Зарядное для десульфатации аккумуляторных батарей. Приставка к зарядному устройству или как восстановить акб

Давно уже известен тот факт, что заряд электрохимических источников питания асимметричным током, при соотношении I зар: I разр = 10:1, в частности кислотных аккумуляторов, приводит к устранению сульфатации пластин в батарее, т.е. к восстановлению их емкости, что, в свою очередь, продлевает срок службы батареи.

Не всегда есть возможность находиться возле и все время контролировать процесс зарядки, поэтому зачастую либо систематически недозаряжают батареи, либо перезаряжают их, что, конечно же, не продлевает срок их службы.

Из химии известно, что разность потенциалов между отрицательной и положительной пластинами в аккумуляторной батарее составляет 2,1 В, что при 6 банках дает 2,1 х 6 = 12,6 В. При зарядном токе, равном 0,1 от емкости батареи, в конце заряда напряжение повышается до 2,4 В на одну банку или 2,4 х 6 = 14,4 В.

Повышение зарядного тока ведет к повышению напряжения на аккумуляторе и повышенному разогреву и кипению электролита. Заряд же током ниже 0,1 от емкости не позволяет доводить напряжение до 14,4 В, однако длительный (до трех недель) заряд малым током способствует растворению кристаллов сульфата свинца.

Особенно опасны дендриты сульфата свинца, "проросшие" в сепараторах. Они и вызывают быстрый саморазряд батареи (с вечера зарядил аккумулятор, а утром не смог запустить двигатель).

Вымыть же дендриты из сепараторов можно только растворением их в азотной кислоте, что практически нереально.

Путем длительных наблюдений и экспериментов была создана электрическая схема, которая, по мнению автора, позволяет довериться автоматике. Опытная эксплуатация в течение 10 лет показала эффективную работу устройства.

Принцип работы заключается в следующем:

  • 1. Заряд производится на положительной полуволне вторичного напряжения.
  • 2. На отрицательной полуволне происходит частичный разряд батареи за счет протекания тока через нагрузочный резистор.
  • 3. Автоматическое включение при падении напряжения за счет саморазряда до 12,5 В и автоматическое отключение от сети 220 В при достижении напряжения на батарее 14,4 В.

Отключение — бесконтактное, посредством симистора и схемы контроля напряжения на батарее. Важное достоинство метода заключается в том, что пока не подключена батарея (автоматический режим), блок не может включиться, что исключает короткое замыкание при замыкании проводов, подводящих зарядный ток к аккумуляторной батарее.

При сильно разряженной батарее включение блока возможно посредством переключателя "АВТОМАТ-ПОСТОЯННО".

Еще одно очень важное достоинство — отсутствие сильного "кипения", что в совокупности с автоматическими отключением и включением позволяет оставлять включенное устройство без присмотра на длительное время. Автор про-экспериментировал с двухнедельным режимом постоянного включения в режиме "АВТОМАТ". В целях пожарной безопасности необходимо, чтобы зарядное устройство было в металлическом корпусе, сечение подводящих проводников к батарее — не менее 2,5 мм². Обязателен также надежный контакт на клеммах батареи.

Напряжение сети 220 В подается через предохранитель FU1 и симистор VD1 на первичную обмотку силового трансформатора. Со вторичной обмотки переменное напряжение U2=21В выпрямляется диодом VD3 и через балластный резистор R8 сопротивлением 1,5 Ом поступает на клемму "+" батареи, к которой подключены вольтметр РА1 на 15 В, тумблер SA2 "ВКЛ. ДЕСУЛЬФАТАЦИЯ" и схема контроля и управления, представляющая собой триггер Шмитта с гистерезистором около 1,8 В, определяемым падением напряжения на диодах VD5, VD6 и переходе база-эмиттер транзистора VT2.

Транзистор VT1 при напряжении на аккумуляторе 12,6 В включается, и через оптрон VD4 включает симистор VD1, что приводит к включению трансформатора Т1 и подаче напряжения на заряжаемый аккумулятор.

Подключение тумблером SA2 резистора R5 обеспечивает асимметричность формы зарядного тока. Светодиоды VD8 и VD7 индицируют включение блока в режимы "ДЕСУЛЬФАТАЦИЯ" и "ВКЛ." соответственно. Резистором R7 устанавливается момент отключения блока при напряжении на вольтметре 15 В (=0,5 В падает на подводящих проводах).

Мостик VD2 обеспечивает включение симистора на обеих полуволнах сетевого напряжения и нормальную работу трансформатора. Тумблер SA1 служит для включения режима "ПОСТОЯННО".

Детали

Силовой трансформатор — Р=160 Вт, Uii=21 В, провод — ПЭВ-2-2,0. R8 — проволочный (нихром) диаметром 0,6 мм. R5 — ПЭВР на 10...15 Вт. Диод VD3 — любой из Д242...Д248 с любым буквенным индексом на радиаторе площадью S=200 см2.

Остальные резисторы типа — МЛТ, СП; симистор — КУ208Н, без радиатора. S1 — любой, например МТ1. S2 — ТВ1-1. HL1 — любая лампа на 12 В. РА1 — измерительная головка на 15 В.


Рисунок 4 - Схема зарядного – десульфатирующего автомата для автомобильных аккумуляторов

Принцип работы устройства заклю­чается в следующем:

    Заряд производится на положи­тельной полуволне вторичного на­пряжения.

    На отрицательной полуволне происходит частичный разряд бата­реи за счет протекания тока через на­грузочный резистор.

    Автоматическое включение при падении напряжения за счет самораз­ряда до 12,5 В и автоматическое от­ключение от сети 220 В при достиже­нии напряжения на батарее 14,4 В. Отключение - бесконтактное, по­средством симистора и схемы конт­роля напряжения на батарее.

Важное достоинство метода заклю­чается в том, что пока не подключе­на батарея (автоматический режим), блок не может включиться, что ис­ключает короткое замыкание при за­мыкании проводов, подводящих за­рядный ток к аккумуляторной бата­рее.

Устройство работает от напряжение сети 220 В, которое подается через предохранитель FU1 и симистор VD1 на первичную обмотку си­лового трансформатора. Со вторич­ной обмотки переменное напряжение U n = 21 В выпрямляется диодом VD3 и через балластный резистор R8 со­противлением 1,5 Ом поступает на клемму "+" батареи, к которой под­ключены вольтметр РА1 на 15 В, тум­блер SA2 и схема контроля и управле­ния, представляющая собой триггер Шмитта с гистерезисом около 1,8 В, определяемым падением напря­жения на диодах VD5, VD6 и перехо­де база-эмиттер транзистора VT2. Транзистор VT1 при напряжении на аккумуляторе 12,6 В включается, и через оптрон VD4 включает симистор VD1, что приводит к включению трансформатора Т1 и подаче напря­жения на заряжаемый аккумулятор.

Подключение тумблером SA2 рези­стора R5 обеспечивает асимметричность формы зарядного тока. Резистором R7 устанавливается мо­мент отключения блока, при напряже­нии на вольтметре 15 В. Диодный мост VD2 обеспечивает включение симистора на обеих полуволнах сетевого напряжения и нормальную работу трансформатора.

1.1.5 Цифровое зарядное устройство

Рисунок 5 - Электрическая принципиальная схема цифрового зарядного устройства

Рассмотрим работу цифрового зарядного устройства. На вход счетчика DD1 поступа­ют тактовые импульсы. На выходе DD2 присутствует некоторый дво­ичный код, являющийся номером ка­нала (выводы 12, 13). Этот код поступает на адресный вход мультиплек­сора DD2. Через мультиплек­сор напряжение по­ступает на не инвертирующий вход компаратора DA1 (вывод 3), который сравнивает его с образцовым обратным напряжением (вывод 2), равным выбранному на­пряжению ходе DA1. Ко времени окончания тактового импульса формируется напряжение высокого или низкого логического уровня, которое поступает на вход триггера DD3 и заря­жает его входную емкость. В этот момент через дешифратор на такто­вый вход триггера поступает положительный импульс, произво­дящий запись в триггер информации с его входа. Состояние этого триг­гера остается неизменным до поступ­ления следующего тактового им­пульса, т.е. до повторения адреса. Напряжение с выхода каждого триг­гера поступает на силовые ключи 1VT1 и 1VT2, которые включают зарядный ток, если акку­мулятор, подключенный к этому ка­налу, разряжен. В противоположном случае включается индикатор HL1, который сигнализирует о том, что аккумулятор не заряжается. Импульсы с удвоенной частотой сети поступают с выхода выпрямителя VD1, VD2 через фор­мирователь R14, CI, VT1, R1 на счетный вход DD1, с выходов ко­торого тактовая последователь­ность производит переключение каналов с частотой 6 Гц. При таком выборе тактовой часто­ты переключение каждого канала происходит с частотой 1,5 Гц. Конденсатор С1 необходим для предотвращения сбоев счетчика из-за помех по сети 220 В. Для предотвращения выхода мик­росхем из строя при смене полярности напряжения заряжаемого аккумулятора питание выбрано биполярным. Светодиод HL5, зеленого цвета, яв­ляется индикатором включения уст­ройства в сеть и совместно с резисто­рами R7, R9, R10 образует источник образцового напряжения. На­пряжение на инвертирующем входе 7 компаратора DA1 устанавливается с помощью резистора R9 равным поро­говому напряжению заряженного ак­кумулятора, т.е. 1,43... 1,50 В.Для повышения КПД устройства сглаживание выпрямленного напря­жения фильтрами С8, С9 производится только в цепях питания малой мощ­ности. Напряжение питания мало­мощной части устройства стабилизи­ровано простейшими параметричес­кими стабилизаторами R12, VD3 и R13, VD4.

Основной причиной старения аккумулятора считают образование нерастворимой корки сульфата свинца на зарядных пластинах. Отложения уменьшают концентрацию ионов в электролите, увеличивают внутреннее сопротивление приему заряда. Когда говорят «аккумулятор сел» виновником является отложение сернокислого свинца в банках. Удалить налет — провести десульфатацию батареи, восстановить работоспособность.

Когда аккумулятор отдает энергию, он разряжается за счет протекания химической реакции:

Pb +2H2SO4 +2PbO2 -> 2PbSO4 +2H2O

Pb – это свинцовая пластина

PbO2 – активная замазка на угольной решетке

PbSO4 – мелкие кристаллы, которые разрастаясь, закрывают пластину

Но когда аккумулятор заряжается от генератора или сети реакция идет в обратную сторону, то есть сернокислый свинец распадается на ионы свинца и кислотный остаток. И все было бы хорошо, но часть кристаллов, при хроническом недозаряде и глубоком разряде аккумулятора, разрастается и не участвует в реакции. Вещество нерастворимой серо-желтой пленкой покрывает пластину, забивает поры, не пропускает заряженные ионы к токопроводящим пластинам. Этим объясняется быстрая подзарядка аккумулятора и моментальная разрядка – нет емкости.

Возвратить емкость аккумулятору можно, если не осыпалась замазка, и не разрушились пластины – то есть электролит в банках светлый, без взвеси. Цель десульфатации АКБ – очистить механически, химически или электротоком пластины, восстановить или заменить электролит. Схемы снятия осадка отработаны годами. Есть методы десульфатации АКБ, применяемые в сервисных центрах и доступные в домашних условиях.

Как сделать десульфатацию на автомобильный аккумулятор

Естественный процесс старения аккумулятора в связи с потерей емкости, в результате осаждения трудно растворимых солей можно отложить своевременной десульфатацией стартового или тягового аккумулятора.

Все методы можно классифицировать по видам:

  • Воздействие электрическим зарядом – постоянным током малой величины, импульсным током, переполюсовкой.
  • Химические методы с использованием разрушителей осадка с последующей заменой электролита. Или растворение в дистиллированной воде осадка малым током зарядки
  • Механические – когда вынутые из банок пластины восстанавливают механической обработкой.

В целях профилактики периодически в электролит добавляют присадки, препятствующие появлению сульфатного камня, но они разрушают пластины, сокращая срок службы аккумулятора.

Схема для десульфатации автомобильного аккумулятора

Из химических методов десульфатации аккумуляторных батарей чаще всего применяют сложный состав трилона Б и аммиака. Эти вещества доступны, но использовать их следует с соответствие инструкции и на крепких аккумуляторах. Трилон Б, натриевая соль этилендиаминтетрауксусной кислоты, растворимая в воде, натрий замещает в соли ион свинца и осадок растворяется. Но растворяется и активная замазка.

Порядок десульфатизации аккумулятора химическим способом:

  • Готовится раствор – на 3 л взять 60 г трилона Б, 622 мл NH4OH 25%, 2340 мл дистиллированной воды. Можно взять 10% аммиачный раствор1560 мл, воды 1140 мл и 60 г трилона Б.
  • Сливается электролит из АКБ в подходящую емкость.
  • Сразу непросохшие банки залить подготовленным составом, на оставить в АКБ не более чем на 60 минут.
  • Слить содержимое и промыть банки 3-4 раза дистиллированной водой.
  • Залить свежий электролит нужной плотности и выполнить зарядку по полному циклу.

Способ нужно использовать с осторожностью. Если десульфатацию автомобильного аккумулятора проводят для удаления небольшого количества осадка, время воздействия сокращают до 30-40 минут. Трилону Б все равно что растворять – вредный осадок или активную массу. В момент реакции идет разогрев и кипение жидкости. Работать нужно на открытом воздухе, использовать защитные средства.

Зарядное устройство с десульфатацией для автомобильного аккумулятора

В промышленных условиях, на автобазах, где зарядку аккумуляторов ведут обученные работники, десульфатацию АКБ проводят специальным зарядным устройством для десульфатации. Для снятия осадка с сильно забитого аккумулятора используют реверсивные импульсные токи.

Реверсивный ток – переменный, с различной амплитудой и полярностью, повторяющихся циклично. Импульсная десульфатация зарядом и разрядом действует на аккумулятор мягко, температура электролита не поднимается, выделения газа не происходит.

Для создания реверсивных токов используется специальное устройство, генератор реверсивного тока, стоимость которого примерно равна двум аккумуляторам. Как произвести десульфатацию аккумулятора, пользуясь генератором реверсивного тока?

Генератор используют при среднем сульфатировании пластин с подачей тока 0,5 – 2,0 А в течение 20-50 часов. Процесс окончен, когда в течение 2 часов напряжение и плотность электролита остаются неизменными.

Сильно забитый аккумулятор чистят с применением устройства для десульфатизации дистиллированной водой в несколько этапов. Для этого напряжение на батарее нужно снизить до 10,8 В, удалить электролит, залить в банки дистиллированной водой.

Вести десульфатацию АКБ малым током, чтобы напряжение было до 2,3 В. Постепенно осадок растворяется в воде, электролит приобретает плотность около 1,11 г/см3. Раствор заменить свежей дистиллированной водой, и продолжать процесс до плотности 1,12 г/см3. Силу тока теперь установить 1 А и наблюдать за ростом напряжения, до тех пор, пока показатель не стабилизируется.

По прошествии первого этапа десульфатации АКБ, поднимают ток до 20 % от разрядного, заряжают батарею 2 часа, разряжают и так до постоянной плотности и напряжения 3-5 раз.

Доводят кислоту до плотности 1,21-1,22 г/см3, заряжают аккумулятор полностью и спустя 3 часа корректируют плотность, пользуясь таблицей. Метод трудоемкий, но десульфатация пластин получается полной. Аккумулятору возвращается вторая молодость.

Десульфатация аккумулятора зарядным устройством

Можно обойтись более дешевым способом десульфатизации обычным зарядным устройством. Но непременным условием является возможность регулировать ток и напряжение. Если осадок пока занимает меньше половины пластин, применяется следующая схема десульфатизации аккумулятора:

  • Довести уровень электролита до нормального уровня дистиллированной водой.
  • Подключить ЗУ и установить напряжение 14 В, силу тока 1 А. Заряжать 8 часов. Замеры должны показать, что плотность электролита увеличилась, напряжение поднялось до 10 В. Если показатели ниже – аккумулятор не восстановить.
  • Сутки АКБ отдыхает, отключенное от ЗУ.
  • Подключить с напряжением 14 в и током 2-2,5 А на 8 часов. Напряжение должно стать 12,7-12,8 В. Электролит в банках плотностью 1Ю13 г/см3.
  • Разрядить аккумулятор до 9 В, лампой дальнего света за 6-8 часов.
  • Повторять разряд-заряд несколько раз, пока плотность электролита не станет 1,27 -1,28 г/см3. В период циклов идет процесс десульфатации, растворяется камень, кислотный остаток SO4 укрепляет электролит.

В результате емкость свинцового кислотного аккумулятора восстановится на 80-90 %. Но так нельзя провести десульфатацию кальциевого или гелевого аккумулятора.

Чаще всего для десульфатации зарядным устройством используют установку «Вымпел». Она доступна по цене, и имеет необходимую регулировку. К ней можно подключить приставку в виде моргалки или другое электронное устройство для снятия свинцового камня.

В необслуживаемых аккумуляторах десульфатация эффективна только на начальной стадии отложения камня. Ведется она с применением импульсного зарядного устройства. Но надо знать, что камень в кальциевом аккумуляторе содержит гипс, который не разрушается под воздействием импульсных токов. Поэтому необслуживаемые аккумуляторы после 3 глубоких разрядов не подлежат восстановлению.

Устройство для десульфатации автомобильных аккумуляторов

Хорошо ведется десульфатация на пластинах автомобильных аккумулятора под действием токов переменного направления с изменением полярности в высокой частоте. Промышленность предлагает приборы и приставки к зарядке для десульфатации аккумулятора.

Зарядное устройство для аккумуляторов Кедр Авто-10, с режимом десульфатации относится к автоматическим зарядникам. Он обеспечивает зарядку с тока в % А от емкости АКБ, быстрый режим током 5 А и циклический – десульфатацию. Компактный зарядник доступен по цене.

Зарядные десульфатирующие устройства выбирают для конкретного типа аккумуляторов. Лучшими для обслуживания одного аккумулятора считают изделия:

  • устройство одноканальное, предназначенное для автомобильных батарей;
  • лучше взять устройство с ручной регулировкой зарядного тока;
  • изучить возможности защиты, блокировки и допустимые температуры;
  • знать параметры своего аккумулятора, подбирать подходящее устройство.

По техническим показателям для автомобилиста подойдет прибор с регулируемым напряжением 0-36 В, с разными способами десульфатации:

  • щадящий – малый ток, напряжение постоянное;
  • интенсивный – циклический импульсный, подающий ассиметричный ток;
  • циклический заряд со снижением зарядного напряжения.

Совместимость с батареей вашей емкости – обязательное условие.

Если вы приобрели десульфатирующую приставку, то она должна включаться между зарядным устройством и аккумулятором, и провода ее не должны быть тоньше других в схеме соединения. Зарядное должно поддерживать импульсный режим.

Десульфатация АКБ в домашних условиях

Часто десульфатацию АКБ легковых авто проводят своими руками, руководствуясь предоставленными на различных ресурсах схемами. Многие из них основаны на использовании обычного зарядного устройства, но требуют много внимания. В среднем ручная сульфатация малыми токами и в несколько циклов занимает больше 2-х недель.

Подключение к зарядному устройству приставки ускорит режим десульфатации АКБ. Примером приставки служит импульсный преобразователь, называемый моргалкой, так как светодиоды сигнализируют от прохождении переменного тока. Устройство можно собрать своими руками.

Перед вами схема зарядного устройства для сульфатации автомобильного аккумулятора, называемая «моргалка».

Принцип «моргалки» — прохождение 10 % тока от емкости АКБ, напряжение 13,1 – 13,4 В. Схема представляет разрядку лампочками на 12 в и реле, включающее зарядку по окончании разрядки. Получается моргание с пульсацией 4,3 секунды на разряд током 1 А и 3 секунды на заряд током 5 А. Импульсы тока сначала разрыхляют монолитную пленку на пластине, потом растворяют маленькие кристаллы.

Знаем, что необслуживаемые аккумуляторы плохо поддаются десульфатации. Но если батарея новая, отслужила не более 2 лет, а уровень электролита в банках низок, можно попробовать восстановить емкость. Сначала нужно добавить в банки дистиллированной воды и заклеить отверстия эпоксидным клеем. Потом попробовать провести зарядку импульсным током. В режиме десульфатации АКБ, одновременно с корочкой сульфатированного свинца будет разрушаться активная замазка. Емкость восстановится ненамного и ненадолго.

Важно знать!

Электролит разъедает тело и натуральные хлопковые волокна также как концентрированная серная кислота. Выделяющиеся через открытые пробки АКБ газы вредны и взрывоопасны. Поэтому место, где проводятся опасные работы должно быть проветриваемым и недоступным для детей и животных. Бутыли с электролитом не должны находиться в местах общей доступности. Не забывайте надеть защитные очки, резиновые перчатки и пользоваться резиновым фартуком.

Видео

Возможно, для вас будет полезным посмотреть предоставленное видео по десульфатации аккумулятора.

У частник форума электромобилистов, Курманенко Геннадий Викторович из Днепропетровской области обобщив информацию форума, разработал схему приставки для пульсирующего заряда аккумуляторной батареи. Устройство может не только заряжать аккумулятор импульсами тока, но и контролировать напряжение на аккумуляторе, а при достижении установленного уровня включить пульсирующую добивку с возможностью десульфатации.

Обратите внимание, приставка включается между зарядным устройством и аккумулятором. При этом провода от приставки к аккумулятору должны быть не тоньше проводов от зарядного устройства к приставке и желательно короче. Иначе пульсации зарядного устройства будут вмешиваться в нормальную работу приставки.

Рис.2 Плата печатная

Сразу следует предупредить: Зарядное устройство к которому эта приставка будет подключаться должно выдерживать импульсный режим нагрузки. Возможно какие-то электронные зарядные устройства впадут в депрессию от такого поведения нагрузки, они же расчитывали иметь спокойный и предсказуемый аккумулятор. А тут, аккумулятор то он есть, то его нет.

Геннадий Викторович являясь оператором дефектоскопической установки для проверки рельсов использует приставку для качественного заряда аккумуляторов и востановления потерявших работоспособность. Ранее для заряда аккумуляторов использовались самые простые зарядные устройства прозванные в народе "кипятильниками".

Приступаем к описанию работы схемы устройства.
От провода обозначенного знаком "+" через диод VD1 питание поступает на параметрический (линейный) стабилизатор питания состоящий из резистора R1, конденсатора С2, стабилитрона VD3 (например КС191).
Почему через диод? Нагрузка имеет импульсный характер, диод выполняет функции развязки неспокойного аккумулятора от схемы управления.

Из точки после диода VD1 берем напряжение на анализатор (компаратор) заряженности аккумулятора.
Компаратор состоит из следующих элементов:резисторы R1-R3,R5-R7, конденсатора, интегрального стабилизатора TL431, транзистора VT1.
На базе транзистора VT1 стабилизатор VD2 поддерживает фиксированное напряжение, на эмиттере этого транзистора напряжение меняется пропорционально изменению напряжения на аккумуляторе. При повышении напряжения на аккумуляторе сверх установленного резистором R1, транзистор VT1 закрывается и разблокирует до того заторможенный блокинг-генератор на микросхеме NE555.

Несколько слов о блокинг-генераторе: В начале заряда он блокирован анализатором напряжения, а именно открытым транзистором VT1 закорочен конденсатор C4 и работа генератора невозможна, а выход (3) находится в высоком состоянии.

А теперь о работе той части схемы управления, что называется пульсатором.
На основе микросхемы NE555 реализован генератор с частотой задаваемой в основном конденсатором C4,а также резисторами R8-R10, конденсатора VD4.
Переключатель S1 может переключать вывод 7 микросхемы либо на резистор R8 или диод VD4, что меняет скважность работы генератора. Иными словами, меняет время зарядного импульса и разрядной паузы (или паузы рассасывания).
Автором выбрана частота генератора 0.7 Гц. На мой взгляд этого мало. Надо как минимум в 10 раз меньше. Для этого конденсатор С4 следует увеличить до 100 мкф.
С выхода 3 микросхемы сигнал положительной полярности поступает на базу транзистора VT4, открывает его и аккумулятор подключается к минусовому проводу зарядного устройства, начинается заряд батареи. По истечению установленного времени управляющий импульс снимается, транзистор VT4 закрывается. Но при этом закрывается и транзистор VT2, при этом открывается транзистор VT3, подключающий разрядный резистор Rn. Начинается процесс разряда аккумулятора через этот резистор. Светодиод HL1 индицирует факт разряда.
Резистор R16 служит для обеспечения протекания открывающего тока для транзистора VT3, иначе он не включится.
Таким образом можно констатировать, что положительный импульс микросхемы NE555 (КР1006ВИ1) обеспечивает временной промежуток для заряда аккумулятора, а отрицательный (пауза) импульс обеспечивает временной промежуток для разряда аккумулятора.

Т еперь немного об устройстве микросхемы.
В состав таймера входят два прецизионных компаратора высокого (DA1) и низкого (DA2) уровней, асинхронный RS-триггер DD1, мощный выходной каскад на транзисторах VT1 и VT2, разрядный транзистор VT3, прецизионный делитель напряжения R1R2R3. Сопротивления резисторов R1-R3 равны между собой.

Таймер содержит два основных входа: вход запуска (вывод 2) и пороговый вход (вывод 6). На этих входах происходит сравнение внешних напряжений с эталонными значениями, составляющими для указанных входов соответственно l/3Uпит и 2/3Uпит. Если на входе Unop (6) действует напряжение меньше 2/3Uпит, то уменьшение напряжения на входе Uзап (2) до значения, меньшего 1/3Uпит, приведет к установке таймера в состояние, когда на выходе (вывод 3) имеется напряжение высокого уровня. При этом последующее повышение напряжения на входе Uзап (2) до значения 1/3Uпит и выше не изменит состояния таймера. Если затем повысить напряжение на выходе Uпop (6)до значения больше 2/3 Uпит, то сработает триггер DD1 и на выходе таймера (3) установится напряжение низкого уровня, которое будет сохраняться при любых последующих изменениях напряжения на входе Uпop (6). Этот режим работы таймера обычно используют при построении реле времени, ждущих мультивибраторов. При этом вход Unop (6) подключают к одной из обкладок конденсатора времязадающей цепи, а по входу Uзап (2) производят запуск таймера подачей короткого импульса отрицательной полярности. Если необходимо создать автоколебательный мультивибратор, то оба входа объединяют. Транзистор VT3 (7) служит для разрядки времязадающего конденсатора. При появлении напряжения высокого уровня на выводе 3 таймера этот транзистор открывается и соединяет обкладку конденсатора с общим проводом.
Если на запускающем входе напряжение не превышает l/3Uпит, то повышение напряжения на входе Unop выше 2/ЗUпит приведет к появлению низкого напряжения на выходе таймера, а понижение напряжения на этом входе ниже 2/ЗUпит установит высокое напряжение на выходе. Таким образом, в данном случае таймер работает как обычный компаратор и может быть использован в устройствах регулирования температуры, автоматического включения освещения и др.
Если на входе Unop напряжение превышает 2/3Uпит, то на выходе таймера будет низкое напряжение независимо от значения напряжения на входе Uзап. В заключение следует отметить, что напряжение питания таймера может находиться в пределах 5...15 В.
Максимальный выходной ток таймера равен 100 мА. Это позволяет использовать в качестве нагрузки электромагнитное реле. Вывод 5 служит для контроля значения образцового напряжения, а также для возможного изменения его значения путем подключения внешних резисторов. Для уменьшения возможного действия помех этот вход обычно соединяют с общим проводом через конденсатор емкостью 0,01...0,1 мкФ. Вход Uc6p (вывод 4) позволяет устанавливать на выходе низкое напряжение независимо от сигналов на остальных входах. Для этого на вывод 4 следует подать напряжение низкого уровня. Последующее повышение напряжения на этом входе до напряжения высокого уровня приводит к установлению на выходе таймера состояния, которое было до подачи низкого напряжения на вход 4 (имеется в виду, что времязадающая цепь не подключена). Если этот вход не используется, его следует соединить с выводом 8. В схемах реле времени вход Uсбр часто используют для установки таймера в исходное состояние, соответствующее закрытому транзистору VT3.

Зарядку аккумуляторных автомобильных батарей нередко ведут асимметричным током, обеспечивая соотношение зарядной и разрядной составляющих 10:1 при отношении продолжительностей действия этих составляющих 1:2 соответственно. При таком способе зарядки нередко восстанавливаются засульфатированые батареи, да и для профилактической обработки исправных батарей он весьма полезен.

Указанные соотношения зарядного и разрядного токов обеспечивает самодельное зарядное устройство, схема которого приведена ниже.

Нажмите на рисунок для просмотра.

Десульфатирующее зарядное устройство рассчитано на 12 вольтовые аккумуляторные батареи. Зарядный ток в импульсе достигает 5 А, разрядный - 0,5 А. О том как увеличить возможности этого зарядного устройства будет рассказано чуть позже.

В зарядном устройстве используется трансформатор мощностью не менее 150 W. Переменное напряжение на вторичной обмотке этого трансформатора должно быть не ниже 21-25 вольт! Выпрямительный диод (VD1) рассчитан на ток от 5 и более ампер и лучше если он будет установлен на радиатор.

Стабилитроны VD2 и VD3 с напряжением стабилизации около 8-9 вольт и желательно большей мощности. Транзисторы VT1 и VT2 КТ825 или близкие по параметрам. Их нужно установить на радиаторы. Для транзистора VT2 радиатор должен быть площадью не менее 200 см 2 !

Резистор R1- не менее 2Wt, резистор R3 может быть проволочным, а резистор R4 -ОБЯЗАТЕЛЬНО ДОЛЖЕН БЫТЬ ИЗГОТОВЛЕН ИЗ ПРОВОЛОКИ С ВЫСОКИМ УДЕЛЬНЫМ СОПРОТИВЛЕНИЕМ!!! Переменный резистор может быть любым, оказавшимся под рукой.

Вовремя зарядки, ток протекает через резистор R4 как во время зарядного импульса, так и разрядного. Поэтому нужно учитывать, что суммарный ток от зарядного устройства примерно на 10% превышает ток зарядки. На это значение нужно уменьшать показания амперметра РА 1, стрелка которого будет фиксировать около одной трети от амплитуды импульса суммарного тока (т. е. 1,8 А). При номинальном зарядном токе напряжение на аккумуляторной батарее изменяется в пределах 13...15 вольт.

Продолжительность зарядки аккумуляторной батареи зависит от ее емкости, степени разряженности и глубины сульфатации пластин. Для исправной батареи примерное время зарядки можно определить, если разделить ее начальную емкость на значение среднего зарядного тока. Полностью разряженная батарея емкостью 55 А.Ч. должна заряжаться примерно 35 ч, а засульфатированая - 70-80 часов и более, в зависимости от степени сульфатации.