Электрохимические генераторы. Применение

В течение двух ближайших лет на рынке мобильных компьютеров и портативных электронных устройств ожидается появление большого количества серийно выпускаемых моделей, оснащенных источниками питания на базе химических топливных элементов.

Экскурс в историю

ервые эксперименты по созданию топливных элементов были проведены еще в XIX столетии. В 1839 году английский физик Гроув при проведении электролиза воды обнаружил, что после отключения внешнего источника тока между электродами возникает постоянный ток. Однако открытия в этой области, сделанные рядом выдающихся ученых XIX века, не нашли практического применения, став достоянием лишь академической науки.

К созданию топливных элементов для прикладного использования ученые вернулись лишь в начале 50-х годов XX века. В этот период возможности практического применения химических реакторов для получения электроэнергии начали активно изучать коллективы исследователей в США, Японии, СССР и ряде западноевропейских стран.

Первой областью практического применения топливных элементов стала космонавтика. Топливные элементы различных конструкций использовались на американских космических кораблях Gemini, Apollo и Shuttle, а также на созданном в СССР многоразовом космическом челноке «Буран».

Следующая волна интереса к химическим топливным элементам была вызвана энергетическим кризисом 70-х годов. В тот период многие компании занялись исследованиями в области использования альтернативных источников энергии для транспорта, а также для бытового и промышленного применения. Кстати, именно на этом поприще начинала свою деятельность ныне известная компания АРС.

В настоящее время можно выделить четыре основные сферы применения энергоустановок на базе топливных элементов: энергоустановки для различных транспортных средств (от скутеров до автобусов), стационарные решения крупного и мелкого масштаба, а также источники питания для мобильных устройств. В этой статье мы рассмотрим главным образом решения для портативных устройств.

Что такое топливные элементы

режде всего необходимо уточнить, о чем пойдет речь. Топливные элементы представляют собой специализированные химические реакторы, предназначенные для прямого преобразования энергии, высвобождающейся в ходе реакции окисления топлива, в электрическую энергию.

Следует отметить, что топливные элементы имеют по крайней мере два принципиальных отличия от гальванических батарей, также относящихся к устройствам, преобразующим энергию протекающих в них химический реакций в электричество. Во-первых, в топливных элементах используются не расходуемые в процессе работы электроды, а во-вторых, необходимые для проведения реакции вещества подаются извне, а не закладываются внутрь элемента изначально (как это происходит в случае обычных батареек).

Применение нерасходуемых электродов позволяет значительно увеличить срок службы топливных элементов по сравнению с гальваническими батареями. Кроме того, благодаря использованию внешней системы подачи топлива значительно упрощается и удешевляется процедура восстановления работоспособности топливных элементов.

Типы химических топливных элементов

Топливные элементы с ионообменной мембраной (Proton Exchange Membrane, PEM)

Технология изготовления элементов данного типа была разработана в 50-х годах XX века инженерами компании General Electric. Подобные топливные элементы использовались для получения электроэнергии на американском космическом корабле Gemini.

Отличительной особенностью PEM-элементов является применение графитовых электродов и твердополимерного электролита (или, как его еще называют, ионообменной мембраны — Proton Exchange Membrane). В качестве топлива в PEM-элементах используется чистый водород, а роль окислителя выполняет содержащийся в воздухе кислород. Водород подается со стороны анода, где происходит электрохимическая реакция:

2H 2 -> 4H + + 4e .

Ионы водорода перемещаются от анода к катоду через электролит (ионный проводник), в то время как электроны — через внешнюю цепь. На катоде, со стороны которого подается окислитель (кислород или воздух), происходит реакция окисления водорода с образованием чистой воды:

O 2 + 4H + + 4e -> 2H 2 O .

Рабочая температура PEM-элементов составляет около 80 °С. При таких условиях электрохимические реакции протекают слишком медленно, поэтому в конструкции элементов данного типа используется катализатор — обычно тонкий слой платины на каждом из электродов.

Одна ячейка такого элемента, состоящая из пары электродов и ионообменной мембраны, способна генерировать напряжение порядка 0,7 В. Для увеличения выходного напряжения массив отдельных ячеек соединяется в батарею.

PEM-элементы способны работать при относительно низкой температуре окружающей среды и обладают довольно высокой эффективностью (КПД составляет от 40 до 50%). В настоящее время на базе PEM-элементов созданы действующие прототипы энергоустановок мощностью до 50 кВт; в стадии разработки находятся устройства мощностью до 250 кВт.

Существует несколько ограничений, препятствующих более широкому распространению данной технологии. Это относительно высокая стоимость материалов для изготовления мембран и катализатора. Кроме того, в качестве топлива можно использовать только чистый водород.

Щелочные топливные элементы (Alkaline Fuel Cells, AFC)

Конструкция первого щелочного топливного элемента была разработана русским ученым П.Яблочковым в 1887 году. В качестве электролита в щелочных элементах используется концентрированный гидроксид калия (КОН) либо его водный раствор, а основным материалом для изготовления электродов является никель.

В качестве топлива применяется чистый водород, а качестве окислителя — чистый кислород. Реакция окисления водорода протекает через электроокисление водорода на аноде:

2H 2 + 4OH – — 4e -> 4H 2 O

и электровосстановление кислорода на катоде:

O 2 + 2H 2 O + 4e -> 4OH – .

Гидроксид-ионы двигаются в электролите от катода к аноду, а электроны — по внешней цепи от анода к катоду.

Щелочные элементы работают при температуре около 80 °С, однако значительно (примерно на порядок) уступают PEM-элементам по удельной мощности, вследствие чего их габариты (при сравнимых характеристиках) значительно больше. Однако себестоимость производства щелочных элементов значительно ниже, чем PEM. Основной недостаток щелочных элементов заключается в необходимости использования чистых кислорода и водорода, поскольку содержание в топливе или окислителе примесей углекислого газа (CO2) приводит к карбонизации щелочи.

Фосфорнокислые топливные элементы (Phosphoric Acid Fuel Cells, PAFC)

В качестве электролита в фосфорнокислых элементах используется жидкая фосфорная кислота, обычно заключенная в порах матрицы из карбида кремния. Для изготовления электродов применяется графит. Происходящие в фосфорнокислых элемента реакции электроокисления водорода аналогичны тем, которые протекают в PEM-элементах.

Рабочая температура фосфорнокислых элементов несколько выше по сравнению с PEM- и щелочными и колеблется в пределах от 150 до 200 °С. Тем не менее для обеспечения необходимой скорости электрохимических реакций необходимо использовать катализаторы (платину либо сплавы на ее основе). Благодаря более высокой рабочей температуре фосфорнокислые элементы менее чувствительны к химической чистоте топлива (водорода), чем PEM- и щелочные элементы. Это позволяет применять топливную смесь, содержащую 1-2% оксида углерода. В качестве окислителя можно использовать обычный воздух, поскольку содержащиеся в нем вещества не вступают в реакцию с электролитом.

Фосфорнокислые элементы обладают относительно невысоким КПД (порядка 40%) и требуют некоторого времени для выхода на рабочий режим при холодном старте. Однако PAFC имеют и целый ряд преимуществ, в том числе более простую конструкцию, а также высокую стабильность и низкую летучесть электролита.

В настоящее время на базе фосфорнокислых элементов создано и запущено в коммерческую эксплуатацию большое количество энергоустановок мощностью от 200 кВт до 20 МВт.

Топливные элементы с прямым окислением метанола (Direct Methanol Fuel Cells, DMFC)

Элементы с прямым окислением метанола являются одним из вариантов реализации элементов с ионообменной мембраной. Топливом для DMFC-элементов служит водный раствор метилового спирта (метанола). Необходимый для реакции водород (и побочный продукт в виде углекислого газа) получается за счет прямого электроокисления раствора метанола на аноде:

CH 3 OH + H 2 O -> CO 2 + 6H + + 6e.

На катоде происходит реакция окисления водорода с образованием воды:

3/2O 2 + 6H + + 6e -> 3H 2 O .

Рабочая температуры DMFC-элементов составляет примерно 120 °С, что немного выше по сравнению с водородными PEM-элементами. Недостатком низкотемпературного преобразования является более высокая потребность в катализаторах. Это неизбежно приводит увеличению стоимости таких топливных элементов, однако данный недостаток компенсируется удобством использования жидкого топлива и отсутствием необходимости в применении внешнего конвертора для получения чистого водорода.

Топливные элементы с электролитом из расплава карбоната лития и натрия (Molten Carbonate Fuel Cells, MCFC)

Данный тип топливных элементов относится к высокотемпературным устройствам. В них применяется электролит, состоящий из карбоната лития (Li 2 CO 3) либо карбоната натрия (Na 2 CO 3), находящегося в порах керамической матрицы. В качестве материала для анода используется никель, легированный хромом, а для катода — литированный оксид никеля (NiO + LiO 2). При нагревании до температуры порядка 650 °С компоненты электролита расплавляются, в результате чего образуются ионы углекислой соли, движущиеся от катода к аноду, где они вступают в реакцию с водородом:

CO 3 2– + H 2 -> H 2 O + CO 2 + 2e.

Высвободившиеся электроны движутся по внешней цепи обратно к катоду, где происходит реакция:

CO 2 + 1/2 O 2 + 2e -> CO 3 2– .

Высокая рабочая температура данных элементов позволяет применять в качестве топлива природный газ (метан), преобразуемый встроенным конвертором в водород и монооксид углерода:

CH 4 + H 2 O <-> CO + 3H 2 .

MCFC-элементы обладают высоким КПД (до 60%) и позволяют использовать в качестве катализатора не платину, а более дешевый и доступный никель. Вследствие большого количества выделяемого при работе тепла данный вид топливных элементов хорошо подходит для создания стационарных источников электрической и тепловой энергии, однако малопригоден для эксплуатации в мобильных условиях. В настоящее время на базе MCFC-элементов уже созданы стационарные энергоустановки мощностью до 2 МВт.

Топливные элементы с твердым электролитом (Solid Oxide Fuel Cells, SOFC)

Данный тип элементов имеет еще более высокую рабочую температуру (от 800 до 1000 °С), чем вышеописанный MCFC. В SOFC применяется керамический электролит на основе оксида циркония (ZrO 2), стабилизированного оксидом иттрия (Y 2 O 3). На катоде происходит электрохимическая реакция с образованием отрицательно заряженных ионов кислорода:

O 2 + 4e -> 2O 2– .

Отрицательно заряженные ионы кислорода движутся в электролите по направлению от катода к аноду, где происходит окисление топлива (обычно — смеси водорода с монооксидом углерода с образованием воды и углекислого газа:

H 2 + 2O 2– -> H 2 O + 2e;

CO + 2O 2– -> CO 2 + 2e.

Элементы типа SOFC обладают теми же достоинствами, что и MCFC, включая возможность использования в качестве топлива природного газа. Компоненты SOFC обладают более высокой химической стабильностью, однако себестоимость их производства несколько выше по сравнению с MCFC.

Работа химических топливных элементов поддерживается путем подачи двух применяемых для поддержания реакции компонентов — топлива и окислителя. В зависимости от типа топливного элемента, в качестве топлива могут использоваться газообразный водород, природный газ (метан), а также жидкое углеводородное топливо (например, метиловый спирт). В роли окислителя обычно выступает содержащийся в воздухе кислород, а некоторые типы топливных элементов могут работать только с чистым кислородом.

Конструкция любого химического топливного элемента состоит из двух электродов (катода и анода) и находящегося между ними слоя электролита — среды, обеспечивающей перемещение ионов от одного электрода к другому и блокирующей движение электронов. Для того чтобы реакция протекала с более высокой скоростью, в электродах часто используют катализаторы. В зависимости от химических и физических особенностей применяемого электролита топливные элементы подразделяются на несколько различных типов (подробнее см. во врезке «Типы химических топливных элементов»).

Преимущества топливных элементов

о сравнению с широко распространенными в настоящее время источниками автономного электропитания, используемыми в мобильных ПК и портативных устройствах, химические топливные элементы имеют ряд важных преимуществ.

В первую очередь стоит отметить высокий коэффициент полезного действия топливных элементов, составляющий, в зависимости от типа, от 40 до 60%. Высокий кпд позволяет изготавливать источники питания с более высокой удельной энергоемкостью, благодаря чему достигается уменьшение их массогабаритных показателей при сохранении мощности и времени автономной работы. Кроме того, более энергоемкие источники питания позволяют значительно продлить время автономной работы существующих устройств, не увеличивая их размеры и вес.

Другим важным достоинством химических топливных элементов является возможность практически мгновенного возобновления их энергоресурса даже при отсутствии внешних источников электропитания — для этого достаточно установить новую емкость (картридж) с используемым топливом. Применение не расходуемых в процессе реакции электродов позволяет создавать топливные элементы с очень большим сроком службы и малой совокупной стоимостью владения.

Нельзя не отметить и значительно более высокую экологическую чистоту химических топливных элементов по сравнению с гальваническими батареями. Расходным материалом для топливных элементов служат лишь емкости с топливом, а основным продуктом реакции является обычная вода. Замена используемых в настоящее время батареек и аккумуляторов на топливные элементы позволит значительно сократить объем подлежащих переработке отходов, содержащих ядовитые и вредные для окружающей среды вещества.

Платиновая проблема

есмотря на очевидные преимущества химических топливных элементов перед многими ныне распространенными источниками электропитания портативных ПК и электронных устройств, на пути массового внедрения новой технологии имеются определенные препятствия.

Наиболее подходящими для применения в портативных устройствах относительно небольшого размера являются топливные элементы с низкой рабочей температурой — такие как PEM и DMCF. Однако для обеспечения приемлемой скорости прохождения химических реакций в таких элементах необходимо использовать катализаторы. В настоящее время в PEM- и DMCF-элементах применяются катализаторы из платины и ее сплавов. Учитывая относительно небольшие природные запасы этого вещества, а также его высокую стоимость, одной из главных задач разработчиков источников питания на базе топливных элементов является поиск и создание новых катализаторов. Другим возможным решением проблемы является использование высокотемпературных топливных элементов, однако по целому ряду причин в настоящее время подобные источники питания практически непригодны для эксплуатации в портативных устройствах.

Движение вперед: прототипы

есмотря на наличие ряда проблем, в течение двух последних лет активность коллективов разработчиков, занимающихся созданием топливных элементов для портативных ПК и электронных устройств, заметно возросла. Кроме того, увеличилось и количество компаний, ведущих подобные работы.

Если говорить об используемых технологиях, то наиболее популярными решения в рассматриваемом сегменте являются топливные элементы PEM и DMFC. Из компаний, занимающихся разработкой топливных элементов для мобильных устройств, около 45% сделали ставку на технологию PEM, примерно 40% — на DMFC и менее 10% — на SOFC. Удобство и простота использования жидкого топлива является значительным преимуществом DMFC перед PEM, и в прошедшем году стало очевидно, что большинство стоящих на пороге коммерциализации проектов базируется именно на технологии DMFC.

Прототип КПК с интегрированным топливным элементом, созданный разработчиками Hitachi

В начале прошлого года компания Hitachi продемонстрировала прототип КПК с интегрированным топливным элементом и заявила о своем намерении начать продажи пробной партии подобных устройств в 2005 году. Для перезаправки топливного элемента используется картридж цилиндрической формы (диаметром 1 см и высотой 5 см), содержащий 20-процентный водный раствор метанола. По словам разработчиков, содержащегося в картридже топлива достаточно для того, чтобы обеспечить активную работу с КПК в течение 6-8 часов.

В июне минувшего года компания Toshiba представила прототип компактного DMFC-элемента, предназначенного для использования в качестве источника питания цифровых медиаплееров и мобильных телефонов. Габариты этого блока — 22Ѕ56Ѕ4,5 мм, вес — 8,5 г. В качестве топлива в нем применяется концентрированный метанол (99,5%). Одной заправки топлива (2 см3) достаточно для обеспечения питанием нагрузки мощностью 100 мВт (например, портативного МР3-плеера) в течение 20 часов. При разработке данного прототипа было применено несколько новых решений, в частности была оптимизирована структура электродов и полимерной мембраны, позволяющая использовать в качестве топлива концентрированный метанол.

Известно, что один из производителей мобильных телефонов — компания KDDI — внимательно присматривается к разработкам Toshiba и Hitachi в области малогабаритных топливных элементов. KDDI планирует выпустить на рынок мобильные телефоны с питанием от топливных элементов в течение ближайших двух лет.

Некоторые компании уже продемонстрировали прототипы решений для портативных ПК. В частности, Casio представила прототип ноутбука, оснащенный источником питания, который содержит PEM-элемент и конвертор метанола. В начале минувшего года компания Samsung представила прототип ноутбука на мобильной платформе Centrino, оснащенный топливным элементом, обеспечивающим работу устройства в течение 10 часов.

В ноябре 2004 года сотрудники токийского института исследований в области материалов и энергетики (Materials and Energy Research Institute Tokyo, MERIT) обнародовали информацию о работах по созданию топливного элемента собственной конструкции, который будет более дешевым и компактным по сравнению с DMFC. В качестве топлива в нем будет использоваться борогидрид натрия. По мнению разработчиков, благодаря этому время работы топливного элемента увеличится в четыре раза по сравнению с заправленным таким же объемом метанола DMFC-элементом.

Представленный сотрудниками MERIT прототип топливного элемента выполнен в корпусе размером 80Ѕ84,6Ѕ3 мм и способен работать с нагрузкой мощностью до 20 Вт. Для питания более мощных устройств можно использовать батареи, состоящие из нескольких элементов. Согласно существующим планам развертывание серийного производства подобных элементов намечено на начало 2006 года.

Лед тронулся…

Середине декабря компания Intermec Technologies начала продажи портативного прибора для считывания информации с радиочастотных индентификаторов — первого серийно выпускаемого устройства, оснащенного малогабаритным DMFC-элементом. Используемый в устройстве топливный элемент Mobion разработан компанией MTI MicroFuel Cells, которая планирует наладить выпуск подобных источников питания для КПК, смартфонов и других портативных устройств. Как отмечают разработчики MTI MicroFuel Cells, элемент Mobion позволяет в несколько раз увеличить время работы устройств без подзарядки по сравнению с литий-ионными аккумуляторами такого же размера.

По мнению многих экспертов, в наступившем году следует ожидать появления целого ряда серийно выпускаемых портативных устройств, оснащенных топливными элементами. И от того, насколько успешным окажется их дебют, во многом будет зависеть будущее рынка источников питания портативных устройств.

Топливная ячейка (Fuel Cell ) – это устройство, превращающее химическую энергию в электрическую. Она похожа по принципу действия на обычную батарейку, но отличается тем, что для ее работы необходима постоянная подача извне веществ для протекания электрохимической реакции. В топливные элементы подаются водород и кислород, а на выходе получают электричество, воду и тепло. К их достоинствам относится экологическая чистота, надёжность, долговечность и простота эксплуатации. В отличие от обычных аккумуляторов электрохимические преобразователи могут работать практически неограниченное время, пока поступает топливо. Их не надо часами заряжать до полной зарядки. Более того, сами ячейки могут заряжать АКБ во время стоянки автомобиля с выключенным мотором.

Наибольшее распространение в водородомобилях получили топливные ячейки с протонной мембраной (PEMFC) и твердооксидные топливные ячейки (SOFC).

Топливная ячейка с протонной обменной мембраной работает следующим образом. Между анодом и катодом находятся специальная мембрана и катализатор с платиновым покрытием. На анод поступает водород, а на катод - кислород (например, из воздуха). На аноде водород при помощи катализатора разлагается на протоны и электроны. Протоны водорода проходят через мембрану и попадают на катод, а электроны отдаются во внешнюю цепь (мембрана их не пропускает). Полученная таким образом разность потенциалов приводит к возникновению электрического тока. На стороне катода протоны водорода окисляются кислородом. В результате возникает водяной пар, который и является основным элементом выхлопных газов автомобиля. Обладая высоким КПД, РЕМ-элементы имеют один существенный недостаток - для их работы требуется чистый водород, хранение которого является достаточно серьезной проблемой.

Если будет найден такой катализатор, который заменит в этих ячейках дорогую платину, тогда сразу же будет создан дешевый топливный элемент для получения электроэнергии, а значит, мир избавится от нефтяной зависимости.

Твердооксидные ячейки

Твердооксидные ячейки SOFC значительно менее требовательны к чистоте топлива. Кроме того, благодаря использованию РОХ-реформера (Partial Oxidation - частичное окисление) такие ячейки в качестве топлива могут потреблять обычный бензин. Процесс превращения бензина непосредственно в электричество выглядит следующим образом. В особом устройстве - реформере при температуре около 800 °С бензин испаряется и разлагается на составные элементы.

При этом выделяется водород и углекислый газ. Далее, также под воздействием температуры и при помощи непосредственно SOFС (состоящих из пористого керамического материала на основе окиси циркония), водород окисляется кислородом, находящимся в воздухе. После получения из бензина водорода процесс протекает далее по описанному выше сценарию, с одной лишь разницей: топливная ячейка SOFC, в отличие от устройств, работающих на водороде, менее чувствительна к посторонним примесям в исходном топливе. Так что качество бензина не должно повлиять на работоспособность топливного элемента.

Высокая рабочая температура SOFC (650–800 градусов) является существенным недостатком, процесс прогрева занимает около 20 минут. Зато избыточное тепло проблемы не представляет, поскольку оно полностью выводится оставшимся воздухом и выхлопными газами, производимыми реформером и самой топливной ячейкой. Это позволяет интегрировать SOFC-систему в автомобиль в виде самостоятельного устройства в термически изолированном корпусе.

Модульная структура позволяет добиваться необходимого напряжения путем последовательного соединения набора стандартных ячеек. И, возможно, самое главное с точки зрения внедрения подобных устройств - в SOFC нет весьма дорогостоящих электродов на основе платины. Именно дороговизна этих элементов является одним из препятствий в развитии и распространении технологии PEMFC.

Виды топливных ячеек

В настоящее время существуют такие виды топливных ячеек:

  • AFC – Alkaline Fuel Cell (щелочная топливная ячейка);
  • PAFC – Phosphoric Acid Fuel Cell (фосфорно-кислотная топливная ячейка);
  • PEMFC – Proton Exchange Membrane Fuel Cell (топливная ячейка с протонной обменной мембраной);
  • DMFC – Direct Methanol Fuel Cell (топливная ячейка с прямым распадом метанола);
  • MCFC – Molten Carbonate Fuel Cell (топливная ячейка расплавленного карбоната);
  • SOFC – Solid Oxide Fuel Cell (твердооксидная топливная ячейка).

Водородный топливный элемент компании Nissan

С каждым годом совершенствуется мобильная электроника, становясь все распространенее и доступнее: КПК, ноутбуки, мобильные и цифровые аппараты, фоторамки и пр. Все они все время пополняются новыми функциями, большими мониторами, беспроводной связью, более сильными процессорами, при этом, уменьшаясь в размерах. Технологии питания, в отличие от полупроводниковой техники, семимильными шагами не идут.

Имеющихся батарей и аккумуляторов для питания достижений индустрии становится недостаточно, поэтому вопрос альтернативных источников стоит очень остро. Топливные элементы на сегодняшний день являются наиболее перспективным направлением. Принцип их работы открт был еще в 1839 году Уильямом Гроуом, который электричество генерировал изменив электролиз воды.

Видео: Документальный фильм, топливные элементы для транспорта: прошлое, настоящее, будущее

Топливные элементы интересны производителям автомобилей, интересуются ими и создатели космических кораблей. В 1965 году они даже были испытаны Америкой на запущенном в космос корабле «Джемини-5», а позже и на «Аполлонах». Миллионы долларов вкладываются в исследования топливных элементов и сегодня, когда существуют проблемы, связанные с загрязнением окружающей среды, усиливающимися выбросомами парниковых газов, образующихся при сгорании органического топлива, запасы которого тоже не бесконечны.

Топливный элемент, часто называемый электрохимическим генератором, работает нижеописанным образом.

Являясь, как аккумуляторы и батарейки гальваническим элементом, но с тем отличием, что хранятся в нем активные вещества отдельно. На электроды они поступают по мере использования. На отрицательном электроде сгорает природное топливо или любое вещество из него полученное, которое может быть газообразным (водород, например, и окись углерода) или жидким, как спирты. На электроде положительном, как правило, реагирует кислород.

Но простой на вид принцип действия, в реальность воплотить не просто.

Топливный элемент своими руками

Видео: Топливный водородный элементсвоими руками

К сожалению у нас нет фотографий, как должен выглядить этот топливный элекмнт, надеямся на вашу фантазию.

Маломощный топливный элемент своими руками можно изготовить даже в условиях школьной лаборатории. Необходимо запастись старым противогазом, несколькими кусками оргстекла, щелочью и водным раствором этилового спирта (проще, водкой), которое будет служить для топливного элемента «горючим».

Прежде всего, необходим корпус для топливного элемента, изготовить который лучше из оргстекла, толщиной не менее пяти миллиметров. Внутренние перегородки (внутри пять отсеков) можно сделать немного тоньше – 3 см. Для склеивания оргстекла используют клей такого состава: в ста граммах хлороформа или дихлорэтана растворяют шесть грамм стружки из оргстекла (проводят работу под вытяжкой).

В наружной стенке теперь необходимо просверлить отверстие, в которое вставить нужно через резиновую пробку сливную стеклянную трубочку диаметром 5-6 сантиметров.

Все знают, что в таблице Менделеева в левом нижнем углу стоят наиболее активные металлы, а металлоиды высокой активности находятся в таблице в верхнем правом углу, т.е. способность отдавать электроны, усиливается сверху вниз и справа налево. Элементы, способные при определенных условиях проявлять себя как металлы или металлоиды, находятся в центре таблицы.

Теперь во второе и четвертое отделение насыпаем из противогаза активированный уголь (между первой перегородкой и второй, а также третьей и четвертой), который выполнять будет роль электродов. Чтобы через отверстия уголь не высыпался его можно поместить в капроновую ткань (подойдут женские капроновые чулки). В

Топливо циркулировать будет в первой камере, в пятой должен быть поставщик кислорода – воздух. Между электродами будет находиться электролит, а для того, чтобы он не смог просочиться в воздушную камеру, нужно перед засыпкой в четвертую камеру угля для воздушного электролита, пропитать его раствором парафина в бензине (соотношение 2 грамма парафина на пол стакана бензина). На слой угля положить нужно (слегка вдавив) медные пластинки, к которым припаяны провода. Через них ток отводиться будет от электродов.

Осталось только зарядить элемент. Для этого и нужна водка, которую разбавить с водой нужно в 1:1. Затем осторожно добавить триста-триста пятьдесят граммов едкого калия. Для электролита в 200 граммах воды растворяют 70 граммов едкого калия.

Топливный элемент готов к испытанию. Теперь нужно одновременно налить в первую камеру – топливо, а в третью – электролит. Присоединенный к электродам вольтметр должен показать от 07 вольт до 0,9. Чтобы обеспечить непрерывную работу элементу, нужно отводить отработавшее топливо (сливать в стакан) и подливать новое (через резиновую трубку). Скорость подачи регулируется сжиманием трубки. Так выглядит в лабораторных условиях работа топливного элемента, мощность которого, понятна мала.

Видео: Топливный элемент или вечная батарейка дома

Чтобы мощность была большей, ученые давно занимаются этой проблемой. На активной стали разработки находятся метанольный и этанольный топливные элементы. Но, к сожалению, пока на практику их выхода нет.

Почему топливный элемент выбран в качестве альтернативного источника питания

Альтернативным источником питания выбран топливный элемент, поскольку конечным продуктом сгорания водорода в нем является вода. Проблема касается только в нахождении недорогого и эффективного способа получения водорода. Колоссальные средства, вложенные в развитие генераторов водорода и топливных элементов, не могут не принести свои плоды, поэтому технологический прорыв и реальное их использование в повседневной жизни, только вопрос времени.

Уже сегодня монстры автомобилестроения: «Дженерал Моторс», «Хонда», «Драймлер Коайслер», « Баллард», демонстрируют автобусы и авто, которые работают на топливных элементах, мощность которых достигает 50кВт. Но, проблемы, связанные с их безопасностью, надежностью, стоимостью — еще не решены. Как говорилось уже, в отличие от традиционных источников питания – аккумуляторов и батарей, в этом случае окислитель и горючее подаются извне, а топливный элемент лишь является посредником в происходящей реакции по сжиганию топлива и превращению в электричество выделяющейся энергии. Протекает «сжигание» только в том случае, если элемент ток отдает в нагрузку, подобно дизельному электрогенератору, но без генератора и дизеля, а также без шума, дыма и перегрева. При этом, КПД намного выше, поскольку отсутствуют промежуточные механизмы.

Видео: Автомобиль на водородном топливном элементе

Большие надежды возлагаются на применение нанотехнологий и наноматериалов , которые помогут миниатюризировать топливные элементы, при этом увеличить их мощность. Появились сообщения, что созданы сверх-эффективные катализаторы, а также конструкции топливных элементов, не имеющих мембран. В них вместе с окислителем подается в элемент топливо (метан, например). Интересны решения, где в качестве окислителя используется кислород, растворенного в воде воздуха, а в качестве топлива – органические примеси, скапливающиеся в загрязненных водах. Это, так называемые, биотопливные элементы.

Топливные элементы, по прогнозам специалистов, на массовый рынок могут выйти уже в ближайшие годы

ТОПЛИВНЫЙ ЭЛЕМЕНТ
электрохимический генератор, устройство, обеспечивающее прямое преобразование химической энергии в электрическую. Хотя то же самое происходит в электрических аккумуляторах, топливные элементы имеют два важных отличия: 1) они функционируют до тех пор, пока топливо и окислитель поступают из внешнего источника; 2) химический состав электролита в процессе работы не изменяется, т.е. топливный элемент не нуждается в перезарядке.
См. также БАТАРЕЯ ЭЛЕКТРОПИТАНИЯ .
Принцип действия. Топливный элемент (рис. 1) состоит из двух электродов, разделенных электролитом, и систем подвода топлива на один электрод и окислителя на другой, а также системы для удаления продуктов реакции. В большинстве случаев для ускорения химической реакции используются катализаторы. Внешней электрической цепью топливный элемент соединен с нагрузкой, которая потребляет электроэнергию.

В изображенном на рис. 1 топливном элементе с кислым электролитом водород подается через полый анод и поступает в электролит через очень мелкие поры в материале электрода. При этом происходит разложение молекул водорода на атомы, которые в результате хемосорбции, отдавая каждый по одному электрону, превращаются в положительно заряженные ионы. Этот процесс может быть описан следующими уравнениями:


Ионы водорода диффундируют через электролит к положительной стороне элемента. Подаваемый на катод кислород переходит в электролит и также реагирует на поверхности электрода с участием катализатора. При соединении его с ионами водорода и электронами, которые поступают из внешней цепи, образуется вода:

В топливных элементах со щелочным электролитом (обычно это концентрированные гидроксиды натрия или калия) протекают сходные химические реакции. Водород проходит через анод и реагирует в присутствии катализатора с имеющимися в электролите ионами гидроксила (OH-) с образованием воды и электрона:

На катоде кислород вступает в реакцию с водой, содержащейся в электролите, и электронами из внешней цепи. В последовательных стадиях реакций образуются ионы гидроксила (а также пергидроксила O2H-). Результирующую реакцию на катоде можно записать в виде:

Поток электронов и ионов поддерживает баланс заряда и вещества в электролите. Образующаяся в результате реакции вода частично разбавляет электролит. В любом топливном элементе часть энергии химической реакции превращается в тепло. Поток электронов во внешней цепи представляет собой постоянный ток, который используется для совершения работы. Большинство реакций в топливных элементах обеспечивают ЭДС около 1 В. Размыкание цепи или прекращение движения ионов останавливает работу топливного элемента. Процесс, происходящий в водородно-кислородном топливном элементе, по своей природе является обратным хорошо известному процессу электролиза, в котором происходит диссоциация воды при прохождении через электролит электрического тока. Действительно, в некоторых типах топливных элементов процесс может быть обращен - приложив к электродам напряжение, можно разложить воду на водород и кислород, которые могут быть собраны на электродах. Если прекратить зарядку элемента и подключить к нему нагрузку, такой регенеративный топливный элемент сразу начнет работать в своем нормальном режиме. Теоретически размеры топливного элемента могут быть сколь угодно большими. Однако на практике несколько элементов объединяются в небольшие модули или батареи, которые соединяются либо последовательно, либо параллельно.
Типы топливных элементов. Существуют различные типы топливных элементов. Их можно классифицировать, например, по используемому топливу, рабочему давлению и температуре, по характеру применения.
Элементы на водородном топливе. В этом типичном описанном выше элементе водород и кислород переходят в электролит через микропористые углеродные или металлические электроды. Высокая плотность тока достигается в элементах, работающих при повышенной температуре (около 250° С) и высоком давлении. Элементы, использующие водородное топливо, получаемое при переработке углеводородного топлива, например природного газа или нефтепродуктов, по-видимому, найдут наиболее широкое коммерческое применение. Объединяя большое число элементов, можно создавать мощные энергетические установки. В этих установках постоянный ток, вырабатываемый элементами, преобразуется в переменный со стандартными параметрами. Новым типом элементов, способных работать на водороде и кислороде при нормальных температуре и давлении, являются элементы с ионообменными мембранами (рис. 2). В этих элементах вместо жидкого электролита между электродами располагается полимерная мембрана, через которую свободно проходят ионы. В таких элементах наряду с кислородом может использоваться воздух. Образующаяся при работе элемента вода не растворяет твердый электролит и может быть легко удалена.



Элементы на углеводородном и угольном топливах. Топливные элементы, которые могут превращать химическую энергию таких широко доступных и сравнительно недорогих топлив, как пропан, природный газ, метиловый спирт, керосин или бензин, непосредственно в электричество, являются предметом интенсивного исследования. Однако пока не достигнуто заметных успехов в создании топливных элементов, работающих на газах, получаемых из углеводородного топлива, при нормальной температуре. Для повышения скорости реакции углеводородного и угольного топлива приходится повышать рабочую температуру топливного элемента. Электролитами служат расплавы карбонатов или других солей, которые заключаются в пористую керамическую матрицу. Топливо "расщепляется" внутри элемента с образованием водорода и оксида углерода, которые поддерживают протекание токообразующей реакции в элементе. Элементы, работающие на других видах топлива. В принципе реакции в топливных элементах не обязательно должны быть реакциями окисления обычных топлив. В перспективе могут быть найдены и другие химические реакции, которые позволят осуществить эффективное непосредственное получение электричества. В некоторых устройствах электроэнергия получается при окислении, например, цинка, натрия или магния, из которых изготавливаются расходуемые электроды.
Коэффициент полезного действия. Превращение энергии обычных топлив (угля, нефти, природного газа) в электричество было до сих пор многоступенчатым процессом. Сжигание топлива, позволяющее получить пар или газ, необходимые для работы турбины или двигателя внутреннего сгорания, которые, в свою очередь, вращают электрический генератор, - процесс не очень эффективный. Действительно, коэффициент использования энергии такого превращения ограничен по второму закону термодинамики, и его вряд ли можно существенно поднять выше существующего уровня (см. также ТЕПЛОТА ; ТЕРМОДИНАМИКА). Коэффициент использования энергии топлива самых современных паротурбинных энергетических установок не превышает 40%. Для топливных элементов нет термодинамического ограничения коэффициента использования энергии. В существующих топливных элементах от 60 до 70% энергии топлива непосредственно превращается в электричество, и энергетические установки на топливных элементах, использующие водород из углеводородного топлива, проектируются на КПД 40-45%.
Применения. Топливные элементы могут в недалеком будущем стать широко используемым источником энергии на транспорте, в промышленности и домашнем хозяйстве. Высокая стоимость топливных элементов ограничивала их применение военными и космическими приложениями. Предполагаемые применения топливных элементов включают их применение в качестве переносных источников энергии для армейских нужд и компактных альтернативных источников энергии для околоземных спутников с солнечными батареями при прохождении ими протяженных теневых участков орбиты. Небольшие размеры и масса топливных элементов позволили использовать их при пилотируемых полетах к Луне. Топливные элементы на борту трехместных кораблей "Аполлон" применялись для питания бортовых компьютеров и систем радиосвязи. Топливные элементы можно использовать в качестве источников питания оборудования в удаленных районах, для внедорожных транспортных средств, например в строительстве. В сочетании с электродвигателем постоянного тока топливный элемент будет эффективным источником движущей силы автомобиля. Для широкого применения топливных элементов необходимы значительный технологический прогресс, снижение их стоимости и возможность эффективного использования дешевого топлива. При выполнении этих условий топливные элементы сделают электрическую и механическую энергию широко доступными во всем мире.
См. также ЭНЕРГЕТИЧЕСКИЕ РЕСУРСЫ .
ЛИТЕРАТУРА
Багоцкий В.С., Скундин А.М. Химические источники тока. М., 1981 Кромптон Т. Источники тока. М., 1985, 1986

Энциклопедия Кольера. - Открытое общество . 2000 .

Смотреть что такое "ТОПЛИВНЫЙ ЭЛЕМЕНТ" в других словарях:

    ТОПЛИВНЫЙ ЭЛЕМЕНТ, ЭЛЕКТРОХИМИЧЕСКИЙ ЭЛЕМЕНТ для непосредственного превращения энергии окисления топлива в электрическую энергию. Соответственно сконструированные электроды погружаются в ЭЛЕКТРОЛИТ, и топливо (например, водород) подается к одному … Научно-технический энциклопедический словарь

    Гальванический элемент, в котором окислительно восстановительная реакция поддерживается непрерывной подачей реагентов (топлива, напр. водорода, и окислителя, напр. кислорода) из специальных резервуаров. Важнейшая составная часть… … Большой Энциклопедический словарь

    топливный элемент - Первичный элемент, в котором электрическая энергия вырабатывается за счет электрохимических реакций между активными веществами, непрерывно поступающими к электродам извне. [ГОСТ 15596 82] EN fuel cell cell that can change chemical energy from… … Справочник технического переводчика

    Прямой метанольный топливный элемент Топливный элемент электрохимическое устройство, подобное гальваническому элементу, но отличающееся от него … Википедия

Преимущества топливных элементов/ячеек

Топливный элемент / ячейка – это устройство, которое эффективно вырабатывает постоянный ток и тепло из богатого водородом топлива путем электрохимической реакции.

Топливный элемент подобен батарее в том, что он вырабатывает постоянный ток путем химической реакции. Топливный элемент включает анод, катод и электролит. Однако, в отличие от батарей, топливные элементы/ячейки не могут накапливать электрическую энергию, не разряжаются и не требуют электричества для повторной зарядки. Топливные элементы/ячейки могут постоянно вырабатывать электроэнергию, пока они имеют запас топлива и воздуха.

В отличие от других генераторов электроэнергии, таких как двигатели внутреннего сгорания или турбины, работающие на газе, угле, мазуте и пр., топливные элементы/ячейки не сжигают топливо. Это означает отсутствие шумных роторов высокого давления, громкого шума при выхлопе, вибрации. Топливные элементы/ячейки вырабатывают электричество путем бесшумной электрохимической реакции. Другой особенностью топливных элементов/ячеек является то, что они преобразуют химическую энергию топлива напрямую в электричество, тепло и воду.

Топливные элементы высокоэффективны и не производят большого количества парниковых газов, таких как углекислый газ, метан и оксид азота. Единственным продуктом выброса при работе - являются вода в виде пара и небольшое количество углекислого газа, который вообще не выделяется, если в качестве топлива используется чистый водород. Топливные элементы/ячейки собираются в сборки, а затем в отдельные функциональные модули.

История развития топливных элементов/ячеек

В 1950х и 1960х годах одна из самых ответственных задач для топливных элементов родилась из потребности Национального управления по аэронавтике и исследованиям космического пространства США (NASA) в источниках энергии для длительных космических миссий. Щелочной топливный элемент/ячейка NASA использует в качестве топлива водород и кислород, соединяя эти два химических элемента в электрохимической реакции. На выходе получаются три полезных в космическом полете побочных продукта реакции – электричество для питания космического аппарата, вода для питья и систем охлаждения и тепло для согревания астронавтов.

Открытие топливных элементов относится к началу XIX века. Первое свидетельство об эффекте топливных элементов было получено в 1838 году.

В конце 1930х начинается работа над топливными элементами со щелочным электролитом и к 1939 году построен элемент, использующую никелированные электроды под высоким давлением. В ходе Второй Мировой Войны разрабатываются топливные элементы/ячейки для подлодок британского флота и в 1958 году представлена топливная сборка, состоящая из щелочных топливных элементов/ячеек диаметром чуть более 25 см.

Интерес возрос в 1950-1960е годы, а также в 1980е, когда промышленный мир пережил нехватку нефтяного топлива. В этот же период мировые страны также озаботились проблемой загрязнения воздуха и рассматривали способы экологически чистого получения электроэнергии. В настоящее время технология производства топливных элементов/ячеек переживает этап бурного развития.

Принцип работы топливных элементов/ячеек

Топливные элементы/ячейки вырабатывают электроэнергию и тепло вследствие происходящей электрохимической реакции, используя электролит, катод и анод.


Анод и катод разделяются электролитом, проводящим протоны. После того, как водород поступит на анод, а кислород - на катод, начинается химическая реакция, в результате которой генерируются электрический ток, тепло и вода.

На катализаторе анода молекулярный водород диссоциирует и теряет электроны. Ионы водорода (протоны) проводятся через электролит к катоду, в то время как электроны пропускаются электролитом и проходят по внешней электрической цепи, создавая постоянный ток, который может быть использован для питания оборудования. На катализаторе катода молекула кислорода соединяется с электроном (который подводится из внешних коммуникаций) и пришедшим протоном, и образует воду, которая является единственным продуктом реакции (в виде пара и/или жидкости).

Ниже приведена соответствующая реакция:

Реакция на аноде: 2H 2 => 4H+ + 4e -
Реакция на катоде: O 2 + 4H+ + 4e - => 2H 2 O
Общая реакция элемента: 2H 2 + O 2 => 2H 2 O

Типы и разновидность топливных элементов/ячеек

Подобно существованию различных типов двигателей внутреннего сгорания, существуют различные типы топливных элементов – выбор подходящего типа топливного элемента зависит от его применения.

Топливные элементы делятся на высокотемпературные и низкотемпературные. Низкотемпературные топливные элементы требуют в качестве топлива относительно чистый водород. Это часто означает, что требуется обработка топлива для преобразования первичного топлива (такого как природный газ) в чистый водород. Этот процесс потребляет дополнительную энергию и требует специального оборудования. Высокотемпературные топливные элементы не нуждаются в данной дополнительной процедуре, так как они могут осуществлять "внутреннее преобразование" топлива при повышенных температурах, что означает отсутствие необходимости вкладывания денег в водородную инфраструктуру.

Топливные элементы/ячейки на расплаве карбоната (РКТЭ)

Топливные элементы с расплавленным карбонатным электролитом являются высокотемпературными топливными элементами. Высокая рабочая температура позволяет непосредственно использовать природный газ без топливного процессора и топливного газа с низкой теплотворной способностью топлива производственных процессов и из других источников.

Работа РКТЭ отличается от других топливных элементов. Данные элементы используют электролит из смеси расплавленных карбонатных солей. В настоящее время применяется два типа смесей: карбонат лития и карбонат калия или карбонат лития и карбонат натрия. Для расплавки карбонатных солей и достижения высокой степени подвижности ионов в электролите, работа топливных элементов с расплавленным карбонатным электролитом происходит при высоких температурах (650°C). КПД варьируется в пределах 60-80%.

При нагреве до температуры 650°C, соли становятся проводником для ионов карбоната (CO 3 2-). Данные ионы проходят от катода на анод, где происходит объединение с водородом с образованием воды, диоксида углерода и свободных электронов. Данные электроны направляются по внешней электрической цепи обратно на катод, при этом генерируется электрический ток, а в качестве побочного продукта – тепло.

Реакция на аноде: CO 3 2- + H 2 => H 2 O + CO 2 + 2e -
Реакция на катоде: СO 2 + 1/2O 2 + 2e - => CO 3 2-
Общая реакция элемента: H 2 (g) + 1/2O 2 (g) + CO 2 (катод) => H 2 O(g) + CO 2 (анод)

Высокие рабочие температуры топливных элементов с расплавленным карбонатным электролитом имеют определенные преимущества. При высоких температурах, происходит внутренний риформинг природного газа, что устраняет необходимость использования топливного процессора. Помимо этого, к числу преимуществ можно отнести возможность использования стандартных материалов конструкции, таких как листовая нержавеющая сталь и никелевого катализатора на электродах. Побочное тепло может быть использовано для генерации пара высокого давления для различных промышленных и коммерческих целей.

Высокие температуры реакции в электролите также имеют свои преимущества. Применение высоких температур требует значительного времени для достижения оптимальных рабочих условий, при этом система медленнее реагирует на изменение расхода энергии. Данные характеристики позволяют использовать установки на топливных элементах с расплавленным карбонатным электролитом в условиях постоянной мощности. Высокие температуры препятствуют повреждению топливного элемента окисью углерода.

Топливные элементы с расплавленным карбонатным электролитом подходят для использования в больших стационарных установках. Промышленно выпускаются теплоэнергетические установки с выходной электрической мощностью 3,0 МВт. Разрабатываются установки с выходной мощностью до 110 МВт.

Топливные элементы/ячейки на основе фосфорной кислоты (ФКТЭ)

Топливные элементы на основе фосфорной (ортофосфорной) кислоты стали первыми топливными элементами для коммерческого использования.

Топливные элементы на основе фосфорной (ортофосфорной) кислоты используют электролит на основе ортофосфорной кислоты (H 3 PO 4) с концентрацией до 100%. Ионная проводимость ортофосфорной кислоты является низкой при низких температурах, по этой причине эти топливные элементы используются при температурах до 150–220°C.

Носителем заряда в топливных элементах данного типа является водород (H+, протон). Схожий процесс происходит в топливных элементах с мембраной обмена протонов, в которых водород, подводимый к аноду, разделяется на протоны и электроны. Протоны проходят по электролиту и объединяются с кислородом, получаемым из воздуха, на катоде с образованием воды. Электроны направляются по внешней электрической цепи, при этом генерируется электрический ток. Ниже представлены реакции, в результате которых генерируется электрический ток и тепло.

Реакция на аноде: 2H 2 => 4H + + 4e -
Реакция на катоде: O 2 (g) + 4H + + 4e - => 2 H 2 O
Общая реакция элемента: 2H 2 + O 2 => 2H 2 O

КПД топливных элементов на основе фосфорной (ортофосфорной) кислоты составляет более 40% при генерации электрической энергии. При комбинированном производстве тепловой и электрической энергии, общий КПД составляет около 85%. Помимо этого, учитывая рабочие температуры, побочное тепло может быть использовано для нагрева воды и генерации пара атмосферного давления.

Высокая производительность теплоэнергетических установок на топливных элементах на основе фосфорной (ортофосфорной) кислоты при комбинированном производстве тепловой и электрической энергии является одним из преимуществ данного вида топливных элементов. В установках используется окись углерода с концентрацией около 1,5%, что значительно расширяет возможность выбора топлива. Помимо этого, СО 2 не влияет на электролит и работу топливного элемента, данный тип элементов работает с риформированным природным топливом. Простая конструкция, низкая степень летучести электролита и повышенная стабильность также являются преимущества данного типа топливных элементов.

Промышленно выпускаются теплоэнергетические установки с выходной электрической мощностью до 500 кВт. Установки на 11 МВт прошли соответствующие испытания. Разрабатываются установки с выходной мощностью до 100 МВт.

Твердооксидные топливные элементы/ячейки (ТОТЭ)

Твердооксидные топливные элементы являются топливными элементами с самой высокой рабочей температурой. Рабочая температура может варьироваться от 600°C до 1000°C, что позволяет использовать различные типы топлива без специальной предварительной обработки. Для работы с такими высокими температурами используемый электролит представляет собой тонкий твердый оксид металла на керамической основе, часто сплав иттрия и циркония, который является проводником ионов кислорода (О 2-).

Твердый электролит обеспечивает герметичный переход газа от одного электрода к другому, в то время как жидкие электролиты расположены в пористой подложке. Носителем заряда в топливных элементах данного типа является ион кислорода (О 2-). На катоде происходит разделение молекул кислорода из воздуха на ион кислорода и четыре электрона. Ионы кислорода проходят по электролиту и объединяются с водородом, при этом образуется четыре свободных электрона. Электроны направляются по внешней электрической цепи, при этом генерируется электрический ток и побочное тепло.

Реакция на аноде: 2H 2 + 2O 2- => 2H 2 O + 4e -
Реакция на катоде: O 2 + 4e - => 2O 2-
Общая реакция элемента: 2H 2 + O 2 => 2H 2 O

КПД производимой электрической энергии является самым высоким из всех топливных элементов – около 60-70%. Высокие рабочие температуры позволяют осуществлять комбинированное производство тепловой и электрической энергии для генерации пара высокого давления. Комбинирование высокотемпературного топливного элемента с турбиной позволяет создать гибридный топливный элемент для повышения КПД генерирования электрической энергии до 75%.

Твердооксидные топливные элементы работают при очень высоких температурах (600°C–1000°C), в результате чего требуется значительное время для достижения оптимальных рабочих условий, при этом система медленнее реагирует на изменение расхода энергии. При таких высоких рабочих температурах не требуется преобразователь для восстановления водорода из топлива, что позволяет теплоэнергетической установке работать с относительно нечистым топливом, полученным в результате газификации угля или отработанных газов и т.п. Также данный топливный элемент превосходно подходит для работы с высокой мощностью, включая промышленные и крупные центральные электростанции. Промышленно выпускаются модули с выходной электрической мощностью 100 кВт.

Топливные элементы/ячейки с прямым окислением метанола (ПОМТЭ)

Технология использования топливных элементов с прямым окислением метанола переживает период активного развития. Она успешно зарекомендовала себя в области питания мобильных телефонов, ноутбуков, а также для создания переносных источников электроэнергии. на что и нацелено будущее применение данных элементов.

Устройство топливных элементов с прямым окислением метанола схоже с топливных элементах с мембраной обмена протонов (МОПТЭ), т.е. в качестве электролита используется полимер, а в качестве носителя заряда – ион водорода (протон). Однако, жидкий метанол (CH 3 OH) окисляется при наличии воды на аноде с выделением СО 2 , ионов водорода и электронов, которые направляются по внешней электрической цепи, при этом генерируется электрический ток. Ионы водорода проходят по электролиту и вступает в реакцию с кислородом из воздуха и электронами, поступающих с внешней цепи, с образованием воды на аноде.

Реакция на аноде: CH 3 OH + H 2 O => CO 2 + 6H + + 6e -
Реакция на катоде: 3/2O 2 + 6 H + + 6e - => 3H 2 O
Общая реакция элемента: CH 3 OH + 3/2O 2 => CO 2 + 2H 2 O

Достоинством данного типа топливных элементов являются небольшие габариты, благодаря использованию жидкого топлива, и отсутствие необходимости использования преобразователя.

Щелочные топливные элементы/ячейки (ЩТЭ)

Щелочные топливные элементы – одни из самых эффективных элементов, используемых для генерации электричества, эффективность выработки электроэнергии доходит до 70%.

В щелочных топливных элементах используется электролит, то есть водный раствор гидроксида калия, содержащийся в пористой стабилизированной матрице. Концентрация гидроксида калия может меняться в зависимости от рабочей температуры топливного элемента, диапазон которой варьируется от 65°C до 220°C. Носителем заряда в ЩТЭ является гидроксильный ион (ОН -), движущийся от катода к аноду, где он вступает в реакцию с водородом, производя воду и электроны. Вода, полученная на аноде, движется обратно к катоду, снова генерируя там гидроксильные ионы. В результате этого ряда реакций, проходящих в топливном элементе, производится электричество и, как побочный продукт, тепло:

Реакция на аноде: 2H 2 + 4OH - => 4H 2 O + 4e -
Реакция на катоде: O 2 + 2H 2 O + 4e - => 4 OH -
Общая реакция системы: 2H 2 + O 2 => 2H 2 O

Достоинством ЩТЭ является то, что эти топливные элементы - самые дешевые в производстве, поскольку катализатором, который необходим на электродах, может быть любое из веществ, более дешевых чем те, что используются в качестве катализаторов для других топливных элементов. ЩТЭ работают при относительно низкой температуре и являются одними из самых эффективных топливных элементов - такие характеристики могут соответственно способствовать ускорению генерации питания и высокой эффективности топлива.

Одна из характерных особенностей ЩТЭ – высокая чувствительность к CO 2 , который может содержаться в топливе или воздухе. CO 2 вступает в реакцию с электролитом, быстро отравляет его, и сильно снижает эффективность топливного элемента. Поэтому использование ЩТЭ ограничено закрытыми пространствами, такими как космические и подводные аппараты, они должны работать на чистом водороде и кислороде. Более того, такие молекулы, как CO, H 2 O и CH4, которые безопасны для других топливных элементов, а для некоторых из них даже являются топливом, вредны для ЩТЭ.

Полимерные электролитные топливные элементы/ячейки (ПЭТЭ)

В случае полимерных электролитных топливных элементов полимерная мембрана состоит из полимерных волокон с водными областями, в которых существует проводимость ионов воды H 2 O + (протон, красный) присоединяется к молекуле воды). Молекулы воды представляют проблему из-за медленного ионного обмена. Поэтому требуется высокая концентрация воды как в топливе, так и на выпускных электродах, что ограничивает рабочую температуру 100°C.

Твердокислотные топливные элементы/ячейки (ТКТЭ)

В твердокислотных топливных элементах электролит (CsHSO 4) не содержит воды. Рабочая температура поэтому составляет 100-300°C. Вращение окси анионов SO 4 2- позволяет протонам (красный) перемещаться так, как показано на рисунке. Как правило, твердокислотный топливный элемент представляет собой бутерброд, в котором очень тонкий слой твердокислотного компаунда располагается между двумя плотно сжатыми электродами, чтобы обеспечить хороший контакт. При нагреве органический компонент испаряется, выходя через поры в электродах, сохраняя способность многочисленных контактов между топливом (или кислородом на другом конце элементы), электролитом и электродами.

Различные модули топливных элементов. Батарея топливного элемента

  1. Батарея топливных элементов
  2. Остальное оборудование, работающее при высокой температуре (интегрированный парогенератор, камера сгорания, устройство смены теплового баланса)
  3. Теплостойкая изоляция

Модуль топливного элемента

Сравнительный анализ типов и разновидностей топливных элементов

Инновационные энергосберегающие коммунально-бытовые теплоэнергетические установки обычно построены на твердооксидных топливных элементах (ТОТЭ), полимерных электролитных топливных элементах (ПЭТЭ), топливных элементах на фосфорной кислоте (ФКТЭ), топливных элементах с мембраной обмена протонов (МОПТЭ) и щелочных топливных элементах (ЩТЭ). Обычно имеют следующие характеристики:

Наиболее подходящими следует признать твердооксидные топливные элементы (ТОТЭ), которые:

  • работают при более высокой температуре, что уменьшает необходимость в дорогих драгоценных металлах (таких, как платина)
  • могут работать на различных видах углеводородного топлива, в основном на природном газе
  • имеют большее время запуска и потому лучше подходят для длительного действия
  • демонстрируют высокую эффективность выработки электроэнергии (до 70%)
  • из-за высоких рабочих температур установки могут быть скомбинированы с системами обратной теплоотдачи, доводя общую эффективность системы до 85%
  • имеют практически нулевой уровень выбросов, работают бесшумно и предъявляют низкие требованиями к эксплуатации в сравнении с существующими технологиями выработки электроэнергии
Тип топливной элементы Рабочая температура Эффективность выработки электроэнергии Тип топлива Область применения
РКТЭ 550–700°C 50-70% Средние и большие установки
ФКТЭ 100–220°C 35-40% Чистый водород Большие установки
МОПТЭ 30-100°C 35-50% Чистый водород Малые установки
ТОТЭ 450–1000°C 45-70% Большинство видов углеводородного топлива Малые, средние и большие установки
ПОМТЭ 20-90°C 20-30% Метанол Переносные
ЩТЭ 50–200°C 40-70% Чистый водород Космические исследования
ПЭТЭ 30-100°C 35-50% Чистый водород Малые установки

Поскольку малые теплоэнергетические установки могут подключаться к обычной сети подачи газа, топливные элементы не требуют отдельной системы подачи водорода. При использовании малых теплоэнергетических установок на основе твердооксидных топливных ячеек вырабатываемое тепло может интегрироваться в теплообменники для нагрева воды и вентиляционного воздуха, увеличивая общую эффективность системы. Эта инновационная технология наилучшим образом подходит для эффективной выработки электричества без необходимости в дорогой инфраструктуре и сложной интеграции приборов.

Применение топливных элементов/ячеек

Применение топливных элементов/ячеек в системах телекоммуникации

Вследствие быстрого распространения систем беспроводной связи во всем мире, а также роста социально-экономических выгод технологии мобильных телефонов, необходимость надежного и экономичного резервного электропитания приобрела определяющее значение. Убытки электросети на протяжении года вследствие плохих погодных условий, стихийных бедствий или ограниченной мощности сети представляют собой постоянную сложную проблему для операторов сети.

Традиционные телекоммуникационные решения в области резервного электропитания включают батареи (свинцово-кислотный элемент аккумуляторной батареи с клапанным регулированием) для резервного питания в течение непродолжительного времени и дизельные и пропановые генераторы для более продолжительного резервного питания. Батареи являются относительно дешевым источником резервного питания на 1 – 2 часа. Однако батареи не подходят для более продолжительного резервного питания, так как их техническое обслуживание является дорогим, они становятся ненадежными после долгой эксплуатации, чувствительны к температурам и опасны для окружающей среды после утилизации. Дизельные и пропановые генераторы могут обеспечить продолжительное резервное электропитание. Однако генераторы могут быть ненадежными, требуют трудоемкого технического обслуживания, выделяют в атмосферу высокие уровни загрязнений и газов, вызывающих парниковый эффект.

С целью устранения ограничений традиционных решений в области резервного электропитания была разработана инновационная технология экологически чистых топливных ячеек. Топливные ячейки надежны, не производят шума, содержат меньше подвижных деталей, чем генератор, имеют более широкий диапазон рабочих температур, чем батарея: от -40°C до +50°C и, как результат, обеспечивают чрезвычайно высокий уровень энергосбережения. Кроме того, затраты на такую установку на протяжении срока эксплуатации ниже затрат на генератор. Более низкие затраты на топливную ячейку являются результатом всего одного посещения с целью технического обслуживания в год и значительно более высокой производительностью установки. В конце концов, топливная ячейка представляет собой экологически чистое технологическое решение с минимальным воздействием на окружающую среду.

Установки на топливных ячейках обеспечивают резервное электропитание для критически важных инфраструктур сети связи для беспроводной, постоянной и широкополосной связи в системе телекоммуникаций, в диапазоне от 250 Вт до 15 кВт, они предлагают множество непревзойденных инновационных характеристик:

  • НАДЕЖНОСТЬ – малое количество подвижных деталей и отсутствие разрядки в режиме ожидания
  • ЭНЕРГОСБЕРЕЖЕНИЕ
  • ТИШИНА – низкий уровень шумов
  • УСТОЙЧИВОСТЬ – рабочий диапазон от -40°C до +50°C
  • АДАПТИВНОСТЬ – установка на улице и в помещении (контейнер/защитный контейнер)
  • ВЫСОКАЯ МОЩНОСТЬ – до 15 кВт
  • НИЗКАЯ ПОТРЕБНОСТЬ В ТЕХНИЧЕСКОМ ОБСЛУЖИВАНИИ – минимальное ежегодное техническое обслуживание
  • ЭКОНОМИЧНОСТЬ - привлекательная совокупная стоимость владения
  • ЭКОЛОГИЧЕСКИ ЧИСТАЯ ЭНЕРГИЯ – низкий уровень выбросов с минимальным воздействием на окружающую среду

Система все время чувствует напряжение шины постоянного тока и плавно принимает критические нагрузки, если напряжение шины постоянного тока падает ниже заданного значения, определенного пользователем. Система работает на водороде, который поступает в батарею топливных ячеек одним из двух путей – либо из промышленного источника водорода, либо из жидкого топлива из метанола и воды, при помощи встроенной системы риформинга.

Электричество производится батареей топливных элементов в виде постоянного тока. Энергия постоянного тока передается на преобразователь, который преобразует нерегулируемую электроэнергию постоянного тока, исходящую от батареи топливных ячеек, в высококачественную регулируемую электроэнергию постоянного тока для необходимых нагрузок. Установка на топливных ячейках может обеспечивать резервное электропитание на протяжении многих дней, так как продолжительность действия ограничена только имеющимся в запасе количеством водорода или топлива из метанола/воды.

Топливные элементы предлагают высокий уровень энергосбережения, повышенную надежность системы, более предсказуемые эксплуатационные качества в широком спектре климатических условий, а также надежную эксплуатационную долговечность в сравнении с комплектами батарей со свинцово-кислотными элементами с клапанным регулированием промышленного стандарта. Затраты на протяжении срока эксплуатации также более низкие, вследствие значительно меньшей потребности в техническом обслуживании и замене. Топливные ячейки предлагают конечному пользователю экологические преимущества, так как затраты на утилизацию и риски ответственности, связанные со свинцово-кислотными элементами, вызывают растущее беспокойство.

На эксплуатационные характеристики электрических батарей может отрицательно повлиять широкий спектр факторов, таких как уровень зарядки, температура, циклы, срок службы и другие переменные факторы. Предоставляемая энергия будет различной в зависимости от этих факторов, ее нелегко предсказать. Эксплуатационные характеристики топливной ячейки с мембраной обмена протонов (МОПТЯ) относительно не подвержены влиянию этих факторов и могут обеспечивать критически важное электропитание, пока есть топливо. Повышенная предсказуемость является важным преимуществом при переходе на топливные ячейки для критически важных сфер использования резервного электропитания.

Топливные элементы генерируют энергию только при подаче топлива, подобно газотурбинному генератору, но не имеют подвижных деталей в зоне генерирования. Поэтому, в отличие от генератора, они не подвержены быстрому износу и не требуют постоянного технического обслуживания и смазки.

Топливо, используемое для приведения в действие преобразователя топлива с повышенной продолжительностью действия, представляет собой топливную смесь из метанола и воды. Метанол является широкодоступным, производимым в промышленных масштабах топливом, которое в настоящее время имеет множество применений, среди прочего стеклоомыватели, пластиковые бутылки, присадки для двигателя, эмульсионные краски. Метанол легко транспортируется, может смешиваться с водой, обладает хорошей способностью к биоразложению и не содержит серы. Он имеет низкую точку замерзания (-71°C) и не распадается при длительном хранении.

Применение топливных элементов/ячеек в сетях связи

Сети засекреченной связи нуждаются в надежных решениях в области резервного электропитания, которые могут функционировать на протяжении нескольких часов или нескольких дней в чрезвычайных ситуациях, если электросеть перестала быть доступной.

При наличии незначительного числа подвижных деталей, а также отсутствии снижения мощности в режиме ожидания, инновационная технология топливных ячеек предлагает привлекательное решение в сравнении с существующими в настоящий момент системами резервного электропитания.

Самым неопровержимым доводом в пользу применения технологии топливных ячеек в сетях связи является повышенная общая надежность и безопасность. Во время таких происшествий, как отключения электропитания, землетрясения, бури и ураганы, важно, чтобы системы продолжали работать и были обеспечены надежной подачей резервного электропитания на протяжении длительного периода времени, независимо от температуры или срока эксплуатации системы резервного электропитания.

Линейка устройств электропитания на основе топливных ячеек идеально подходит для поддержки сетей засекреченной связи. Благодаря заложенным в конструкцию принципам энергосбережения, они обеспечивают экологически чистое, надежное резервное питание с повышенной продолжительностью действия (до нескольких дней) для использования в диапазоне мощностей от 250 Вт до 15 кВт.

Применение топливных элементов/ячеек в сетях передачи данных

Надежное электропитание для сетей передачи данных, таких как сети высокоскоростной передачи данных и оптико-волоконные магистрали, имеет ключевое значение во всем мире. Информация, передаваемая по таким сетям, содержит критически важные данные для таких учреждений, как банки, авиакомпании или медицинские центры. Отключение электропитания в таких сетях не только представляет опасность для передаваемой информации, но и, как правило, приводит к значительным финансовым потерям. Надежные инновационные установки на топливных ячейках, обеспечивающие резервное электропитание, предоставляют надежность, необходимую для обеспечения непрерывного электропитания.

Установки на топливных ячейках, работающие на жидкой топливной смеси из метанола и воды, обеспечивают надежное резервное электропитание с повышенной продолжительностью действия, вплоть до нескольких дней. Кроме того, эти установки отличаются значительно сниженными требованиями в отношении технического обслуживания в сравнении с генераторами и батареями, необходимо лишь одно посещение с целью технического обслуживания в год.

Типичные характеристики мест применений для использования установок на топливных ячейках в сетях передачи данных:

  • Применения с количествами потребляемой энергии от 100 Вт до 15 кВт
  • Применения с требованиями в отношении автономной работы > 4 часов
  • Повторители в оптико-волоконных системах (иерархия синхронных цифровых систем, высокоскоростной Интернет, голосовая связь по IP-протоколу…)
  • Сетевые узлы высокоскоростной передачи данных
  • Узлы передачи по протоколу WiMAX

Установки на топливных ячейках для резервного электропитания предлагают многочисленные преимущества для критически важных инфраструктур сетей передачи данных в сравнении с традиционными автономными батареями или дизельными генераторами, позволяя повысить возможности использования на месте:

  1. Технология жидкого топлива позволяет решить проблему размещения водорода и обеспечивает практически неограниченную работу резервного электропитания.
  2. Благодаря тихой работе, малой массе, устойчивости к перепадам температур и функционированию практически без вибраций топливные элементы можно устанавливать вне здания, в промышленных помещениях/контейнерах или на крышах.
  3. Приготовления к использованию системы на месте быстры и экономичны, стоимость эксплуатации низкая.
  4. Топливо обладает способностью к биоразложению и представляет собой экологически чистое решение для городской среды.

Применение топливных элементов/ячеек в системах безопасности

Самые тщательно разработанные системы безопасности зданий и системы связи надежны лишь настолько, насколько надежно электропитание, которое поддерживает их работу. В то время как большинство систем включает некоторые типы систем резервного бесперебойного питания для краткосрочных потерь мощности, они не создают условия для более продолжительных перерывов в работе электросети, которые могут иметь место после стихийных бедствий или терактов. Это может стать критически важным вопросом для многих корпоративных и государственных учреждений.

Такие жизненно важные системы, как системы мониторинга и контроля доступа с помощью системы видеонаблюдения (устройства чтения идентификационных карт, устройства для закрытия двери, техника биометрической идентификации и т.д.), системы автоматической пожарной сигнализации и пожаротушения, системы управления лифтами и телекоммуникационные сети, подвержены риску при отсутствии надежного альтернативного источника электропитания питания продолжительного действия.

Дизельные генераторы производят много шума, их тяжело разместить, также хорошо известно о проблемах с их надежностью и техническим обслуживанием. В противоположность этому, установка на топливных ячейках, обеспечивающая резервное электропитание, не производит шума, является надежной, выбросы, выделяемые ей, равны нулю или весьма низки, ее легко установить на крыше или вне здания. Она не разряжается и не теряет мощность в режиме ожидания. Она обеспечивает непрерывную работу критически важных систем, даже после того, как учреждение прекратит работу и здание будет покинуто людьми.

Инновационные установки на топливных ячейках защищают дорогостоящие вложения критически важных сфер применения. Они обеспечивают экологически чистое, надежное резервное питание с повышенной продолжительностью действия (до многих дней) для использования в диапазоне мощностей от 250 Вт до 15 кВт в сочетании с многочисленными непревзойденными характеристиками и, особенно, высоким уровнем энергосбережения.

Установки на топливных ячейках для резервного электропитания предлагают многочисленные преимущества для использования в критически важных сферах применения, таких как системы обеспечения безопасности и управления зданиями, в сравнении с традиционными автономными батареями или дизельными генераторами. Технология жидкого топлива позволяет решить проблему размещения водорода и обеспечивает практически неограниченную работу резервного электропитания.

Применение топливных элементов/ячеек в коммунально-бытовом отоплении и электрогенерации

На твердооксидных топливных ячейках (ТОТЯ) построены надежные, энергетически эффективные и не дающие вредных выбросов теплоэнергетические установки для выработки электроэнергии и тепла из широко доступного природного газа и возобновляемых источников топлива. Эти инновационные установки используется на самых различных рынках, от домашней выработки электричества до поставок электроэнергии в удаленные районы, а также в качестве вспомогательных источников питания.

Применение топливных элементов/ячеек в распределительных сетях

Малые теплоэнергетические установки предназначены для работы в распределенной сети выработки энергии, состоящей из большого числа малых генераторных установок вместо одной централизованной электростанции.


На рисунке ниже указаны потери эффективности выработки электроэнергии при ее выработке на ТЭЦ и передаче в дома через традиционные сети электропередач, используемые на данный момент. Потери эффективности при централизованной выработке включают потери с электростанции, низковольтной и высоковольтной передачи, а также потери при распределении.

Рисунок показывает результаты интеграции малых теплоэнергетических установок: электричество вырабатывается с эффективностью выработки до 60% на месте использования. В дополнение к этому, домохозяйство может использовать тепло, вырабатываемое топливными ячейками, для нагрева воды и помещений, что увеличивает общую эффективность переработки энергии топлива и повышает уровень энергосбережения.

Использование топливных элементов для защиты окружающей среды-утилизация попутного нефтяного газа

Одной из важнейших задач в нефтедобывающей промышленности является утилизация попутного нефтяного газа. Существующие методы утилизации попутного нефтяного газа имеют массу недостатков, основной из них – они экономически невыгодны. Попутный нефтяной газ сжигается, что наносит огромный вред экологии и здоровью людей.

Инновационные теплоэнергетические установки на топливных элементах, использующие попутный нефтяной газ в качестве топлива, открывают путь к радикальному и экономически выгодному решению проблем по утилизации попутного нефтяного газа.

  1. Одно из основных преимуществ установок на топливных элементах заключается в том, что они могут надежно и устойчиво работать на попутном нефтяном газе переменного состава. Благодаря беспламенной химической реакции, лежащей в основе работы топливного элемента, снижение процентного содержания, например метана, вызывает лишь соответствующее уменьшение выходной мощности.
  2. Гибкость по отношению к электрической нагрузке потребителей, перепаду, набросу нагрузки.
  3. Для монтажа и подключения теплоэнергетических установок на топливных ячейках их внедрения не требуются идти на капитальные затраты, т.к. установки легко монтируются на неподготовленные площадки вблизи месторождений, удобны в эксплуатации, надежны и эффективны.
  4. Высокая автоматизация и современный дистанционный контроль не требуют постоянного нахождения персонала на установке.
  5. Простота и техническое совершенство конструкции: отсутствие движущихся частей, трения, систем смазки дает значительные экономические выгоды от эксплуатации установок на топливных элементах.
  6. Потребление воды: отсутствует при температуре окружающей среды до +30 °C и незначительное при более высоких температурах.
  7. Выход воды: отсутствует.
  8. Кроме того, теплоэнергетические установки на топливных элементах не шумят, не вибрируют, не дают вредных выбросов в атмосферу