тепло газу или пару и пар совершает работу, например, двигая поршень. Однако оказалось, что никак не удается сделать так, чтобы энергия от более холодного тела перешла к более горячему. А ведь для создания вечного двигателя необходимо, чтобы при этом еще и совершалась работа.

В результате развития термодинамики, основываясь на работах Сади Карно, Рудольф Клаузиус показал, что, невозможен процесс, при котором теплота переходила бы самопроизвольно от тел более холодных к телам более нагретым. При этом невозможен не только непосредственный переход - его невозможно осуществить и с помощью машин или приборов без того, чтобы в природе не произошло еще каких-либо изменений.

Уильям Томсон (лорд Кельвин) сформулировал принцип невозможности вечного двигателя второго рода (1851 г.), поскольку в природе невозможны процессы, единственным следствием которых была бы механическая работа, произведённая за счет охлаждения теплового резервуара.

Исследованием вопроса о perpetuum mobile нового типа в начале XX в. занимался известный немецкий физико-химик Вильгельм Оствальд. Идеальную машину, способную циклично и без потерь преобразовывать энергию из одной формы в другую, он назвал вечным двигателем второго рода . Как видно и после отказа от возможности создания вечного двигателя первого рода проблема вечного движения все же продолжает оставаться открытой. Однако, вечные двигатели первого и второго рода уже значительно различаются между собой. Если функция объявленного учеными неосуществимым вечного двигателя первого рода состояла в непрерывном совершении полезной работы без пополнения запасов энергии от внешних источников, то от вечного двигателя второго рода требовалась лишь способность идеально трансформировать энергию.

Согласно первому началу термодинамики, теплота эквивалентна механической энергии, поэтому, не входя в противоречие с первым началом, вполне можно построить машину, отбирающую тепло от тела, которое имеет температуру окружающего воздуха, или, к примеру, забирающую тепло воды из больших водоемов и совершающую благодаря этому механическую работу. Если преобразовать теперь полученную механическую энергию обратно в тепло, то тем самым возникает замкнутый цикл преобразования энергии, основанный на принципе вечного двигателя второго рода.

Однако в обыденной жизни никогда не встречаются подобные явления. В теплом помещении вынутая из холодильника бутылка с молоком нагревается, а стакан горячего чая остывает. К тому же холодная жидкость при своем нагревании незаметно понижает температуру воздуха в комнате, а горячая - повышает. Вместе с тем никогда не случается, чтобы холодное тело само собой охладилось или горячее - нагрелось. Для такого охлаждения служат специальные холодильные установки, нуждающиеся, однако, в постоянном подводе энергии от внешних источников. В то же время самопроизвольное охлаждение холодного или нагревание горячего тела вовсе не противоречит первому началу термодинамики. Поэтому очевидно, что формулировку этого закона следует как-то уточнить и дополнить.

Второе начало термодинамики устраняет неполноту закона сохранения энергии, который не делал различия между обратимыми и необратимыми процессами и тем самым оставлял призрачную надежду тем, кто не хотел мириться с невозможностью создания perpetuum mobile. Этот физический принцип накладывает ограничение на направление процессов, которые могут происходить в термодинамических системах. Второе начало термодинамики запрещает так называемые вечные двигатели второго рода, показывая, что коэффициент полезного действия не может равняться единице, поскольку для кругового процесса температура холодильника не может равняться абсолютному нулю (невозможно построить замкнутый цикл, проходящий через точку с нулевой температурой).

Существуют несколько эквивалентных формулировок второго закона термодинамики:

Постулат Клаузиуса : «Невозможен круговой процесс, единственным результатом которого является передача теплоты от менее нагретого тела к более нагретому» (такой процесс называется процессом Клаузиуса).

Постулат Томсона (Кельвина): «Невозможен круговой процесс, единственным результатом которого было бы производство работы за счёт охлаждения теплового резервуара» (такой процесс называется процессом Томсона).

Другая формулировка второго начала термодинамики основывается на понятии энтропии:

«Энтропия изолированной системы не может уменьшаться » (закон неубывания энтропии). В состоянии с максимальной энтропией макроскопические необратимые процессы (а процесс передачи тепла всегда является необратимым из-за постулата Клаузиуса) невозможны.

Когда была создана статистическая термодинамика, которая основывалась на молекулярных представлениях, Оказалось, что второе начало термодинамики имеет статистический характер: оно справедливо для наиболее вероятного поведения системы. Существование флуктуаций препятствует точному его выполнению, однако вероятность сколь-нибудь значительного нарушения крайне мала. То есть переход тепла от холодного тела к более горячему возможен, но это крайне маловероятное событие. А в природе реализуются наиболее вероятные события.

Вечный двигатель уже многие века не дает покоя ученым и инженерам. Еще бы, идея создать устройство, которое будет постоянно работать, не тратя при этом энергии, кажется очень заманчивой. Реально ли его создать, рассказывают ученые.

Что такое вечный двигатель?


Вечный двигатель или Perpetuum Mobile - это устройство воображаемое. Некоторые считают, что теоретически можно создать машину, которая будет бесконечно совершать работу без затрат каких-либо энергетических ресурсов. В то же время, постепенно ученые разочаровывались в этой идее и признавали, что от попыток создать такое устройство лучше отказаться, потому что они бессмысленны. Невозможность создать вечный двигатель постулируется как первое начало термодинамики. Но до сих пор идея вечного двигателя вызывает повышенный интерес.

Идеальный вечный двигатель должен проработать до окончания Большой заморозки (Big Freeze). Сторонники этой теории считают, что до скончания времени Вселенная будет расширяться с очень плавным ускорением. Этот процесс и называется Большой заморозкой, и когда он завершится, наступит конец всего. Когда это произойдет, точно не установлено, но у нас есть еще приблизительно 100 триллионов лет. Так вот, вечный двигатель должен работать как минимум столько же, чтобы считаться настоящим вечным двигателем.

Какими бывают вечные двигатели?

Perpetuum Mobile делятся на двигатели первого рода и второго рода. Двигатели первого рода могли бы функционировать без топлива — и вообще без энергетических затрат, которые возникают, например, при трении деталей механизма друг о друга. Двигатели второго рода могли бы извлекать тепло из более холодных окружающих тел и использовать эту энергию в работе.

Есть много проектов в Интернете, которые утверждают, что работают над конструкцией вечного двигателя. Однако если изучить эти проекты внимательно, становится понятно, что они все очень далеки от идеи вечного двигателя. Но если кому-то удастся сделать такое устройство, последствия будут ошеломляющими. Считается, что мы получим вечный источник энергии - бесплатной энергии.

К сожалению, согласно фундаментальным законам физики нашей Вселенной, создание вечного двигателя невозможно.

Почему создание вечного двигателя невозможно?

Вероятно, есть много людей, которые скажут «никогда не говори «никогда», особенно, если речь идет о науке». В какой-то степени это справедливо. Но если окажется, что вечный двигатель создать возможно, это перевернет физику, которую мы знаем. Окажется, что мы во всем были неправы и ни одно из наших предыдущих наблюдений не имеет никакого смысла.

Первый закон термодинамики -- закон сохранения энергии. Согласно этому закону, энергия не может быть ни создана, ни уничтожена - она просто переходит из одной формы в другую. Для того, чтобы держать механизм в постоянном движении, приложенная энергия должна остаться в этом механизме без каких-либо потерь. Ровно поэтому создание вечного двигателя невозможно.

Для того, чтобы построить вечный двигатель первого рода, мы должны выполнить несколько условий:

  1. У машины не должно быть никаких «трущихся» частей, любые движущиеся части не должны касаться других частей, так как иначе между ними возникнет трение. Это трение в конечном счете приведет к тому, что машина начнет терять энергию. При соприкосновении частей возникает тепло, и именно это тепло и есть энергия, потерянная машиной. Вы скажете, что тогда нужно сделать устройство с гладкой поверхностью, чтобы не возникало трение. Но это невозможно, так как не бывает совершенно гладких объектов.
  2. Машина должна работать в вакууме, без воздуха. Это исходит из первого условия. Эксплуатация машины в любом месте заставит ее терять энергию из-за трения между движущимися частями и воздуха. Хотя потери энергии из-за трения воздуха очень малы, для вечного двигателя это серьезная проблема. Если есть хотя бы минимальные потери энергии, машина начнет останавливается и в конце концов остановится совсем из-за этих потерь, даже если это займет очень много времени.
  3. Машина не должна издавать никаких звуков. Звук также форма энергии, и если машина издает любой звук, это означает, что она также теряет энергию.

Двигатели второго рода, которые используют теплоту окружающих тел, не противоречат закону сохранения энергии. Однако эти хитрые конструкции бессильны против второго начала термодинамики: в замкнутой системе самопроизвольный переход теплоты от более холодных тел к горячим невозможен. Для этого необходим некий посредник. А для работы посредника необходима энергия из внешнего источника. Кроме того, в природе не существует по-настоящему обратимы

Но самое главное, создание вечного двигателя может оказаться бессмысленным. Люди рассчитывают, что если такое устройство будет сделано, мы получим бесплатный источник энергии. Но так ли это? На самом деле, мы получим ровно столько энергии, сколько направим в этот двигатель. Мы ведь помним, что согласно законам физики, которые пока не опровергнуты, энергия не может быть создана из ничего, она может быть только преобразована. Так что, выходит, вечный двигатель - это бесполезное устройство.

| Механические вечные двигатели. | Мнимые перпетуум мобиле. | Мошенничество с изобретением Орфиреуса | Наиболее ранние сведения о вечных двигателях. | На пути к определению понятий работы и энергии. | Научная фантастика и перпетуум мобиле. | Опыты с магнетизмом. | Первые попытки создания вечных двигателей. | Период наивысшего расцвета идеи perpetuum mobile. | Перпетуум мобиле в эпоху Возрождения. | Разгар дискуссии о вечном двигателе. | Споры вокруг перпетуум мобиле.

Вечный двигатель второго рода.

Как известно, закон сохранения энергии можно сформулировать в следующей несколько видоизмененной форме: при всех процессах преобразования энергии сумма всех видов энергии, участвующих в данном процессе, должна оставаться неизменной . Такая формулировка, хотя и не допускает возможности создания энергии из ничего, однако оставляет открытым другой путь реализации вечного двигателя, принцип работы которого основывался бы на идеальном преобразовании одной формы энергии в другую. Поэтому можно предложить, например, такой рабочий цикл: пусть в паровой машине (турбине, двигателе внутреннего сгорания или каком-либо ином тепловом двигателе) мы затрачиваем некоторое количество теплоты на совершение определенной механической работы; далее, полученную механическую энергию вновь преобразуем в тепло, нагревая с ее помощью пар и приводя им в действие паровую машину (турбину), и т.д. Понятно, что подобный цикл превращения энергии можно повторять бесконечно: ведь энергия данной системы с течением времени не увеличивается и не уменьшается.

Исследованием вопроса о перпетуум мобиле такого типа в начале XX в. подробно занимался известный немецкий физико-химик Вильгельм Оствальд . Описанную выше идеальную машину, способную циклично и без потерь преобразовывать энергию из одной формы в другую, он назвал перпетуум мобиле второго рода. Правда, как явствует из самого названия, даже после отказа от возможности создания перпетуум мобиле первого рода проблема вечного движения все же продолжает оставаться открытой. При этом, однако, оба указанных вида вечных двигателей резко различаются между собой. В то время как функция объявленного учеными неосуществимым перпетуум мобиле первого рода состояла в непрерывном совершении полезной работы без пополнения запасов энергии от внешних источников, назначение вечного двигателя второго рода представлялось совершенно иным - от этой машины требовалась лишь способность идеально трансформировать энергию.

В связи с обсуждением вопроса о вечном двигателе второго рода в центре дискуссии снова оказалось действие закона сохранения энергии. Из курса физики известно, что этот закон в применении к тепловым процессам составляет содержание первого начала термодинамики. Действительно, первое начало утверждает эквивалентность тепловой и механической энергии, однако в нем ничего не говорится о том, в каком направлении должны протекать процессы преобразования энергии. Бросаем ли мы камень со скалы в пропасть, превращаем ли при взрыве накопленный во взрывчатке запас химической энергии в механическую энергию, свет и тепло, сжигаем ли топливо для обогрева наших домов - все это суть закономерные изменения форм энергии. Но в то же самое время закон сохранения энергии не запрещает протекание любого из этих процессов в обратном направлении, что явно противоречит нашему практическому опыту. Таким образом, некритическое применение этого закона приводит нас к абсурдным заключениям.

Приведем еще один пример. Согласно первому началу термодинамики, теплота эквивалентна механической энергии, поэтому, не входя в противоречие с первым началом, вполне можно построить машину, отбирающую тепло от тела, которое имеет температуру окружающего воздуха, или, к примеру, забирающую тепло воды из больших водоемов и совершающую благодаря этому механическую работу. При этом даже небольшое охлаждение воды в водоеме освобождало бы огромное количество тепловой энергии, которую можно было бы преобразовывать в электрическую или, далее, опять в механическую энергию. Так, например, охлаждая на 1°С воду, содержащуюся в пруду площадью 120 м 2 и глубиной 1,9 м, мы получили бы энергию, равную 954 кДж . Если преобразовать теперь полученную механическую энергию обратно в тепло, то тем самым возникает замкнутый цикл преобразования энергии, основанный на принципе перпетуум мобиле второго рода. Вопрос заключается только в том, осуществимы ли на практике машины, реализующие этот идеальный цикл трансформации, поскольку в обыденной жизни мы никогда не встречаемся с подобными явлениями.

Из собственного опыта мы знаем, что в теплом помещении вынутая из холодильника бутылка с молоком нагревается, а стакан горячего чая остывает. К тому же холодная жидкость при своем нагревании незаметно понижает температуру воздуха в комнате, а горячая - повышает. Понятно, что в этих процессах мы не находим ничего удивительного. Вместе с тем никогда не случается, чтобы холодное тело само собой охладилось или горячее - нагрелось. Для такого охлаждения служат специальные холодильные установки, нуждающиеся, однако, в постоянном подводе энергии от внешних источников. В то же время самопроизвольное охлаждение холодного или нагревание горячего тела вовсе не противоречит первому началу термодинамики. Поэтому очевидно, что формулировку этого закона следует как-то уточнить и дополнить.

Задачу об использовании тепла путем охлаждения водных бассейнов нашей планеты приводил еще В. Оствальд в качестве типичного примера, демонстрирующего нереальность идеи вечного двигателя второго рода. В своей книге «Всеобщая химия », изданной в 1893 г., он писал:

«Обычно мы не отдаем себе отчета в том, что теорему о перпетуум мобиле можно истолковывать двояким образом. С одной стороны, - о ней речь заходит чаще - можно было бы построить перпетуум мобиле (имеется в виду вечный двигатель первого рода), с его помощью вырабатывать определенную энергию и использовать ее, например, для привода какой-либо машины. Доказательство невозможности подобного процесса приводит нас к первому основному закону энергетики, который говорит о том, что энергию нельзя создать или уничтожить. Перпетуум мобиле, однако, можно было бы приводить в действие иначе, не вырабатывая энергии, если бы удалось включить в процесс трансформации огромное количество неиспользованной энергии, таящейся в природе. Например, если бы можно было преобразовать большие запасы тепловой энергии, содержащиеся в водах Мирового океана, в механическую энергию, которая со временем опять перешла бы в тепловую энергию, то тем самым мы осуществили бы вечный двигатель второго рода. Такое, конечно, невозможно, потому что эти запасы тепла, внешне проявляющиеся в форме установившейся температуры Земли, неизменны».

Другой немецкий физик Рудольф Клаузиус также много времени посвятил исследованию проблем термодинамики. В частности, он пришел к выводу, что энергия нашего мира остается неизменной. Одновременно с этим он высказал важную теорему о стремлении энтропии замкнутой системы к максимуму. Чтобы лучше понять значение этой теоремы, попытаемся подробнее пояснить смысл понятия энтропии, оставляя в стороне его строгую математическую формулировку. Важнейшим свойством энтропии является то, что она не изменяется в обратимых физических процессах, т.е. в идеальных процессах, которые могут протекать в обоих направлениях без какой бы то ни было потери энергии. Практический опыт показывает, что в реальных физических явлениях всегда присутствуют те или иные факторы, например, пассивные силы (трение), из-за воздействия которых часть преобразуемой энергии, переходя в тепло, для следующей фазы данного цикла трансформации оказывается безвозвратно потерянной. О таких потерях говорят как о «мертвой» энергии, об «обесценивании » энергии или о снижении ее «качества ». В связи с этим тепловой энергии отводят последнее место в ряду различных видов энергии, поскольку при всяком процессе ее преобразования обязательно возникает тепло, которое уже нельзя трансформировать ни в какую более высокую форму энергии.

Рассуждения такого рода, применявшиеся к нашему миру в целом, приводили к созданию представлений о так называемой тепловой смерти Вселенной , к которой будто бы закономерно стремится весь окружающий мир. В частности, это должно было проявляться в повышении температуры земной атмосферы и самой планеты в результате выделения тепла при всяком природном процессе преобразования энергии.

В другой интерпретации энтропия рассматривается как мера «рассеяния» энергии в системе. Это толкование энтропии основывается на том факте, что при любом процессе, происходящем в какой-либо замкнутой системе, преобразуется только часть энергии системы, в то время как остаток рассеивается в тепло, причем так, что его нельзя извлечь обратно. Мерой таких потерь или «рассеяния » энергии и является приращение энтропии. При этом численное значение энтропии оказывается пропорциональным величине энергии, перешедшей во внутреннюю энергию участвующих в процессе тел, т.е. в теплоту.

Именно подобное рассеяние энергии является препятствием для реализации вечных двигателей, работающих без пополнения энергетических запасов извне. Например, рассеяние энергии в приводном механизме паровой машины и в самом котле, где нагревается пар для приведения ее в движение, делает невозможным описанный выше вечный двигатель второго рода. Действительно, пусть нагретый пар из котла приводит в движение паровую машину. Представим себе, что приводной механизм этой машины сделан так, что энергия его движения полностью преобразуется в тепло, подводимое обратно к котлу паровой машины. Так вот, в этой, казалось бы, идеальной системе именно из-за наличия потерь будет происходить постоянное убывание рабочей энергии, причем в результате температура и давление пара в котле будут падать, а вместе с ними будет убывать и мощность самой паровой машины.

Другие изобретатели перпетуум мобиле предлагали, например, соединить два часовых механизма так, чтобы ходом одного из них заводилась пружина другого - это давало бы возможность получить «вечную» хронометрическую систему, которая принципиально не противоречила бы закону сохранения энергии. Практические опыты, однако, опровергли эту возможность, потому что такой вечный двигатель останавливался, как только сравнивались приводные усилия обеих пружин. Более того, если даже допустить, что с помощью соответствующих изменений конструкции можно достигнуть переноса существенной части энергии от одной пружины к другой, то и тут мы не сумели бы ничего добиться - именно из-за влияния уже упомянутого рассеяния энергии, сопровождающего каждый рабочий цикл.

Таким образом, с помощью понятия энтропии был сформулирован еще один важный закон, вместе с законом сохранения энергии проливший свет на проблему вечного двигателя второго рода. Одна из его формулировок - это теорема Клаузиуса о стремлении к максимуму энтропии замкнутой системы.

Другая эквивалентная формулировка утверждает, что невозможно создать устройство, постоянно совершающее механическую работу за счет теплоты и преобразующее полученную механическую энергию обратно в тепло . Этот закон называется вторым началом термодинамики. Второе начало термодинамики отвергает также возможность получения энергии путем охлаждения тел ниже температуры окружающей среды. Таким образом, для того чтобы преобразовать теплоту в другой вид энергии (например, в механическую), нам нужно иметь нагреватель (котел) и конденсатор (холодильник). Чем больше разность температур в нагревателе и конденсаторе, тем большую долю тепла можно преобразовать в полезную работу. Если же эта разность будет равна нулю, то и количество произведенной работы окажется нулевым.

Второе начало термодинамики устраняет неполноту закона сохранения энергии, который не делал различия между обратимыми и необратимыми процессами и тем самым оставлял призрачную надежду тем, кто не хотел мириться с невозможностью создания перпетуум мобиле.

Кроме того, второе начало термодинамики налагает запрет и на вечные двигатели, аналогичные перпетуум мобиле второго рода, но основанные на преобразовании других видов энергии. Так, например, невозможна вечная работа пары электромотор - генератор, сидящей на одном валу, которая действовала бы по следующей схеме: электрический ток, вырабатываемый генератором, приводит во вращение электромотор, а механическая энергия электромотора в свою очередь трансформируется в генераторе в электрическую. Если бы оба элемента этой пары работали с 100%-ным к.п.д. (что, естественно, невозможно из-за наличия в них электрических и механических потерь), то подобная система должна была бы поддерживать себя в постоянном движении. Однако она никоим образом не могла бы быть использована для практических целей, потому что, начав отбирать от этого агрегата полезную работу, мы тем самым нарушили бы его энергетическое равновесие, и система бы остановилась.

Этот часто приводимый в литературе пример системы мотор-генератор много раз служил прообразом ряда других, более простых проектов. Правда, при подобных упрощениях невозможность перпетуум мобиле «мотор-генераторного» типа выявляется еще яснее. Ведь, например, можно заменить мотор и генератор системой двух взаимосвязанных ременных шкивов. Наконец, можно ограничиться даже одним шкивом, считая одну его половину ведущим, а другую - ведомым элементом. Можно придумать еще десятки подобных конструкций, но результат всегда будет только один, поскольку всем этим вечным двигателям, как простым, так и сложным, второе начало термодинамики уже огласило свой приговор.

Строгости ради стоит заметить, что этот закон имеет статистический характер и применим только к макроскопическим объектам. В частности, его нельзя использовать при описании движения молекул или малых частиц вещества (броуновское движение ). Кроме того, постоянное тепловое движение, обусловливающее внутреннюю энергию макроскопических тел, не может служить источником энергии для совершения полезной работы.

Бабочки, конечно, ничего не знают о змеях. Зато о них знают птицы, охотящиеся на бабочек. Птицы, плохо распознающие змей, чаще становятся...

  • Если octo на латыни «восемь», то почему октава содержит семь нот?

    Октавой называется интервал между двумя ближайшими одноименными звуками: до и до, ре и ре и т. д. С точки зрения физики «родство» этих...

  • Почему важных особ называют августейшими?

    В 27 году до н. э. римский император Октавиан получил титул Август, что на латыни означает «священный» (в честь этого же деятеля, кстати,...

  • Чем пишут в космосе

    Известная шутка гласит: «NASA потратило несколько миллионов долларов, чтобы разработать специальную ручку, способную писать в космосе....

  • Почему основа жизни - углерод?

    Известно порядка 10 миллионов органических (то есть основанных на углероде) и лишь около 100 тысяч неорганических молекул. Вдобавок...

  • Почему кварцевые лампы синие?

    В отличие от обычного стекла, кварцевое пропускает ультрафиолет. В кварцевых лампах источником ультрафиолета служит газовый разряд в парах ртути. Он...

  • Почему дождь иногда льет, а иногда моросит?

    При большом перепаде температур внутри облака возникают мощные восходящие потоки. Благодаря им капли могут долго держаться в воздухе и...

    • Вечный двигатель первого рода - двигатель (воображаемая машина), способный бесконечно совершать работу без затрат топлива или других энергетических ресурсов. Их существование противоречит первому закону термодинамики. Согласно закону сохранения энергии
    • Вечный двигатель второго рода - воображаемая машина, которая будучи пущена в ход, превращала бы в работу всё тепло, извлекаемое из окружающих тел (см. Демон Максвелла). Они противоречат второму закону термодинамики. Согласно Второму началу термодинамики , все попытки создать такой двигатель обречены на провал.

    История

    Индийский или арабский перпетуум мобиле с небольшими косо закрепленными сосудами, частично наполненными ртутью.

    Попытки исследования места, времени и причины возникновения идеи вечного двигателя - задача весьма сложная. Не менее затруднительно назвать и первого автора подобного замысла. К самым ранним сведениям о Perpetuum mobile относится, по-видимому, упоминание, которое мы находим у индийского поэта, математика и астронома Бхаскары, а также отдельные заметки в арабских рукописях XVI в., хранящихся в Лейдене, Готе и Оксфорде . В настоящее время прародиной первых вечных двигателей по праву считается Индия. Так, Бхаскара в своем стихотворении, датируемом примерно 1150 г., описывает некое колесо с прикрепленными наискось по ободу длинными, узкими сосудами, наполовину заполненными ртутью. Принцип действия этого первого механического перпетуум мобиле был основан на различии моментов сил тяжести, создаваемых жидкостью, перемещавшейся в сосудах, помещенных на окружности колеса. Бхаскара обосновывает вращение колеса весьма просто: «Наполненное таким образом жидкостью колесо, будучи насажено на ось, лежащую на двух неподвижных опорах, непрерывно вращается само по себе» . Первые проекты вечного двигателя в Европе относятся к эпохе развития механики , приблизительно к XIII веку. К XVI - XVII векам идея вечного двигателя получила особенно широкое распространение. В это время быстро росло количество проектов вечных двигателей, подаваемых на рассмотрение в патентные ведомства европейских стран. Среди рисунков Леонардо Да Винчи была найдена гравюра с чертежом вечного двигателя.

    Неудачные конструкции вечных двигателей из истории

    Рис. 1. Одна из древнейших конструкций вечного двигателя

    На рис. 1 показана одна из древнейших конструкций вечного двигателя. Она представляет зубчатое колесо , в углублениях которого прикреплены откидывающиеся на шарнирах грузы. Геометрия зубьев такова, что грузы в левой части колеса всегда оказываются ближе к оси, чем в правой. По замыслу автора, это, в согласии с законом рычага , должно было бы приводить колесо в постоянное вращение. При вращении грузы откидывались бы справа и сохраняли движущее усилие.

    Однако, если такое колесо изготовить, оно останется неподвижным. Дифференциальная причина этого факта заключается в том, что хотя справа грузы имеют более длинный рычаг, слева их больше по количеству. В результате моменты сил справа и слева оказываются равны.

    Рис. 2. Конструкция вечного двигателя, основанного на законе Архимеда

    На рис. 2 показано устройство ещё одного двигателя. Автор решил использовать для выработки энергии закон Архимеда . Закон состоит в том, что тела, плотность которых меньше плотности воды, стремятся всплыть на поверхность. Поэтому автор расположил на цепи полые баки и правую половину поместил под воду. Он полагал, что вода будет их выталкивать на поверхность, а цепь с колёсами, таким образом, бесконечно вращаться.

    Здесь не учтено следующее: выталкивающая сила - это разница между давлениями воды, действующими на нижнюю и верхнюю части погруженного в воду предмета. В конструкции, приведённой на рисунке, эта разница будет стремиться вытолкнуть те баки, которые находятся под водой в правой части рисунка. Но на самый нижний бак, который затыкает собой отверстие, будет действовать лишь сила давления на его правую поверхность. И она будет превышать суммарную силу, действующую на остальные баки. Поэтому вся система просто прокрутится по часовой стрелке, пока не выльется вода.

    Патенты и авторские свидетельства на вечный двигатель

    Литература

    • Вознесенский Н. Н. О машинах вечного движения . М., 1926.
    • Ихак-Рубинер Ф. Вечный двигатель . М., 1922.
    • Кирпичёв В. Л. Беседы по механике . М.: ГИТЛ, 1951.
    • Мах Э. Принцип сохранения работы: История и корень его . СПб., 1909.
    • Михал С. Вечный двигатель вчера и сегодня . М.: Мир, 1984.
    • Орд-Хьюм А. Вечное движение. История одной навязчивой идеи . М.: Знание, 1980.
    • Перельман Я. И. Занимательная физика . Кн. 1 и 2. М.: Наука, 1979.
    • Петрунин Ю. Почему идея вечного двигателя не существовала в античности? // Петрунин Ю.Ю. Призрак Царьграда: неразрешимые задачи в русской и европейской культуре. - М.: КДУ, 2006, с. 75-82

    Примечания


    Wikimedia Foundation . 2010 .