Что такое двигатель стирлинга и какое отношение он имеет к автономной энергетике. Мощный двигатель стирлинга своими руками

Сегодня о двигателе Стирлинга.
(много интересного видео)
Часть 1.
Для очень многих это неизвестно что такое, поэтому будет много теории.
Еще это чудесное изобретение называют двигателем внешнего сгорания.
Рабочий поршень заполнен воздухом или газом, а снаружи на него воздействует тепло.
Так что для такого двигателя бензин не нужен, он может работать на всем что выделяет тепло, солнце, дрова, уголь, газ, нефть, ядерное топливо. На всем где можно получить разницу температур, есть модели которые работают даже от тепла руки.


Работа двигателя от тепла чашки:

Достаточно сказать что холодильники, тепловые насосы и кондиционеры по сути тоже являются двигателями Стирлинга, только работающими в обратном направлении.

Промышленные солнечные установки где солнечный свет концентрируется на рабочем теле двигателя создавая огромный перепад температуры.
Мощность таких установок достигает 50-70 кВт.







КПД таких двигателей может быть от 5 на обычные модельки до 70% на промышленные варианты работающие под давлением 300 атмосфер, это на 50-70% выше двигателей внутреннего сгорания. Достаточно сказать что на космических аппаратах и новейших подводных лодках используются именно двигатели Стирлинга.

Это двигатель разработаный NASA для работы в космосе, мощность 2500 кВт.
рабочее тело в водороде под давлением 300 атмосфер.

Тогда возникает вопрос, почему же это чудо изобретение не стоит в каждом доме и дворе,
когда достаточно положить рабочее тело в обычный костер и наслаждаться наличием электричества? Ответ думаю очевиден, пока есть нефть и те кто ней владеет в обычном пользовании мы это не увидим.
Для контроля за запасами нефти развязываются войны и стираются целые государства.
Думаю что никого не удивляет что США несет демократию только в те страны где есть нефтедобыча, Сирия, Кувейт, Ирак, Ливия, Иран, Судан, Пакистан и тд.
И почему то нет никакого интересна к другим диктаторским режимам.

Это была лирика.
Промышленно изготовленный двигатель Стирлинга для бытовых целей продается, но цена его абсолютно не разумная в районе 20-25 тыс. долл. При мощности 5-7 кВт.
Желающих наверное не очень много.

Только совсем недавно немецкая фирма производящая бытовые котлы отопления, получила лицензию на установку в свои изделия двигателей с линейным генератором тока.
При тепловой мощности 16-20 кВт. (это примерно обогрев дома площадью 120-150 метров)
все излишнее тепло не выходит в трубу а преобразуется в электричество примерно 2 кВт.
Размер такой преобразователь имеет как термос на 3 литра.
Сложно сказать сколько будут стоить такие котлы, но заимев такой преобразователь,
вопрос электроснабжения был бы решен. Положил рабочее тело в костер или топку и все!
Можно себе представить как бы перевернулась энергозависимость, если бы в каждой котельной которая подает тепло на обогрев целых районов стояли в топках огромные Стирлинги высокого давления. Возможно на весь отопительный сезон можно было не зависеть от электростанций.
А собственно кто тогда будет приносить мега прибыль генерирующим компаниям?

В продаже можно встретить красивые, работающие модели Стирлинга,
но и модели стоят очень дорого, вот например та которая на фото стоит 32000 рублей.


Видео их работы:

Фото самодельных моделей



Видео работы самодельных двигателей:

Работают даже от солнца:

Более продвинутый и мощный аппарат с водяным охлаждением:

Интересное видео работы школьной модели:

Промышлеными образцами нас не балуют.
Но никто не может запретить изготовить такой двигатель самостоятельно, хоть он и будет намного менее надежным и производительным чем промышленный образец, но он будет всеядным, а это как раз то что нам нужно.
Для тех кто пробурился и нашел у себя в огороде нефть, это тема не для вас,
ищите схемы перегонных кубов.)))

История.
Двигатель Стирлинга был впервые запатентован шотландским священником Робертом Стирлингом 27 сентября 1816 года. Основной принцип работы двигателя Стирлинга заключается в постоянно чередуемых нагревании и охлаждении рабочего тела в закрытом цилиндре.
Стоит сказать что первый промышленный Стирлинг проработал на механическом заводе приводя в действие механический молот 80 лет.
В 1843 году Джеймс Стирлинг использовал этот двигатель на заводе, где он в то время работал инженером. В 1938 году фирма «Филипс» инвестировала в мотор Стирлинга мощностью более двухсот лошадиных сил и отдачей более 30 %. Двигатель Стирлинга имеет много преимуществ и был широко распространён в эпоху паровых машин.
В основном есть три разновидности двигателя стирлинга.

Альфа-Стирлинг - содержит два раздельных силовых поршня в раздельных цилиндрах. Один поршень - горячий, другой - холодный. Цилиндр с горячим поршнем находится в теплообменнике с более высокой температурой, в то время как цилиндр с холодным поршнем находится в более холодном теплообменнике. У данного типа двигателя отношение мощности к объёму достаточно велико, но, к сожалению, высокая температура «горячего» поршня создаёт определённые технические проблемы.

Регенератор находится между горячей частью соединительной трубки и холодной.

Бета-Стирлинг - цилиндр всего один, горячий с одного конца и холодный с другого. Внутри цилиндра движутся поршень (с которого снимается мощность) и «вытеснитель», изменяющий объем горячей полости. Газ перекачивается из холодной части цилиндра в горячую через регенератор. Регенератор может быть внешним, как часть теплообменника, или может быть совмещён с поршнем-вытеснителем.

Гамма-Стирлинг - тоже есть поршень и «вытеснитель», но при этом два цилиндра - один холодный (там движется поршень, с которого снимается мощность), а второй горячий с одного конца и холодный с другого (там движется «вытеснитель»). Регенератор может быть внешним, в этом случае он соединяет горячую часть второго цилиндра с холодной и одновременно с первым (холодным) цилиндром. Внутренний регенератор является частью вытеснителя.

Недостатки Стирлинга:
Материалоёмкость - основной недостаток двигателя. У двигателей внешнего сгорания вообще, и двигателя Стирлинга в частности, рабочее тело необходимо охлаждать, и это приводит к существенному увеличению массо-габаритных показателей силовой установки за счёт увеличенных радиаторов.
Для получения характеристик, сравнимых с характеристиками ДВС, приходится применять высокие давления (свыше 100 атм) и специальные виды рабочего тела - водород, гелий.
(тут да, подводную лодку или космический корабль нам раскурочить не дадут)
Тепло не подводится к рабочему телу непосредственно, а только через стенки теплообменников. Стенки имеют ограниченную теплопроводность, из-за чего КПД оказывается ниже, чем можно было ожидать. Горячий теплобменник работает в очень напряжённых условиях теплопередачи, и при очень высоких давлениях, что требует применения высококачественных и дорогих материалов. Создание теплообменника, который удовлетворял бы противоречивым требованиям, весьма трудно. Чем выше площадь теплообмена, тем меньше потери тепла. При этом растёт размер теплообменника и объём рабочего тела, не участвующий в работе. Поскольку источник тепла расположен снаружи, двигатель медленно реагирует на изменение теплового потока, подводимого к цилиндру, и не сразу может выдать нужную мощность при запуске.
Для быстрого изменения мощности двигателя используются методы, отличные от тех, которые применялись в двигателях внутреннего сгорания: буферная ёмкость изменяемого объёма, изменение среднего давления рабочего тела в камерах, изменение фазного угла между рабочим поршнем и вытеснителем. (инерция, а нам как раз это и нужно для генератора.)

Преимущества:
Тем не менее, двигатель Стирлинга имеет преимущества, которые вынуждают заниматься его разработкой.
КПД двигателя Стирлинга может достигать 65-70% КПД от цикла Карно при современном уровне проектирования и технологии изготовления. Кроме того крутящий момент двигателя почти не зависит от скорости вращения коленвала. В двигателях внутреннего сгорания напротив максимальный крутящий момент достигается в узком диапазоне частот вращения.
«Всеядность» двигателя - как все двигатели внешнего сгорания (вернее - внешнего подвода тепла), двигатель Стирлинга может работать от почти любого перепада температур: например, между разными слоями воды в океане, от солнца, от ядерного или изотопного нагревателя, угольной или дровяной печи и т. д.
Двигатель не будет «капризничать» из-за потери искры, засорившегося карбюратора или низкого заряда аккумулятора, поскольку не имеет этих агрегатов. Понятие «двигатель заглох» не имеет смысла для Стирлингов. Стирлинг может остановиться, если нагрузка превышает расчетную. Повторно запуск осуществляется однократным проворотом маховика коленчатого вала.
Простота конструкции - конструкция двигателя очень проста, он не требует дополнительных систем, таких как газораспределительный механизм. Он запускается самостоятельно и не нуждается в стартере. Его характеристики позволяют избавиться от коробки передач. Однако, как уже отмечалось выше, он обладает большей материалоёмкостью.
Увеличенный ресурс - простота конструкции, отсутствие многих «нежных» агрегатов позволяет стирлингу обеспечить небывалый для других двигателей ресурс в десятки и сотни тысяч часов непрерывной работы.
Экономичность - в случае преобразования в электричество солнечной энергии стирлинги иногда дают больший КПД (до 31,25 %), чем тепловые машины на пару.
Сгорание топлива происходит вне внутреннего объема двигателя (в отличии от ДВС), что позволяет обеспечить равномерное горение топлива и полное его дожигание (т.е. отбор максимума содержащейся в топливе энергии и минимизация выброса токсичных компонентов).
В конструкции двигателя отсутствует система высоковольтного зажигания, клапанная система и, соответственно, распредвал. Грамотно спроектированный и технологично изготовленный двигатель Стирлинга не требует регулировки и настройки в процессе всего срока эксплуатации.
Бесшумность двигателя - стирлинг не имеет выхлопа, а значит - не шумит. Бета-стирлинг с ромбическим механизмом является идеально сбалансированным устройством и, при достаточно высоком качестве изготовления, даже не имеет вибраций (амплитуда вибрации меньше 0,0038 мм).
Экологичность - сам по себе стирлинг не имеет каких-то частей или процессов, которые могут способствовать загрязнению окружающей среды. Он не расходует рабочее тело. Экологичность двигателя обусловлена прежде всего экологичностью источника тепла. Стоит также отметить, что обеспечить полноту сгорания топлива в двигателе внешнего сгорания проще, чем в двигателе внутреннего сгорания.

Подводные лодки
Преимущества «стирлинга» привели к тому, что ещё в первой половине 1960-х годов военно-морские справочники указывали на возможность установки на подводных лодках типа «Шёурмен» производства Швеции воздухонезависимых двигателей Стирлинга. Однако ни «Шёурмены», ни последовавшие за ними «Наккены» и «Вестеръётланды» указанные силовые установки так и не получили. И только в 1988 году головная субмарина типа «Наккен» была переоборудована под двигатели Стирлинга. С ними она прошла под водой более 10 000 часов. Другими словами, именно шведы открыли в подводном кораблестроении эру вспомогательных анаэробных двигательных установок. И если «Наккен» - первый опытный корабль этого подкласса, то субмарины типа «Готланд» стали первыми серийными лодками с двигателями Стирлинга, которые позволяют им находиться под водой непрерывно до 20 суток. В настоящее время все подводные лодки ВМС Швеции оснащены двигателями Стирлинга, а шведские кораблестроители уже хорошо отработали технологию оснащения этими двигателями подводных лодок, путём врезания дополнительного отсека, в котором и размещается новая двигательная установка. Подобные двигатели установлены также в новейших японских подводных лодках

Одной из нетрадиционных областей применения двигателя Стирлинга есть медицина. Его применяют в системах искусственного сердца. Источником энергии в таких системах, как правило, есть радиоизотопы.

Пример применения двигателя для охлаждения процессора

Для нас плюсы всей этой технологии в том что грамотный человек сможет воспроизвести конструкцию из тех материалов которые будут под рукой, но для качественной и долговечной конструкции нужно подумать об этом заранее, уже сегодня.
Для каждого человек может такой двигатель быть источником энергии.
Если поселение больше 30-50 человек, то можно истопника придумать для круглосуточного
получения электричества. А электричество это ВСЕ.
Насосы, добыча воды, освещение, охрана периметра, работа электроинструмента, бытовые приборы, компьютер с собранными данными, в общем оплот цивилизации.
Инетесное видео от энтузиастов которые восстанавливают двигатели Стирлинга
успешно работавшие в начале прошлого века.

Что хочется сказать в заключении.
Вероятнее всего двигатель Стирлинга является панацеей в период БП для получения энергии,
как электрической так и механической.
Потому что не привязан к солнцу, которое светит днем, а электричество нужно ночью,
мало того когда света нужно больше всего зимой так на небе висят предательские тучи месяцами.
Не привязан к ветру, который дует когда хочет и как хочет, не знаю как у вас, у меня достаточный ветер дует 20 дней в году.
Не привязан к бензину и нефти, может в Тюмени и можно докопаться до нефти при желании,
у нас только если копать насквозь до залежей Венесуэлы.
Не привязан к напору и потоку воды, кому то и хорошо в предгорьях среди рек и ручьев, ближайшая от меня большая вода строго на север по горизонту 12 км или строго вниз 40 метров.

Стирлинг подарил нам свое уникальное изобретение которое можно и нужно реализовывать.
Удобство, надежность, всеядность как например обычная печка или топка.
Главное подбрасывать дрова в топку, или уголь, у кого как.

Спасибо за внимание, продолжение следует…

Важным новым источником механической энергии для привода автомобиля является двигатель Стирлинга. Он почти неизвестен, существуют только его прототипы , поэтому можно дать лишь беглое описание его принципа действия и конструкции. В первоначальном виде он существовал как тепловая расширительная машина, в цилиндре которой рабочее тело, например, воздух, перед сжатием охлаждался, а перед расширением - нагревался. Схема и принцип действия такого двигателя показаны на рис. 1.

В верхней части цилиндра 1 имеется водяная охлаждающая рубашка 2 , а дно цилиндра постоянно нагревается пламенем. В цилиндре размещен рабочий поршень 3 уплотненный поршневыми кольцами и соединенный шатуном с коленчатым валом (на рисунке коленчатый вал не показан). Между дном цилиндра и рабочим поршнем находится поршень-вытеснитель 4 , который перемещается в цилиндре с большим зазором. Заключенный в цилиндре воздух через этот зазор перекачивается вытеснителем 4 либо к днищу рабочего поршня, либо к нагреваемому дну цилиндра. Вытеснитель приводится в движение штоком 5 , проходящим через уплотнение в поршне, и приводимым эксцентриковым механизмом, который вращается с углом запаздывания около 90° по сравнению с механизмом привода рабочего поршня.

В положении а поршень находится в НМТ (нижняя мертвая точка) и охлаждаемый стенками цилиндра воздух заключен между ним и вытеснителем. В следующей фазе б вытеснитель движется вверх, а поршень остается в НМТ. Воздух между ними выталкивается через зазор между вытеснителем и цилиндром к дну цилиндра и при этом охлаждается стенками цилиндра. Фаза в является рабочей, в течение которой воздух нагревается горячим дном цилиндра, расширяется и выталкивает оба поршня вверх к ВМТ (верхняя мертвая точка).

После совершения рабочего хода вытеснитель возвращается в нижнее положение к дну цилиндра и выталкивает воздух через зазор между стенками цилиндра в камеру под поршнем, воздух при этом охлаждается стенками. В положении г холодный воздух подготовлен к сжатию, и рабочий поршень движется от ВМТ к НМТ. Поскольку работа, затрачиваемая на сжатие холодного воздуха, меньше работы, совершаемой при расширении горячего воздуха, то возникает полезная работа. Аккумулятором энергии, необходимой для сжатия воздуха, служит маховик.

В описанном исполнении двигатель Стирлинга имел низший КПД, так как теплоту, содержащуюся в воздухе после совершения рабочего хода, необходимо было отводить в охлаждающую жидкость через стенки цилиндра. Воздух в течение одного хода поршня не успевал охлаждаться в достаточной степени, и требовалось увеличить время охлаждения, вследствие чего частота вращения двигателя также была небольшой. , который зависит, как говорилось ранее, от разницы максимальной и минимальной температур рабочего цикла, был также небольшим. Теплота отработавшего воздуха отводилась в охлаждающую воду и полностью терялась.

Двигатель Стирлинга был значительно усовершенствован фирмой «Филипс» («Philips» – Нидерланды). Прежде всего, был применен внешний регенератор теплоты, через который осуществлялась перекачка воздуха из верхней части цилиндра в нижнюю под действием вытеснителя. Последовательно к регенератору во внешнем контуре был подключен радиатор. Регенератор аккумулирует теплоту воздуха, поступающего после расширения в холодную камеру. При течении воздуха в обратном направлении аккумулятор вновь отдает ему теплоту. Тем самым возрастает разница максимальной и минимальной температур цикла и теплоту необходимо отводить системой охлаждения. Радиатор, размещенный за регенератором, отводит только часть этой теплоты, остальная сохраняется в аккумуляторе и используется вновь. Вследствие этого не только улучшается КПД двигателя, но и увеличивается его максимальная частота вращения, что влияет на мощность и удельную массу двигателя. Теплота отработавших газов подогревателя используется для повышения температуры свежего воздуха, подаваемого в его камеру сгорания. Описанная конструктивная схема двигателя показана на рис. 2.

2 является рабочим, он передает давление воздуха на кривошипно-шатунный механизм, а вытеснитель 1 предназначен для перемещения воздуха из верхней части цилиндра в нижнюю. В положении а воздух из пространства между двумя поршнями поступает через радиатор 3 и регенератор 4 в трубки подогревателя 6 и затем в верхнюю часть цилиндра. Трубки подогревателя размещены в камере сгорания, куда свежий воздух для сгорания подается по каналам 7 и затем, проходя через теплообменник, поступает в зону распылителя форсунки 5 ; отработавшие газы из подогревателя отводятся через выпускной трубопровод 8 .

В положении а воздух сжат и при движении в верхнюю часть цилиндра нагревается сначала в регенераторе, а затем в подогревателе. В положении б весь воздух вытеснен из пространства между двумя поршнями и выполняет работу, перемещая оба поршня в нижнее положение. В положении в после совершения работы рабочий поршень остается в нижнем положении, а вытеснитель 1 начинает выталкивать воздух из верхней части цилиндра в пространство между поршнями через регенератор, в котором воздух отдает значительную часть своей теплоты, и радиатор, где воздух охлаждается еще глубже. В последней фазе цикла г воздух охлажден и вытеснен из верхней части цилиндра в пространство между поршнями, где происходит его сжатие.

Сжатие холодного воздуха, поступление его через регенератор и радиатор в верхнюю часть цилиндра, последующее расширение и охлаждение воздуха представляют рабочий цикл. В цилиндре сохраняется постоянная масса воздуха, поэтому цилиндр работает без выхлопа. Для подогрева можно использовать любой источник тепла. В рассмотренной схеме применен котел на жидком топливе; содержание вредных веществ зависит от полноты сгорания топлива в камере сгорания котла. Поскольку при этом создается режим непрерывного сгорания при относительно низкой температуре и большом избытке воздуха, можно достичь полного сгорания и небольшого .

Преимущество двигателя Стирлинга заключается также в том, что он может работать не только на разнообразных топливах, но дает возможность применять различные виды источников теплоты. Это означает, что работа двигателя не зависит от наличия атмосферы. Он может одинаково хорошо работать в замкнутом пространстве как на подводных лодках, так и на спутниках. При использовании теплового аккумулятора с LiF теплота подводится к двигателю по теплопроводу, как это показано на рис. 3.

В нижней части рис. 2 показан ромбический механизм привода, который управляет движением обоих поршней. Для привода используются два коленчатых вала, соединенных парой шестерен и вращающихся в противоположных направлениях. Концы штока вытеснителя 1 и пустотелого штока поршня 2 через отдельные шатуны соединены с обоими коленчатыми валами. Если кривошипы обоих коленчатых валов находятся в верхнем положении и движутся из положения а в положение б , то шатуны рабочего поршня 2 находятся вблизи ВМТ и он немного перемещается около ВМТ. Шатуны вытеснителя, перемещающегося в этой фазе цикла, движутся вниз и поршень также движется с наибольшей скоростью из положения а в положение б .

Противоположное направление вращения двух коленчатых валов позволяет разместить на них противовесы, необходимые для уравновешивания сил инерции первого порядка и их моментов от возвратно-поступательно движущихся масс, которые существуют у одноцилиндрового и рядных двигателей.

Ромбический механизм имеет еще и то преимущество, что шатуны симметрично передают усилия от штоков поршней на коленчатые валы, а в подшипниках и уплотнениях поршней не возникают боковые силы. Последнее очень важно, так как для работы двигателя с хорошим КПД необходимо высокое рабочее давление.

У обычных кривошипно-шатунных механизмов при высоком давлении на поршень и больших углах отклонения шатуна возникают большие боковые силы, действующие на поршень и являющиеся причиной больших потерь на трение и большого износа. При применении крейцкопфа или же ромбического механизма это отрицательное явление устраняется и можно достичь хорошего уплотнения поршней.

Чтобы штоки не передавали большие усилия на коренные и шатунные подшипники коленчатых валов, под рабочим поршнем поддерживается противодавление, равное среднему рабочему давлению в цилиндре, оно составляет около 20 МПа.

Значительные трудности возникают при регулировании мощности двигателя Стирлинга. Изменение мощности, происходящее в результате изменения количества подаваемого в подогреватель топлива, незначительно. Более заметного результата можно добиться при изменении давления или количества рабочего тела. Этот способ регулирования мощности используется в автомобильном двигателе Стирлинга. Для уменьшения мощности часть газа из цилиндров перепускается в резервуар низкого давления; для увеличения мощности газ подается в цилиндры из резервуара высокого давления, куда он предварительно перекачивается специальным компрессором из резервуара низкого давления. У двигателей с поршнем двойного действия для снижения мощности газ перепускается из верхней части поршня в нижнюю через специальный канал. Переход от полной мощности к холостому ходу длится 0,2 с; обратный процесс занимает около 0,6 с.

Чтобы потери на трение газа при прохождении его через узкие каналы регенератора и радиатора были небольшими, применяют гелий, а также пытаются использовать водород. Для уменьшения размеров и массы четыре цилиндра с поршнями двойного действия в двигателе второго поколения размещаются как показано на рис. 9. Вместо коленчатого вала применен привод с помощью наклонных шайб. Наличие высокого давления газов по обе стороны поршня обеспечивает передачу на приводную шайбу только небольшой разницы давлений. Поскольку в двигателе Стирлинга вся отводимая теплота передается в охлаждающую жидкость, то радиатор этого двигателя должен быть в 2 раза больше, чем у обычных двигателей внутреннего сгорания.

В качестве примера рассмотрим два автомобильных двигателя Стирлинга. Четырехцилиндровый двигатель первого поколения с ромбическим механизмом, изображенный на рис. 10, имеет диаметр цилиндра 77,5 мм, ход поршня 49,8 мм (рабочий объем 940 см 3), развивает мощность 147 кВт при 3000 мин -1 и среднем давлении в цилиндре порядка 22 МПа. Температура головки цилиндра поддерживается около 700 °C, а охлаждающей жидкости - на уровне 60 °C. Масса сухого двигателя составляет 760 кг. Холодный пуск и прогрев двигателя до достижения температуры головки цилиндра 700 °C длятся около 20 с. При температуре воды 55 °C индикаторный КПД двигателя на испытательном стенде достиг 35 %. Удельная мощность 156 кВт/дм 3 , а удельная масса на единицу мощности 5,2 кг/кВт.

Схематический разрез двигателя Стирлинга второго поколения модели «Филипс 4-215 DA», предназначенного для легкового автомобиля, изображен на рис. 9. Двигатель имеет примерно такие же размеры и массу, как и обычный бензиновый двигатель, и его мощность равна 127 кВт. Четыре цилиндра с поршнями двойного действия расположены вокруг оси приводного вала с наклонной шайбой. Котел подогревателя, общий для всех четырех цилиндров, имеет одну форсунку. На автомобиле «Форд Торино» (США) расход топлива с этим двигателем был на 25 % ниже, чем с бензиновым V-образным 8-цилиндровым двигателем. Содержание NOx в отработавших газах системы подогрева благодаря применению их рециркуляции было намного меньше установленной нормы.

Диаметр цилиндра двигателя «Филипс 4-215 DA» - 73 мм, ход поршня 52 мм. Мощность двигателя 127 кВт при частоте вращения 4000 мин -1 . Температура в подогревателе (температура головок цилиндров) равна 700 °C, а охлаждающей жидкости - 64 °C.

Шведская фирма «Юнайтед Стерлинг» создала свой двигатель Стирлинга таким образом, чтобы можно было в наибольшей степени использовать детали, серийно выпускаемые автомобильной промышленностью. Используются обычный коленчатый вал и шатун, который совместно с крейцкопфом преобразует во вращательное движение вала поступательное движение поршня двойного действия. Разрез этого четырехцилиндрового V-образного двигателя изображен на рис. 11. Ряды цилиндров расположены под небольшим углом, головки цилиндров образуют общую группу, подогреваемую одной горелкой.

Предполагаемая удельная масса этого двигателя равна 2,4 кг/кВт, что можно сравнить с показателями очень хорошего малоразмерного высокооборотного дизеля. Удельная масса двигателей Стирлинга уменьшилась с 6,1–7,3 кг/кВт до 4,3 кг/кВт и постоянно снижается.

Производство двигателя Стирлинга требует технологии, совершенно отличной от технологии производства двигателей внутреннего сгорания, что будет тормозить его внедрение в производство. Однако разработки таких двигателей продолжаются, поскольку традиционные бензиновый и дизельный двигатели не будут отвечать перспективным требованиям необходимой чистоты отработавших газов, а созданные двигатели Стирлинга дают основание надеяться, что эту проблему удастся решить. Так как изменение давления газов в цилиндре двигателя Стирлинга носит плавный характер, то он работает стабильно и тихо, напоминая паровую машину. Однако большое количество отводимой теплоты требует новых решений в области систем охлаждения.

Большой прогресс в двигателях Стирлинга достигнут при создании двигателя «Филипс 4-215 DA». Двигатель предназначен для применения в легковых автомобилях и занимает в них столько же места, сколько и обычный бензиновый V-образный двигатель равной мощности. Масса двигателя «Филипс 4-215 DA» равна 448 кг и при максимальной мощности 127 кВт его удельная масса составляет 3,5 кг/кВт. Индикаторный КПД этого двигав теля при использовании е качестве рабочего тела водорода под давлением 20 МПа равен 35 %.

Холодный пуск двигателя длится 15 с, расход топлива автомобилем в условиях городского движения на 25 % меньше, чем в случае обычного бензинового двигателя. Регулирование мощности двигателя производится изменением количества и давления рабочего тела.

Плотность водорода в 14 раз ниже плотности воздуха, а его теплоемкость также в 14 раз выше теплоемкости воздуха. Это положительно сказывается на гидравлических потерях, особенно в регенераторе, и в целом ведет к росту КПД двигателя (см. рис. 4).

Регенератор и КПД двигателя Стирлинга. Очень часто, при попытке создать Стирлинг в "гаражных" условиях, их создатели решают обойтись без регенератора. А еще чаще регенератор делается "наугад" и неспособен в полной мере выполнять свое предназначение. Итак, регенератор - зачем он нужен? Для этого разберемся немного в теории и принципах работы двигателя. В основной статье я уже вкратце описывал принцип работы, теперь разберем по пунктам. Без регенератора. 1. Нагрев газа происходит когда рабочий поршень находится в верхней мертвой точке. При этом объем минимален, а вытеснитель перемещает весь газ в область нагрева. В процессе этого нагрева объем не меняется - растет давление пропорционально росту температуры в Кельвинах (изохорный нагрев). То есть, если у нас газ находился при температуре 300 К (27 градусов Цельсия) и нагрет до 900 К (627 градусов Цельсия), то давление выросло в 3 раза, также как и температура. Рабочий поршень не движется, работа не выполняется. 2. Рабочий поршень приходит в движение под давлением газа. Газ расширяется и продолжает получать тепло от нагревателя, но температура не увеличивается и остается постоянной, так как сам газ охлаждается за счет расширения (изотермический нагрев). В этом такте цикла (и только в нем) газ выполняет работу. 3. Газ охлаждается до температуры холодильника (окружающей среды) при неизменном объеме (рабочий поршень не движется) - изохорное охлаждение. При этом все тепло, затраченное ранее для нагрева газа от температуры холодильника, до температуры нагревателя, передается в окружающую среду. 4. Рабочий поршень возвращается в верхнюю мертвую точку, сжимая газ в цилиндре. При этом газ охлаждается и тепло, которое образуется в нем при сжатии, отдается окружающей среде (изотермическое сжатие). В этом такте затрачивается механическая работа, которую выполняет маховик. Так как для сжатия газа при низком давлении требуется меньшая работа, чем газ выполняет при большом давлении, когда он горячий, то разница между выполненной газом работой и работой, произведенной над газом, это полезная работа, которую может совершить двигатель. То есть получается, что нагрев, который совершает работу, у нас происходит только во время расширения, при температуре нагревателя, а нагрев до этой температуры работу не совершает, требуется для подъема давления и вся потраченная на этот нагрев энергия, "выбрасывается" потом в окружающую среду. Вот чтобы избежать этих потерь (а они, обычно, в несколько раз больше чем выполняемая работа) и используется регенератор. Он запасает тепло при охлаждении газа "забирая его в себя", вместо того, чтобы отдавать окружающей среде, и затем отдает его газу при нагреве. То есть на нагрев газа внешнее тепло не требуется и передаваемое двигателю от нагревателя тепло тратится только на выполнение работы. Поэтому КПД двигателя зависит от эффективности регенератора и без него он будет ниже в несколько раз. А в следующей статье я расскажу о том каким должен быть эффективный регенератор -

Из прошлого - в будущее! В 1817 году шотландский священник Роберт Стирлинг получил… патент на новый тип двигателя, названный впоследствии, подобно моторам Дизеля, именем изобретателя - стирлинг. Прихожане маленького шотландского местечка уже давно и с явным подозрением косились на своего духовного пастыря. Еще бы! Шипение и грохот, проникавшие через стены сарая, где частенько пропадал отец Стирлинг, могли смутить не только их богобоязненные умы. Ходили упорные слухи, что в сарае содержится страшный дракон, которого святой отец приручил и вскармливает летучими мышами и керосином.

Но Роберта Стирлинга, одного из просвещеннейших людей Шотландии, не смущала неприязнь паствы. Мирские дела и заботы все больше и больше занимали его, в ущерб служению господу: увлекали пастора… машины.

Британские острова в тот период переживают промышленную революцию: стремительно развиваются мануфактуры. И служители культа не остаются равнодушными к громадным доходам, которые сулит новый способ производства.

С благословения церкви и не без помощи фабрикантов несколько машин Стирлинга были построены, и лучшая из них, в 45 л. с., три года проработала на шахте в Дунди.

Дальнейшее развитие Стирлингов задержалось: в 60-х годах прошлого столетия на арену вышел новый двигатель Эриксона.

В обеих конструкциях было много общего. Это были двигатели внешнего сгорания. И в той и в другой машине рабочим телом был воздух, и в той и в другой основой двигателя являлся регенератор, проходя через который отработанный горячий воздух отдавал все тепло. Свежая же порция воздуха, просачиваясь через плотную металлическую сетку, отбирала это тепло, перед тем как попасть в рабочий цилиндр.

По схеме на рисунке 1 можно проследить, как воздух через всасывающую трубу 10 и клапан 4 попадает в компрессор 3, сжимается и через клапан 5 выходит в промежуточный резервуар. В это время золотник 8 перекрывает выхлопную трубу 9, и воздух через регенератор попадает в рабочий цилиндр 1, нагреваемый топкой 11. Здесь воздух расширяется, совершая полезную работу, которая частично направлена на поднимаемый тяжелый поршень, частично - на сжатие холодного воздуха в компрессоре 3. Опускаясь, поршень выталкивает отработанный воздух через регенератор 7 и золотник 8 в выхлопную трубу. При опускании поршня в компрессор засасывается свежая порция воздуха.

1 - рабочий цилиндр, 2 - поршень; 3 - компрессор; 4 - всасывающий клапан; 5 - нагнетательный клапан; 6 - промежуточный резервуар; 7 - регенератор; 8 - перепускной золотник; 9 - выхлопная труба; 10 - всасывающая труба; 11 -топка.

И та и другая конструкции не отличались экономичностью. Зато неполадок с двигателем шотландца случалось почему-то больше, и он был менее надежным, чем двигатель Эриксона. Быть может, именно поэтому просмотрели одну очень важную деталь: при равных мощностях двигатель Стирлинга был компактнее. Кроме того, он имел существенное преимущество в термодинамике…

Сжатие, нагрев, расширение, охлаждение - вот четыре основных процесса, необходимых для работы любого теплового двигателя. Каждый из них можно проводить разными путями. Скажем, нагрев и охлаждение газа можно вести в замкнутой полости постоянного объема (изохорный процесс) или под движущимся поршнем при постоянном давлении (изобарный процесс). Сжатие или расширение газа может происходить при постоянной температуре (изотермический процесс) или без теплообмена с окружающей средой (адиабатический процесс). Составляя замкнутые цепочки из различных комбинаций таких процессов, нетрудно получить теоретические циклы, по которым работают все современные тепловые двигатели. Скажем, комбинация из двух адиабат и двух изохор образуют теоретический цикл бензинового мотора. Если заменить в нем изохору, по которой идет нагревание газа, изобарой - получится цикл дизеля. Две адиабаты и две изобары дадут теоретический цикл газовой турбины. Среди всех мыслимых циклов комбинация из двух адиабат и двух изотерм играет особо важную роль в термодинамике, так как по такому циклу - циклу Карно - должен работать двигатель с самым высоким к.п.д.

Если в двигателе Стирлинга подвод тепла производился по изохорам, то у Эриксона этот процесс происходил по изобаре, а процессы сжатия и расширения протекали по изотермам.

В начале нашего века движки Эриксона небольшой мощности (порядка 10-20 л. с.) нашли применение в различных странах. Тысячи таких установок трудились на фабриках, в типографиях, шахтах и рудниках, крутили валы станков, качали воду, поднимали лифты. Под названием «тепло и сила» они были известны и в России.

Предпринимались попытки сделать большой судовой двигатель, но результаты испытаний обескураживали не только скептиков, но и самого Эриксона. Вопреки пророчествам первых судно «сдвинулось с места» и даже пересекло Атлантический океан. Но и ожидания изобретателя были обмануты: четыре гигантских по размерам двигателя вместо 1000 л. с. развили всего 300 л. с. Расход угля получился такой же, как и у паровых машин. К тому же днища рабочих цилиндров к концу рейса прогорели насквозь, и в Англии двигатели пришлось снять и тайком заменить обычной паровой машиной. В довершение всех несчастий на обратном пути в Америку судно потерпело аварию и погибло со всем экипажем.

1 - рабочий поршень 2 - поршень-вытеснитель; 3 - охладитель; 4 - нагреватель; 5 - регенератор; 6 - холодное пространство; 7 - горячее пространство.

Отказавшись от мысли строить «калорические машины» большой мощности, Эриксон наладил массовый выпуск небольших двигателей. Дело в том, что уровень науки и техники того времени не позволял спроектировать и построить экономичную и мощную машину.

Но главный удар Эриксону нанесли изобретатели двигателя внутреннего сгорания. Бурное развитие дизелей и карбюраторных двигателей заставило предать забвению хорошую идею.

…Прошло столетие. В 30-х годах одно из военных ведомств поручает фирме «Филипс» разработать энергоустановку мощностью 200-400 вт для походной радиостанции. Причем двигатель должен быть всеядным, то есть работать на любом виде топлива.

Специалисты фирмы со всей основательностью принялись за дело. Начали с исследований различных термодинамических циклов и, к своему удивлению, обнаружили, что теоретически самый экономичный - давно забытый двигатель Стирлинга.

Война приостановила исследования, но в конце 40-х годов работы были продолжены. И тогда в результате многочисленных экспериментов и расчетов было сделано новое открытие - замкнутый контур, в котором под давлением около 200 атм. циркулировало рабочее тело (водород или гелий, как обладающие наименьшей вязкостью и наибольшей теплоемкостью). Правда, замкнув цикл, инженеры вынуждены были позаботиться об искусственном охлаждении рабочего тела. Так появился охладитель, которого не было у первых двигателей внешнего сгорания. И хотя нагреватель и охладитель, как бы компактны они ни были, утяжеляют стирлинг, зато сообщают ему одно очень важное качество.

Изолированные от внешней среды, они практически не зависят от нее. Стирлинг может работать от любого источника тепла всюду: под водой, под землей, в космосе - то есть там, где двигатели внутреннего сгорания, нуждающиеся в воздухе, работать не могут. В таких условиях без нагревателей и охладителей, передающих тепло через стенку, в принципе нельзя обойтись. И тут-то стирлинг побивают своих соперников даже по весу. У первых опытных образцов удельный вес на единицу мощности был порядка 6-7 кг на л. с., как у судовых дизелей. Современные стирлинги имеют еще меньшее соотношение - 1,5-2 кг на л. с. Они еще более компактны и легки.

Итак, схема стала двухконтурной: один контур с рабочим агентом и второй - подвод тепла; это позволило довести энергосъем до 200 л. с. на литр рабочего объема, а к.п.д. - до 38-40 процентов. Для сравнения:современ-

ные дизели имеют к.п.д. 34-38 процентов, а карбюраторные двигатели - 25-28. Кроме того, процесс сгорания топлива у стирлинга непрерывный, а это резко снижает токсичность - по выходу окиси углерода в 200 раз, по окиси азота - на 1-2 порядка. Вот где, возможно, одно из радикальных решений проблемы загрязнения атмосферы городов.

Рабочая часть современного Стирлинга представляет собой замкнутый объем, заполненный рабочим газом (рис. 2). Верхняя часть объема - горячая, она непрерывно нагревается. Нижняя - холодная, все время охлаждается водой. В том же объеме - цилиндр с двумя поршнями: вытеснителем и рабочим. Когда поршень идет вверх, газ в объеме сжимается; вниз - расширяется. Движением же вверх-вниз поршня-вытеснителя производится попеременное распределение нагретого и охлажденного газа. Когда поршень-вытеснитель находится в верхнем положении (в горячем пространстве), большая часть газа оказывается вытесненной в холодную зону. В это время рабочий поршень начинает двигаться вверх и сжимает холодный газ. Теперь поршень-вытеснитель устремляется вниз до соприкосновения с рабочим поршнем, и сжатый холодный газ перекачивается в горячее пространство. Расширение нагреваемого газа - рабочий ход. Часть энергии рабочего хода запасается на последующее сжатие холодного газа, а избыток идет на вал двигателя.

Регенератор находится между холодным и горячим пространствами. Когда расширившийся горячий газ движением поршня-вытеснителя перекачивается в холодную часть, он проходит через плотный пучок тонких медных проволочек и отдает им содержащееся в нем тепло. Во время обратного хода сжатый холодный воздух, прежде чем попасть в горячую часть, отбирает это тепло обратно.

1 - топливная форсунка; 2 - выхлоп охлажденных газов, 3 - воздухонагреватель; 4 - выход горячих газов; 5 - горячее пространство; 6 - регенератор; 7 - цилиндр; 8 - трубки охладителя; 9 - холодное пространство; 10 - рабочий поршень; 11 - ромбический привод; 12 - камера сгорания; 13 - трубки нагревателя; 14 - поршень-вытеснитель; 15 - впуск воздуха для сжигания топлива; 16 - буферная полость.

Конечно, в реальной машине все выглядит не так просто (рис. 3). Невозможно быстро нагреть газ через толстую стенку цилиндра, для этого нужна гораздо большая поверхность нагрева. Вот почему верхняя часть замкнутого объема превращается в систему тонких трубок, нагреваемых пламенем форсунки. Чтобы как можно полнее использовать теплоту продуктов сгорания, холодный воздух, подводящийся к форсунке, предварительно подогревается выхлопными газами - так появляется довольно сложный контур сгорания.

Холодная часть рабочего объема - тоже система трубок, в которые нагнетается охлаждающая вода.

Под рабочим поршнем - замкнутая буферная полость, наполненная сжатым газом. Во время рабочего хода давление в этой полости повышается. Запасаемой при этом энергии достаточно для того, чтобы сжать холодный газ в рабочем объеме.

По мере совершенствования неудержимо росли температура и давление. 800° по Цельсию и 250 атм. - это весьма трудная задача для конструкторов, это поиски особо прочных и термостойких материалов, сложная проблема охлаждения, так как выделение тепла по сравнению с классическими двигателями здесь в полтора-два раза больше.

Результаты этих экспериментов порой приводят к самым неожиданным находкам. К примеру, специалисты фирмы «Филипс», обкатывая свой движок на холостом ходу (без нагрева), заметили, что головка цилиндра сильно охлаждается. Совершенно случайно обнаруженный эффект повлек за собой целую серию разработок, и в итоге рождение новой холодильной машины. Сейчас такие высокопроизводительные и малогабаритные холодильные агрегаты широко используются во всем мире. Но вернемся к тепловым машинам.

Последующие события нарастают как снежный ком. В 1958 году с приобретением лицензий другими фирмами стирлинг шагнул за океан. Его стали испытывать в самых различных областях техники. Разрабатывается проект применения двигателя для питания аппаратуры космических кораблей и спутников. Для полевых радиостанций создаются энергоустановки, работающие на любом виде топлива (мощностью порядка 10 л. с.), обладающие настолько малым уровнем шума, что его не слышно за 20 шагов.

Громадную сенсацию вызвала демонстрационная установка, работающая на двадцати видах топлива. Без отключения двигателя, простым поворотом крана, в камеру сгорания поочередно подавали бензин, солярку, сырую нефть, оливковое масло, горючий газ - и машина прекрасно «съедала» любой «корм». В зарубежной печати были сообщения о проекте двигателя на 2,5 тысячи л. с. с атомным реактором. Предполагаемый к.п.д. 48-50%. Значительно уменьшаются все габариты энергоблока, что позволяет высвободившиеся вес и площадь отдать под биологическую защиту реактора.

Еще одна интересная разработка - привод для искусственного сердца весом 600 г и мощностью 13 вт. Слаборадиоактивный изотоп обеспечивает ее практически неисчерпаемым источником энергии.

Двигатель Стирлинга испытывался на некоторых автомобилях. По своим рабочим параметрам он не уступил карбюраторному, а уровень шумов и токсичность выхлопных газов значительно снизились.

Автомобиль со стирлингом может работать на любом виде.топлива, а при необходимости - на расплаве. Представьте: перед тем как въехать в город, водитель включает горелку и расплавляет несколько килограммов окиси алюминия или гидрида лития. По городским улицам он едет «не дымя»: двигатель работает от тепла, запасенного расплавом. Одна из фирм изготовила мотороллер, в бак которого заливается около 10 литров расплава фтористого лития. Такой зарядки хватает на 5 часов работы при мощности движка 3 л. с.

Работы над Стирлингами продолжаются. В 1967 году изготовлен образец опытной установки мощностью 400 л. с. на один цилиндр. Проводится комплексная программа, согласно которой к 1977 году планируется серийное производство двигателей с диапазоном мощности от 20 до 380 л. с. В 1971 году «Филипс» выпустила четырехцилиндровый промышленный двигатель в 200 л. с. с полным весом 800 кг. Уравновешенность его настолько высока, что поставленная ребром на кожух монета (размером в пятак) стоит не шелохнувшись.

К достоинствам нового типа двигателя можно отнести и большой моторесурс порядка 10 тыс. час. (есть отдельные данные о 27 тыс.), и плавность работы, так как давление в цилиндрах нарастает плавно (по синусоиде), а не взрывами, как у дизеля.

Перспективные разработки новых моделей проводятся и у нас. Ученые и инженеры трудятся над кинематикой различных вариантов, на электронно-вычислительных машинах просчитывают различные виды «сердца», стирлинга-регенератора. Идет поиск новых инженерных решений, которые лягут в основу экономичных и мощных двигателей, способных потеснить привычные дизели и бензиновые моторы, исправив тем самым несправедливую ошибку истории.

А. АЛЕКСЕЕВ

Заметили ошибку? Выделите ее и нажмите Ctrl+Enter , чтобы сообщить нам.

Долгое время такие недостатки двигателей внутреннего сгорания (ДВС), как жесткие требования к топливу и маслам, загрязнение атмосферы, шум на выхлопе, резкое ухудшение экономичности и других характеристик при отклонении от оптимального режима работы и, наконец, не возможность использования источников тепла, не связанных с горением, не имели существенного значения. Однако с ростом числа и мощности эксплуатируемых ДВС проблемы токсического и шумового загрязнения окружающей среды приобрели жизненно важное значение.


Быстрое исчерпание разведанных запасов нефти в мире привело к тому, что в последние десять лет происходит переход из эры дешевой нефти в эру высоких цен на энергию в целом. С другой стороны, в новых отраслях техники возникла острая необходимость в специальных тепловых двигателях (например, для работы в космосе, в подводных условиях), не нуждающихся в атмосферном кислороде, но способных работать от любого высокотемпературного источника тепла.

Эти проблемы повысили интерес специалистов к альтернативному двигателю с внешним подводом тепла предложенному еще в 1816 г. шотландским изобретателем Робертом Стирлингом. Принцип работы двигателя Стирлинга (ДС), краткая историческая справка о его развитии и описание некоторых конструкций таких двигателей были опубликованы (см. статью Г. Б. Либефорта «Двигатель внешнего сгорания»).

По прогнозам ведущих специалистов крупных фирм США, Японии, Швеции, Голландии ДС, возможно, станет доминирующим двигателем в следующем столетии.

Почему же ДС прочат такие блистательные перспективы? Чтобы ответить на этот вопрос, необходимо вспомнить историю тепловых двигателей.

К пределу экономичности

В 1824 г. французский инженер С. Карно четко сформулировал условия, необходимые для наиболее эффективного превращения тепла в работу. Он предложил идеальный цикл, состоящий из двух изотерм и двух адиабат . С тех пор данный цикл является термодинамическим эталоном совершенства тепловых двигателей. Но в цикле Карно при большой разности температур нагревателя и холодильника расширение и сжатие рабочего тела необходимо вести в очень большом интервале давлений, в связи с чем его практическая реализация настолько сложна, что оказывается нецелесообразной.

Еще до выхода в свет работы С. Карно Р. Стирлинг удачно обошел эту трудность, введя в цикл тепловой машины регенерацию тепла. Однако низкий уровень технологии в начале XIX в. не позволил создать достаточно совершенные конструкции двигателей этого типа, и они были надолго забыты.

Расчеты, проведенные в 1938 г. специалистами фирмы «Филипс», показали, что оба цикла - и Стирлинга, и Карно - термодинамически равно ценны. Цикл Стирлинга, состоящий из двух изотерм и двух изохор . может служить таким же термодинамическим эталоном, как цикл Карно. Более того, регенерация тепла в этом цикле позволяет работать в большом интервале темпера тур, а следовательно, с высоким КПД при малых соотношениях давления сжатия и расширения рабочего тела. Эта особенность цикла Стирлинга делает реальной его практическую реализацию в двигателях, имеющих КПД, близкий к максимально возможному при данной разности температур нагревателя и холодильника.

Рассмотрим несколько идеализированный рабочий процесс двигателя Стирлинга вытесни тельного типа на наглядной компоновочной схеме с расположением цилиндров под углом 90° и обычным кривошипно-шатунным механизмом (рис. 3).

Термический КПД идеального цикла Стирлинга, как и цикла Карно, определяется формулой


Однако практически термический КПД этих двигателей заметно ниже.

В реальных двигателях Стирлинга энергия расходуется на трение и теплопроводность, а так же отходит с продуктами горения и т. д. Тем не менее, благодаря принципиальным термодинамическим преимуществам цикла Стирлинга в уже созданных ДС достигнуты наибольшие значения эффективного КПД по сравнению с другими тепловыми двигателями одинаковой мощности (рис. 2).

В двигателе Стирлинга можно использовать любое дешевое топливо: газ, уголь, дрова и даже торф. При этом, в отличие от ДВС, топливо сжигается непрерывно при низком давлении и оптимальном избытке воздуха в камере сгорания, расположенной вне рабочего объема Содержание ядовитых веществ в продуктах сгорания при таких условиях уменьшается до минимума, а количество выделяемой энергии увеличивается. Кроме традиционных топлив, для ДС пригодны другие источники тепла, расплавы солей, радиоизотопы, а так же ядерная и солнечная энергия, тепло недр Земли и т. п.

Внутренний объем двигателя Стирлинга герметичен, поэтому в него не попадает абразивная пыль, масло не соприкасается с продуктами горения и не окисляется (следовательно, почти не расходуется). Благодаря плавности рабочего процесса снижаются вибрация и нагрузки на все трущиеся элементы двигателя.

Эти особенности делают ДС более надежным и долговечным по сравнению с ДВС, позволяют использовать его длительное время без обслуживания. Принцип внешнего подвода тепла обеспечивает быстрый и безотказный запуск при низких температурах.

В дополнение к этому уникальному набору качеств двигатель Стирлинга практически бесшумен, так как он работает без клапанов и не имеет резкого пульсирующего выхлопа.

Перспективность двигателей Стирлинга давно подтверждена практикой. Например, фирма «Филипс» в свое время продемонстрировала 16 тонный автобус с ДС мощностью 100 л. с., фирма «Юнайтед Стирлинг» 7-тонный грузовой фургон, а американцы - легковой автомобиль "Форд-Торонто".

В настоящее время за рубежом примерно 60 фирм работают над дальнейшим совершенствованием двигателей Стирлинга. Уже разработаны двигатели этого типа большой мощности для тепловозов и электростанций, работающих на каменном угле. ДС используются для привода тепловых насосов, передвижных электрогенераторов. Созданы образцы для работы на спутниках Земли. Большое количество работ посвящено интереснейшей проблеме - применению миниатюрных ДС с радиоизотопным источником тепла для привода искусственного сердца.

Использование в качестве рабочего тела водорода под давлением до 200 кГ/см 2 (вместо воздуха, на котором работали первые ДС) позволило снизить удельную массу последних образцов ДС до 2,6-3,4 кГ/кВт, а отдельных конструкций до 1,2 кГ/кВт.

Эффективный КПД ДС нового поколения фирмы "Механикл-Технолоджи" (США) достигает 43,5% (вместо 32÷35% у лучших образцов автомобильных дизелей). Успехи в области технологии получения жаропрочной керамики позволят в дальнейшем повысить максимальную температуру цикла и создать ДС с КПД до 60%.

В рамках программы экономии энергетических ресурсов в Японии осуществляется шестилетний план разработок ДС. Уже в 1987 г. должны быть разработаны многотопливные двигатели с высокой топливной экономичностью и экологическими характеристиками для различных целей. В некоторых типах разрабатываемых двигателей будет использован природный газ. Недавно в пустыне Мохова в США было успешно испытано гелиооборудование с двигателем Стирлинга, преобразующее солнечную энергию в электрическую. Его общий КПД составил 29 %. Солнечная энергия, концентрируемая при помощи параболического зеркала, приводит в действие установку, работающую по идее Стирлинга.

Основные эксплуатационные показатели - ДВС - КПД, моторесурс и надежность работы - при уменьшении мощности снижаются в значительно большей степени, чем у ДС. Это и неудивительно, так как при малом размере цилиндра ДВС трудно обеспечить полное сгорание рабочей смеси, а вот горелка двигателя Стирлинга и при малой мощности обеспечивает практически полное сгорание топлива.

Как видно из рис. 2. эффективный КПД ДС в широком диапазоне мощностей более чем в два раза превышает КПД бензинового ДВС. В то же время при мощности на валу меньше 1 кВт КПД двигателя Стирлинга превосходит КПД бензинового ДВС в 3-4 раза.

Как показали результаты сравнительных испытаний, проводившихся в США, область экономичных скоростных и нагрузочных характеристик ДС примерно в семь раз шире, чем у современных ДВС. Благодаря этому при работе на частичных нагрузках и неустановившихся режимах (например, при движении автомобиля в городских условиях) ДС обеспечивает экономию до 50 % топлива по сравнению с ДВС, имеющим тот же эффективный КПД в режиме максимальной экономичности Подобный эффект, несомненно, будет наблюдаться для лодочных и судовых двигателей.

Велики потенциальные возможности экономии топлива и смазочных материалов при эксплуатации ДС а будущем. Действительно, если учесть более высокий КПД ДС, в два раза более низкую стоимость топлива (газ) и экономичность при работе на частичных нагрузках, то получается, что для этого типа двигателя расходы на топливо в широком диапазоне мощностей сокращаются примерно в 4-5 раз, а при мощности меньше 1 кВт - в 6 8 раз.

Один из разработанных и изготовленных мною двигателей Стирлинга с воздушным охлаждением мощностью 0,1 кВт показан на рис. 1. Он работает почти бесшумно, токсичность выхлопных газов ниже предела чувствительности прибора "Инфпалит-8". топливом служит сжиженный пропан.

ДС мощностью до 1 кВт должны найти широкое применение на миниавтомобилях, картингах, культиваторах, газонокосилках и сенокосилках, мотоблоках, для привода водяных насосов различного назначения и т. п. Небывалая топливная экономичность была практически подтверждена автором при использовании ДС малой мощности на газонокосилке и для других целей. На сегодняшний день ДС - это, по существу, единственный тепловой двигатель, который может без вреда для здоровья людей использоваться в закрытых помещениях складах, теплицах, туннелях и т. п.

Способность ДС в течение длительного времени работать без обслуживания позволяет эффективно использовать его в качестве источника питания на маяках, радиобуях, автоматических метеостанциях и т. п.

Двигатель для судов

В ДС примерно 50% теплоты, участвующей в цикле, отводится через холодильник (у дизеля 20%), причем для достижения высокого термического КПД двигателя тепло должно отводиться при пониженной температуре (как правило, 60 °С). В обычных условиях это требует применения более мощной системы охлаждения с радиатором, имеющим в 2,5-3 раза большую поверхность, чем у дизеля.

Это существенное затруднение полностью отпадает при использовании ДС на водном транспорте, где охлаждающая среда - забортная вода - в неограниченном количестве. Сравнительно низкая ее температура (4-15° для средних широт) увеличивает разницу температур нагревателя и холодильника, следовательно, при этом КПД двигателя выше. Например, низкооборотные судовые дизели нового поколения мощностью порядка 1000-9000 кВт имеют эффективный КПД до 50%.

Значительно повысить экономичность эксплуатации судов позволит использование ДС, в котором будет сжигаться каменный уголь. Решающим доводом за такое решение является то, что стоимость угля в 6-10 раз ниже стоимости дизельного топлива. Одновременно, благодаря особенностям нового двигателя, повысится надежность силовой установки и готовность судна к эксплуатации, уменьшится объем работ по его техническому обслуживанию. Канадские ученые должным образом оценили эти преимущества и ведут исследования по переделке обычных судовых дизелей мощностью до 1700 кВт в двигатели Стирлинга, работающие на угле. Порошкообразный уголь предполагается подавать в камеру сгорания ДС при помощи форсунок и сжигать в распыленном состоянии

В последнее время к двигателю Стирлинга проявляют интерес даже некоторые фирмы, специализирующиеся на производстве судовых дизелей. Например, японская фирма «Мицубиси» недавно провела успешное испытание судового ДС мощностью 66 кВт. В период с 1980 по 1983 гг. в Шанхайском НИИ судовых дизелей был разработан двухцилиндровый ДС мощностью 7,5 кВт.

Большой интерес представляет возможность использования для судовых ДС тепловых аккумуляторов вместо топлива. Запас тепловой энергии в расплавах некоторых солей, например, фтористого лития, составляет примерно 0,5 кВт ч/л (500 кВт ч/м 3) Таким образом, энергоемкость тепловых аккумуляторов соизмерима с калорийностью обычных топлив и вполне достаточна для многих судов, совершающих не слишком длительные рейсы. В Николаевском кораблестроительном институте разработан проект судовой энергетической установки мощностью 100 кВт с тепловым аккумулятором, материалом для которого служит обыкновенный графит.

Зарядку тепловых аккумуляторов для судов можно производить при помощи сжигания угля, используя излишки электроэнергии в ночное время, а также от расположенных в портах высокотемпературных ядерных реакторов.

Двигатель Стирлинга весьма эффективен для установки на небольшие суда. Так фирма «Юнайтед Стирлинг» установила одноцилиндровый ДС мощностью 10 л. с. на серийно выпускаемом катере типа "Альбин" длиной 10 м, обеспечив скорость катера 7 уз. Двигатель был установлен в корме и снабжен реверс-редуктором. Уровень шума, который был измерен на расстоянии 1 м от двигателя, работающего на полной нагрузке без какого-либо глушителя, составлял всего 68 дБ, что на 20 дБ меньше, чем у ДВС.

Аналогичные испытания проведены на катере «Стирлинг Силенса» датской постройки. Катер развил скорость 13 уз, работа двигателя оказалась надежной, вибрации не ощущались. Можно полагать, что при серийном выпуске ДС вытеснят ДВС на малых судах.

Одно из специфических качеств двигателя Стирлинга - способность работать с тепловым аккумулятором без атмосферного воздуха может быть успешно реализовано на подводных аппаратах. Полное отсутствие загрязнения водной среды, возможность многократного и быстрого разогрева материала теплоаккумулятора на судне обеспечения позволяют эффективно использовать такой аппарат при любых видах подводных исследований и работ.

Энергозапас силовой установки с ДС и тепловым аккумулятором (с расплавом фтористого лития) в 8-10 раз больше, чем у обычной системы со свинцовокислотными аккумуляторами и электродвигателем постоянного тока.

Двигатель Стирлинга, в отличие от электро двигателя, даже при самом высоком КПД выделяет в окружающую среду много тепла. Поэтому подводный буксировщик с ДС легко приспособить для одновременного обогрева водолаза.

Согласно полученным автором экспериментальным данным, стандартного пятилитрового баллона с пропаном хватает для непрерывной работы самодельного ДС мощностью 0,1 кВт в течение 40 часов. Такой лодочный мотор удобен и надежен в эксплуатации, исключает загрязнение водоемов.

Итак, есть все технико-экономические предпосылки для того, чтобы двигатели Стирлинга мощностью до 1 кВт нашли применение на подводных буксировщиках и в качестве массового лодочного мотора. Дело в том, что при серийном производстве стоимость таких двигателей упрощенной конструкции, по моим предварительным расчетам, уже в настоящее время не может превышать стоимости обычных подвесных лодочных моторов с ДВС.