Детонационный жидкостный ракетный двигатель жрд нового поколения. Детонационный ракетный двигатель: испытания, принцип работы, преимущества

1

Рассмотрена проблема разработки импульсных детонационных двигателей. Перечислены основные научные центры, ведущие исследования по двигателям нового поколения. Рассмотрены основные направления и тенденции развития конструкции детонационных двигателей. Представлены основные типы таких двигателей: импульсный, импульсный многотрубный, импульсный с высокочастотным резонатором. Показано отличие в способе создания тяги по сравнению с классическим реактивным двигателем, оснащенным соплом Лаваля. Описано понятие тяговой стенки и тягового модуля. Показано, что импульсные детонационные двигатели совершенствуются в направлении повышения частоты следования импульсов, и это направление имеет свое право на жизнь в области легких и дешевых беспилотных летательных аппаратов, а также при разработке различных эжекторных усилителей тяги. Показаны основные сложности принципиального характера в моделировании детонационного турбулентного течения с использованием вычислительных пакетов, основанных на применении дифференциальных моделей турбулентности и осреднения уравнений Навье–Стокса по времени.

детонационный двигатель

импульсный детонационный двигатель

1. Булат П.В., Засухин О.Н., Продан Н.В. История экспериментальных исследований донного давления // Фундаментальные исследования. – 2011. – № 12 (3). – С. 670–674.

2. Булат П.В., Засухин О.Н., Продан Н.В. Колебания донного давления // Фундаментальные исследования. – 2012. – № 3. – С. 204–207.

3. Булат П.В., Засухин О.Н., Продан Н.В.. Особенности применения моделей турбулентности при расчете течений в сверхзвуковых трактах перспективных воздушно-реактивных двигателей // Двигатель. – 2012. – № 1. – С. 20–23.

4. Булат П.В., Засухин О.Н., Усков В.Н. О классификации режимов течения в канале с внезапным расширением // Теплофизика и Аэромеханика. – 2012. – № 2. – С. 209–222.

5. Булат П.В., Продан Н.В. О низкочастотных расходных колебаниях донного давления // Фундаментальные исследования. – 2013. – № 4 (3). – С. 545–549.

6. Ларионов С.Ю., Нечаев Ю.Н., Мохов А.А. Исследование и анализ «холодных» продувок тягового модуля высокочастотного пульсирующего детонационного двигателя // Вестник МАИ. – Т.14. – № 4 – М.: Изд-во МАИ-Принт, 2007. – С. 36–42.

7. Тарасов А.И., Щипаков В.А. Перспективы использования пульсирующих детонационных технологий в турбореактивных двигателя. ОАО «НПО «Сатурн» НТЦ им. А. Люльки, Москва, Россия. Московский авиационный институт (ГТУ). – Москва, Россия. ISSN 1727-7337. Авиационно-космическая техника и технология, 2011. – № 9 (86).

Проекты по детонационному горению в США включены в программу разработок перспективных двигателей IHPTET. В кооперацию входят практически все исследовательские центры, работающие в области двигателестроения. Только в NASA на эти цели выделяется до 130 млн $ в год. Это доказывает актуальность исследований в данном направлении.

Обзор работ в области детонационных двигателей

Рыночная стратегия ведущих мировых производителей направлена не только на разработку новых реактивных детонационных двигателей, но и на модернизацию существующих путем замены в них традиционной камеры сгорания на детонационную. Кроме того, детонационные двигатели могут стать составным элементом комбинированных установок различных типов, например, использоваться в качестве форсажной камеры ТРДД, в качестве подъемных эжекторных двигателей в СВВП (пример на рис. 1 - проект транспортного СВВП фирмы «Боинг»).

В США разработки детонационных двигателей ведут многие научные центры и университеты: ASI, NPS, NRL, APRI, MURI, Stanford, USAF RL, NASA Glenn, DARPA-GE C&RD, Combustion Dynamics Ltd, Defense Research Establishments, Suffield and Valcartier, Uniyersite de Poitiers, University of Texas at Arlington, Uniyersite de Poitiers, McGill University, Pennsylvania State University, Princeton University.

Ведущие позиции по разработке детонационных двигателей занимает специализированный центр Seattle Aerosciences Center (SAC), выкупленный в 2001 г. компанией Pratt and Whitney у фирмы Adroit Systems. Большая часть работ центра финансируется ВВС и NASA из бюджета межведомственной программы Integrated High Payoff Rocket Propulsion Technology Program (IHPRPTP), направленной на создание новых технологий для реактивных двигателей различных типов.

Рис. 1. Патент US 6,793,174 В2 фирмы «Боинг», 2004 г.

В общей сложности, начиная с 1992 г., специалистами центра SAC осуществлено свыше 500 стендовых испытаний экспериментальных образцов. Работы по пульсирующим детонационным двигателям (PDE) с потреблением атмосферного кислорода Центр SAC ведет по заказу ВМС США. Учитывая сложность программы, специалисты ВМС привлекли к ее реализации практически все организации, занимающиеся детонационными двигателями. Кроме компании Pratt and Whitney, в работах принимают участие Исследовательский центр United Technologies Research Center (UTRC) и фирма Boeing Phantom Works.

В настоящее время в нашей стране над этой актуальной проблемой в теоретическом плане работают следующие университеты и институты Российской академии наук (РАН): Институт химической физики РАН (ИХФ), Институт машиноведения РАН, Институт высоких температур РАН (ИВТАН), Новосибирский институт гидродинамики им. Лаврентьева (ИГиЛ), Институт теоретической и прикладной механики им. Христиановича (ИТМП), Физико-технический институт им. Иоффе, Московский государственный университет (МГУ), Московский государственный авиационный институт (МАИ), Новосибирский государственный университет, Чебоксарский государственный университет, Саратовский государственный университет и др.

Направления работ по импульсным детонационным двигателям

Направление № 1 - Классический импульсный детонационный двигатель (ИДД). Камера сгорания типичного реактивного двигателя состоит из форсунок для смешения топлива с окислителем, устройства поджигания топливной смеси и собственно жаровой трубы, в которой идут окислительно-восстановительные реакции (горение). Жаровая труба заканчивается соплом. Как правило, это сопло Лаваля, имеющее сужающуюся часть, минимальное критическое сечение, в котором скорость продуктов сгорания равна местной скорости звука, расширяющуюся часть, в которой статическое давление продуктов сгорания снижается до давления в окружающей среде, насколько это возможно. Очень грубо можно оценить тягу двигателя как площадь критического сечения сопла, умноженную на разность давления в камере сгорания и окружающей среде. Поэтому тяга тем выше, чем выше давление в камере сгорания.

Тяга импульсного детонационного двигателя определяется другими факторами - передачей импульса детонационной волной тяговой стенке. Сопло в этом случае вообще не нужно. Импульсные детонационные двигатели имеют свою нишу - дешевые и одноразовые летательные аппараты. В этой нише они успешно развиваются в направлении повышения частоты следования импульсов.

Классический облик ИДД - цилиндрическая камера сгорания, которая имеет плоскую или специально спрофилированную стенку, именуемую «тяговой стенкой» (рис. 2). Простота устройства ИДД - неоспоримое его достоинство. Как показывает анализ имеющихся публикаций , несмотря на многообразие предлагаемых схем ИДД, всем им свойственно использование в качестве резонансных устройств детонационных труб значительной длины и применение клапанов, обеспечивающих периодическую подачу рабочего тела.

Следует отметить, что ИДД, созданным на базе традиционных детонационных труб, несмотря на высокую термодинамическую эффективность в единичной пульсации, присущи недостатки, характерные для классических пульсирующих воздушно-реактивных двигателей, а именно:

Низкая частота (до 10 Гц) пульсаций, что и определяет относительно невысокий уровень средней тяговой эффективности;

Высокие тепловые и вибрационные нагрузки.

Рис. 2. Принципиальная схема импульсно-детонационного двигателя (ИДД)

Направление № 2 - Многотрубный ИДД. Основной тенденцией при разработках ИДД является переход к многотрубной схеме (рис. 3). В таких двигателях частота работы отдельной трубы остается низкой, но за счет чередования импульсов в разных трубах разработчики надеются получить приемлемые удельные характеристики. Такая схема представляется вполне работоспособной, если решить проблему вибраций и асимметрии тяги, а также проблему донного давления , в частности, возможных низкочастотных колебаний в донной области между трубами.

Рис. 3. Импульсно-детонационный двигатель (ИДД) традиционной схемы с пакетом детонационных труб в качестве резонаторов

Направление № 3 - ИДД с высокочастотным резонатором. Существует и альтернативное направление - широко разрекламированная в последнее время схема с тяговыми модулями (рис. 4), имеющими специально спрофилированный высокочастотный резонатор. Работы в данном направлении ведутся в НТЦ им. А. Люльки и в МАИ . Схема отличается отсутствием каких-либо механических клапанов и запальных устройств прерывистого действия.

Тяговый модуль ИДД предлагаемой схемы состоит из реактора и резонатора. Реактор служит для подготовки топливно-воздушной смеси к детонационному сгоранию, разлагая молекулы горючей смеси на химически активные составляющие. Принципиальная схема одного цикла работы такого двигателя наглядно представлена на рис. 5.

Взаимодействуя с донной поверхностью резонатора как с препятствием, детонационная волна в процессе соударения передает ей импульс от сил избыточного давления.

ИДД с высокочастотными резонаторами имеют право на успех. В частности, они могут претендовать на модернизацию форсажных камер и доработку простых ТРД, предназначенных опять же для дешевых БПЛА. В качестве примера можно привести попытки МАИ и ЦИАМ модернизировать таким образом ТРД МД-120 за счет замены камеры сгорания реактором активации топливной смеси и установкой за турбиной тяговых модулей с высокочастотными резонаторами. Пока работоспособную конструкцию создать не удалось, т.к. при профилировании резонаторов авторами используется линейная теория волн сжатия, т.е. расчеты ведутся в акустическом приближении. Динамика же детонационных волн и волн сжатия описывается совсем другим математическим аппаратом. Использование стандартных численных пакетов для расчета высокочастотных резонаторов имеет ограничение принципиального характера . Все современные модели турбулентности основаны на осреднении уравнений Навье-Стокса (базовые уравнения газовой динамики) по времени. Кроме того, вводится предположение Буссинеска, что тензор напряжения турбулентного трения пропорционален градиенту скорости. Оба предположения не выполняются в турбулентных потоках с ударными волнами, если характерные частоты сопоставимы с частотой турбулентной пульсации. К сожалению, мы имеем дело именно с таким случаем, поэтому тут необходимо либо построение модели более высокого уровня, либо прямое численное моделирование на основе полных уравнений Навье-Стокса без использования моделей турбулентности (задача, неподъемная на современном этапе).

Рис. 4. Схема ИДД с высокочастотным резонатором

Рис. 5. Схема ИДД с высокочастотным резонатором: СЗС - сверхзвуковая струя; УВ - ударная волна; Ф - фокус резонатора; ДВ - детонационная волна; ВР - волна разрежения; ОУВ - отраженная ударная волна

ИДД совершенствуются в направлении повышения частоты следования импульсов. Это направление имеет свое право на жизнь в области легких и дешевых беспилотных летательных аппаратов, а также при разработке различных эжекторных усилителей тяги.

Рецензенты:

Усков В.Н., д.т.н., профессор кафедры гидроаэромеханики Санкт-Петербургского государственного университета, математико-механический факультет, г. Санкт-Петербург;

Емельянов В.Н., д.т.н., профессор, заведующий кафедрой плазмогазодинамики и теплотехники, БГТУ «ВОЕНМЕХ» им. Д.Ф. Устинова, г. Санкт-Петербург.

Работа поступила в редакцию 14.10.2013.

Библиографическая ссылка

Булат П.В., Продан Н.В. ОБЗОР ПРОЕКТОВ ДЕТОНАЦИОННЫХ ДВИГАТЕЛЕЙ. ИМПУЛЬСНЫЕ ДВИГАТЕЛИ // Фундаментальные исследования. – 2013. – № 10-8. – С. 1667-1671;
URL: http://fundamental-research.ru/ru/article/view?id=32641 (дата обращения: 29.07.2019). Предлагаем вашему вниманию журналы, издающиеся в издательстве «Академия Естествознания»

Издание «Военно-промышленный Курьер» сообщает великолепную новость из области прорывных ракетных технологий. Детонационный ракетный двигатель испытан в России, сообщил в пятницу вице-премьер Дмитрий Рогозин на своей странице в Facebook.

«Прошли успешные испытания так называемых детонационных ракетных двигателей, разработанных в рамках программы Фонда перспективных исследований», — цитирует вице-премьера Интерфакс-АВН.


Считается, что детонационный ракетный двигатель — один из путей реализации концепции так называемого моторного гиперзвука, то есть создания гиперзвуковых летательных аппаратов, способных за счет собственного двигателя достигать скорости в 4 — 6 Махов (Мах — скорость звука).

Портал russia-reborn.ru приводит интервью одного из ведущих профильных двигателистов России по поводу детонационных ракетных двигателей.

Интервью с Петром Левочкиным, главным конструктором «НПО Энергомаш им. академика В.П. Глушко».

Создаются двигатели для гиперзвуковых ракет будущего
Прошли успешные испытания так называемых детонационных ракетных двигателей, давшие очень интересные результаты. Опытно-конструкторские работы в этом направлении будут продолжены.

Детонация — это взрыв. Можно ли ее сделать управляемой? Можно ли на базе таких двигателей создать гиперзвуковое оружие? Какие ракетные двигатели будут выводить необитаемые и пилотируемые аппараты в ближний космос? Об этом наш разговор с заместителем гендиректора — главным конструктором «НПО Энергомаш им. академика В.П. Глушко» Петром Левочкиным.

Петр Сергеевич, какие возможности открывают новые двигатели?

Петр Левочкин: Если говорить о ближайшей перспективе, то сегодня мы работаем над двигателями для таких ракет, как «Ангара А5В» и «Союз-5», а также другими, которые находятся на предпроектной стадии и неизвестны широкой публике. Вообще наши двигатели предназначены для отрыва ракеты от поверхности небесного тела. И она может быть любой — земной, лунной, марсианской. Так что, если будут реализовываться лунная или марсианская программы, мы обязательно примем в них участие.

Какова эффективность современных ракетных двигателей и есть ли пути их совершенствования?

Петр Левочкин: Если говорить об энергетических и термодинамических параметрах двигателей, то можно сказать, что наши, как, впрочем, и лучшие зарубежные химические ракетные двигатели на сегодняшний день достигли определенного совершенства. Например, полнота сгорания топлива достигает 98,5 процента. То есть практически вся химическая энергия топлива в двигателе преобразуется в тепловую энергию истекающей струи газа из сопла.

Совершенствовать двигатели можно по разным направлениям. Это и применение более энергоемких компонентов топлива, введение новых схемных решений, увеличение давления в камере сгорания. Другим направлением является применение новых, в том числе аддитивных, технологий с целью снижения трудоемкости и, как следствие, снижение стоимости ракетного двигателя. Все это ведет к снижению стоимости выводимой полезной нагрузки.

Однако при более детальном рассмотрении становится ясно, что повышение энергетических характеристик двигателей традиционным способом малоэффективно.

Использование управляемого взрыва топлива может дать ракете скорость в восемь раз выше скорости звука
Почему?

Петр Левочкин: Увеличение давления и расхода топлива в камере сгорания, естественно, увеличит тягу двигателя. Но это потребует увеличение толщины стенок камеры и насосов. В результате сложность конструкции и ее масса возрастают, энергетический выигрыш оказывается не таким уж и большим. Овчинка выделки стоить не будет.


То есть ракетные двигатели исчерпали ресурс своего развития?

Петр Левочкин: Не совсем так. Выражаясь техническим языком, их можно совершенствовать через повышение эффективности внутридвигательных процессов. Существуют циклы термодинамического преобразования химической энергии в энергию истекающей струи, которые гораздо эффективнее классического горения ракетного топлива. Это цикл детонационного горения и близкий к нему цикл Хамфри.

Сам эффект топливной детонации открыл наш соотечественник — впоследствии академик Яков Борисович Зельдович еще в 1940 году. Реализация этого эффекта на практике сулила очень большие перспективы в ракетостроении. Неудивительно, что немцы в те же годы активно исследовали детонационный процесс горения. Но дальше не совсем удачных экспериментов дело у них не продвинулось.

Теоретические расчеты показали, что детонационное горение на 25 процентов эффективней, чем изобарический цикл, соответстветствующий сгоранию топлива при постоянном давлении, который реализован в камерах современных жидкостно-рактивных двигателей.

А чем обеспечиваются преимущества детонационного горения по сравнению с классическим?

Петр Левочкин: Классический процесс горения — дозвуковой. Детонационный — сверхзвуковой. Быстрота протекания реакции в малом объеме приводит к огромному тепловыделению — оно в несколько тысяч раз выше, чем при дозвуковом горении, реализованному в классических ракетных двигателях при одной и той же массе горящего топлива. А для нас, двигателистов, это означает, что при значительно меньших габаритах детонационного двигателя и при малой массе топлива можно получить ту же тягу, что и в огромных современных жидкостных ракетных двигателях.

Не секрет, что двигатели с детонационным горением топлива разрабатывают и за рубежом. Каковы наши позиции? Уступаем, идем на их уровне или лидируем?

Петр Левочкин: Не уступаем — это точно. Но и сказать, что лидируем, не могу. Тема достаточно закрыта. Один из главных технологических секретов состоит в том, как добиться того, чтобы горючее и окислитель ракетного двигателя не горели, а взрывались, при этом не разрушая камеру сгорания. То есть фактически сделать настоящий взрыв контролируемым и управляемым. Для справки: детонационным называют горение топлива во фронте сверхзвуковой ударной волны. Различают импульсную детонацию, когда ударная волна движется вдоль оси камеры и одна сменяет другую, а также непрерывную (спиновую) детонацию, когда ударные волны в камере движутся по кругу.

Насколько известно, с участием ваших специалистов проведены экспериментальные исследования детонационного горения. Какие результаты были получены?

Петр Левочкин: Были выполнены работы по созданию модельной камеры жидкостного детонационного ракетного двигателя. Над проектом под патронажем Фонда перспективных исследований работала большая кооперация ведущих научных центров России. В их числе Институт гидродинамики им. М.А. Лаврентьева, МАИ, «Центр Келдыша», Центральный институт авиационного моторостроения им. П.И. Баранова, Механико-математический факультет МГУ. В качестве горючего мы предложили использовать керосин, а окислителя — газообразный кислород. В процессе теоретических и экспериментальных исследований была подтверждена возможность создания детонационного ракетного двигателя на таких компонентах. На основе полученных данных мы разработали, изготовили и успешно испытали детонационную модельную камеру с тягой в 2 тонны и давлением в камере сгорания около 40 атм.

Данная задача решалась впервые не только в России, но и мире. Поэтому, конечно, проблемы были. Во-первых, связанные с обеспечением устойчивой детонации кислорода с керосином, во-вторых, с обеспечением надежного охлаждения огневой стенки камеры без завесного охлаждения и массой других проблем, суть которых понятна лишь специалистам.

ООО «Аналог» было организовано в 2010 году для производства и эксплуатации придуманной мной конструкции опрыскивателей для полей, идея которого закреплена Патентом РФ на полезную модель № 67402 в 2007 году.

Теперь, мною же разработана концепция роторного ДВС, в котором возможна организация детонационного (взрывного) сжигания поступающего топлива с повышенным выделением (примерно в 2 раза) энергии давления и температуры отработавших газов с сохранением работоспособности двигателя. Соответственно, с увеличением, примерно в 2 раза, КПД теплового двигателя, т.е. примерно до 70%. Реализация этого проекта требует больших финансовых затрат на его проектирование, подбор материалов и изготовление опытного образца. А по характеристикам и применимости, это двигатель, более всего, авиационный, а также, вполне применимый для автомобилей, самоходной техники и т.д., т.е. является необходимым на современном этапе развития техники и требований экологии.

Главными его преимуществами будут простота конструкции, экономичность, экологичность, высокий крутящий момент, компактность, низкий уровень шума даже без использования глушителя. Защитой от копирования будут его высокая технологичность и специальные материалы.

Простота конструкции обеспечивается его роторной конструкцией, в которой все детали двигателя совершают простое вращательное движение.

Эклологичность и экономичность обеспечивается 100%-ным мгновенным сгоранием топлива в прочной, высокотемпературной (порядка 2000 гр С), неохлаждаемой, отдельной камере сгорания, запираемой на это время клапанами. Охлаждение такого двигателя предусмотрени изнутри (охлаждение рабочего тела) любыми, необходимыми для этого, порциями воды, поступающими в рабочую секцию перед выстрелом очередных порций рабочего тела (газов горения) из камеры сгорания, с получением при этом, дополнительного давления водяного пара и полезной работы на рабочем валу.

Высокий крутящий момент даже на малых оборотах обеспечивается (сравнительно с поршневым ДВС), большим и постоянного размера плечом воздействия рабочего тела на рабочую лопатку. Этот фактор позволит для любого наземного транспорта обойтись без сложной и дорогой трансмиссии или, как минимум, существенно её упростить.

Несколько слов о его конструкции и работе.

ДВС имеет цилиндрическую форму с двумя роторно-лопаточными секциями, одна из которых служит для впуска и предварительного сжатия топливо-воздушной смеси и представляет собой известную и работоспособную секцию обычного роторного компрессора; другая, рабочая, представляет собой модернизированную ротационную паровую машину Марциневского; а между ними находится статичный массив прочного термостойкого материала, в котором выполнена отдельная, запираемая на время горения, камера сгорания с тремя невращающимися клапанами, 2 из которых свободные, по типу лепестковых, и один управляемый для стравливания давления перед впуском очередной порции ТВС.

При работе двигателя поворачивается рабочий вал с роторами и лопатками. Во входной секции лопатка засасывает и сжимает ТВС и, при увеличении давления выше давления камеры сгорания (после стравливания из неё давления) рабочая смесь загоняется в горячую (порядка 2000 гр С) камеру, поджигается искрой, мгновенно взрывается. При этом, впускной клапан закрывается, открывается выпускной клапан, а перед его открытием в рабочую секцию впрыскивается необходимое количество воды. Получается, что, в рабочую секцию выстреливаются под большим давлением сверхгорячие газы, а там порция воды, которая превращается в пар и парогазовая смесь приводит во вращение ротор двигателя, одновременно охлаждая его. По имеющейся информации уже есть материал, способный длительно выдерживать температуру до 10000 гр С, из которого нужно сделать камеру сгорания.

В мае 2018 г подана Заявка на изобретение. Заявка сейчас в стадии рассмотрения по существу.

Данная заявка на инвестиции подаётся для обеспечения финансирования НИОКР, создания опытного образца, его доводки и настройки до получения работоспособного образца данного двигателя. По времени этот процесс может занять год-два. Финансирование вариантов дальнейшей разработки модификаций двигателя для различной техники могут и должны будут разрабатываться отдельно под конкретные её образцы.

Дополнительные сведения

Реализация этого проекта - это проверка изобретения практикой. Получение работоспособного опытного образца. Полученный материал можно предложить всей отечественной машиностроительной отрасли для разработки моделей транспортных средств с эффективным ДВС на основе договоров с разработчиком и уплатой комиссионных сборов.

Можно выбрать своё, наиболее перспективное направления проектирования ДВС, скажем авиационное моторостроение для СЛА и предлагать выпускаемый двигатель, а также устанавливать этот ДВС на собственную разработку СЛА, опытный образец которого находится в стадии сборки.

Необходимо отметить что рынок личных самолётов в мире только начал развиваться, а у нас в стране он находится в зачаточном состоянии. И, в т.ч. именно, отсутствие подходящего ДВС сдерживает его развитие. А в нашей стране, с её бескрайними просторами, такая авиация будет востребована.

Аналитика рынка

Реализация проекта - это получение принципиально нового и крайне перспективного ДВС.

Сейчас упор идёт на экологию, и в качестве альтернативы поршневому ДВС предлагается электродвигатель, но ведь эту необходимую для него энергию нужно где-то выработать, накопить для него. Львиная доля электроэнергии вырабатывается на ТЭС, далеко не экологичных, что приведёт к значительным загрязнениям в местах их расположения. А срок службы накопителей энергии не превышает 2-х лет, где хранить этот вредный хлам? Результат предлагаемого проекта - эффектиыный и безвредный и, что не менее важно, удобный и привычный ДВС. Нужно только залить низкосортное топливо в бак.

Результат проекта - это перспектива замены всех поршневых двигателей в мире именно на такой. Это перспектива использовать могучую энергию взрыва в мирных целях, а конструктивное решение для этого процесса в ДВС предлагается впервые. Тем более что это сравнительно недорого.

Уникальность проекта

Это изобретение. Конструкция, позволяющая использовать детонацию в двигателе внутреннего сгорания предлагается впервые.

Во все времена, одной из главных задач конструирования ДВС было приблизиться к условиям детонационного горения, но не допускать её возникновения.

Каналы монетизации

Продажа лицензий на право производства.

Освоение космического пространства невольно ассоциируется с космическими кораблями. Сердцем любой ракеты-носителя является ее двигатель. Он должен развить первую космическую скорость - около 7,9 км/с, чтобы доставить космонавтов на орбиту, и вторую космическую, чтобы преодолеть поле тяготения планеты.

Добиться этого непросто, но ученые постоянно ищут новые пути решения этой задачи. Конструкторы из России шагнули еще дальше и сумели разработать детонационный ракетный двигатель, испытания которого завершились успехом. Это достижение можно назвать настоящим прорывом в области космического машиностроения.

Новые возможности

Почему на детонационные двигатели возлагают большие надежды? По расчетам ученых, их мощность будет в 10 тыс. раз больше, чем мощность существующих ракетных двигателей. При этом они будут потреблять гораздо меньше топлива, а их производство отличится низкой стоимостью и рентабельностью. С чем это связано?

Все дело в реакции окисления горючего. Если в современных ракетах используется процесс дефлаграции - медленное (дозвуковое) горение топлива при постоянном давлении, то детонационный ракетный двигатель функционирует за счет взрыва, детонации горючей смеси. Она сгорает со сверхзвуковой скоростью с выделением огромного количества тепловой энергии одновременно с распространением ударной волны.

Разработкой и испытанием российского варианта детонационного двигателя занималась специализированная лаборатория «Детонационные ЖРД» в составе производственного комплекса «Энергомаш».

Превосходство новых двигателей

Изучением и разработкой детонационных двигателей занимаются ведущие мировые ученые на протяжении 70 лет. Основной причиной, препятствующей созданию этого типа двигателей, является неконтролируемое самовозгорание топлива. Кроме того, на повестке дня стояли задачи по эффективному смешиванию горючего и окислителя, а также интеграции сопла и воздухозаборника.

Решив эти задачи, удастся создать детонационный ракетный двигатель, который по своим техническим характеристикам обгонит время. При этом ученые называют такие его преимущества:

  1. Способность развивать скорости в дозвуковом и гиперзвуковом диапазонах.
  2. Исключение из конструкции многих движущихся частей.
  3. Более низкая масса и стоимость силовой установки.
  4. Высокая термодинамическая эффективность.

Серийно данный тип двигатель не производился. Впервые был испытан на низколетящих самолетах в 2008 году. Детонационный двигатель для ракет-носителей был впервые испытан российскими учеными. Именно поэтому данному событию отводится столь большое значение.

Принцип работы: импульсный и непрерывный

В настоящее время ученые ведут разработку установок с импульсным и непрерывным рабочим процессом. Принцип работы детонационного ракетного двигателя с импульсной схемой работы основан на циклическом заполнении камеры сгорания горючей смесью, последовательном ее воспламенении и выбросе продуктов сгорания в окружающую среду.

Соответственно, при непрерывном рабочем процессе топливо подается в камеру сгорания непрерывно, горючее сгорает в одной или нескольких детонационных волнах, которые непрерывно циркулируют поперек потока. Преимуществами таких двигателей являются:

  1. Однократное зажигание топлива.
  2. Относительно простая конструкция.
  3. Небольшие габариты и масса установок.
  4. Более эффективное использование горючей смеси.
  5. Низкий уровень производимого шума, вибрации и вредных выбросов.

В перспективе, используя данные преимущества, детонационный жидкостный ракетный двигатель непрерывной схемы работы вытеснит все существующие установки благодаря своим массо-габаритным и стоимостным характеристикам.

Испытания детонационного двигателя

Первые испытания отечественной детонационной установки прошли в рамках проекта, учрежденного Министерством образования и науки. В качестве опытного образца был представлен небольшой двигатель с камерой сгорания диаметром 100 мм и шириной кольцевого канала в 5 мм. Испытания проводились на специальном стенде, фиксировались показатели при работе на различных видах горючей смеси - водород-кислород, природный газ-кислород, пропан-бутан-кислород.

Испытания детонационного ракетного двигателя на кислородно-водородном топливе доказали, что термодинамический цикл этих установок на 7 % эффективнее, чем при работе других установок. Кроме того, было экспериментально подтверждено, что с увеличением количества подаваемого горючего увеличивается и тяга, а также количество детонационных волн и частота вращения.

Аналоги в других странах

Разработкой детонационных двигателей занимаются ученые ведущих стран мира. Наибольших успехов в этом направлении достигли конструкторы из США. В своих моделях они реализовали непрерывный способ работы, или ротационный. Американские военные планируют использовать данные установки для оснащения надводных кораблей. Благодаря меньшей массе и небольшим размерам при высокой выдаваемой мощности они помогут увеличить эффективность боевых катеров.

Стехиометрическую смесь водорода и кислорода использует для своей работы американский детонационный ракетный двигатель. Преимущества такого источника энергии в первую очередь экономические - кислорода сгорает ровно столько, сколько того требуется для окисления водорода. Сейчас для обеспечения военных кораблей углеродным топливом правительство США тратит несколько миллиардов долларов. Стехиометрическое горючее снизит расходы в несколько раз.

Дальнейшие направления разработки и перспективы

Новые данные, полученные в результате испытаний детонационных двигателей, определили применение принципиально новых методов построения схемы работы на жидком топливе. Но для функционирования такие двигатели должны иметь высокую жаропрочность ввиду большого количества выделяемой тепловой энергии. В настоящий момент ведется разработка особого покрытия, которое обеспечит работоспособность камеры сгорания под высокотемпературным воздействием.

Особое место в дальнейших исследованиях занимает создание смесительных головок, с помощью которых можно будет получить капли горючего материала заданного размера, концентрации и состава. По решению данных вопросов будет создан новый детонационный жидкостный ракетный двигатель, который станет основой нового класса ракет-носителей.

Детонационный двигатель часто рассматривают как альтернативу стандартному двигателю внутреннего сгорания или ракетному. Он оброс множеством мифов и легенд. Рождаются и живут эти легенды только по тому, что распространяющие их люди или забыли школьный курс физики, или вообще прогуляли его полностью!

Рост удельной мощности или тяги

Заблуждение первое.

Из роста скорости сгорания топлива вплоть до 100 раз, можно будет поднять удельную (в расчете на единице рабочего объема) мощность двигателя внутреннего сгорания. Для работающих на детонационных режимах ракетных двигателей в 100 раз вырастит тяга на единицу массы.

Примечание: Как всегда, не понятно о какой массе идет речь — о массе рабочего тела или всей ракеты в целом.

Связи между тем с какой скоростью горит топливо и удельной мощностью нет вообще никакой.

Есть связь между степенью сжатия и удельной мощностью. Для бензиновых двигателей внутреннего сгорания степень сжатия около 10. В двигателях, использующих детонационный режим, ее можно увечить приблизительно в 2 раза, что как раз реализуется в дизельных двигателях, которые имеют степень сжатия уже около 20. Собственно работают в режиме детонации. То есть, конечно, степень сжатия повысить можно, но после того как произошла детонация, это никому не нужно! Ни о каких 100 раз не может быть и речи!! Более того, рабочий объем ДВС, скажем, 2л, объем всего двигателя литров 100 или 200. Экономия по объему составит 1%!!! А вот дополнительный «расход»(толщина стенок, новые материалы и тд) будет мериться не в процентах, а в разах или десятках раз!!

Для справки. Произведенная работа пропорционально, грубо говоря, V*P (у адиабатического процесса присутствуют коэффициенты, но сути сейчас не меняет). Если объем уменьшить в 100 раз, значит начальное давление должна вырасти в те же 100 раз! (чтобы произвести такую же работу).

Литровую мощность можно поднять если вообще отказаться от сжатия или оставить его на том же уровне, но подавать углеводороды (в большем количестве) и чистый кислород в весовом соотношении около 1:2,6-4, в зависимости от состава углеводородов, или вообще жидкий кислород (где уже это было:-)). Тогда можно и литровую мощность повысить, и КПД (за счет роста «степени расширения» которая может достигать 6000!). Но на пути стоит как способность камеры сгорания выдержать такие давления и температуры, так и необходимость «питаться» не атмосферным кислородом, а запасенным чистым или вообще жидким кислородом!

Собственно некое подобие этого — использование закиси азота. Закись азота — это просто способ поставить повышенное количество кислорода в камеру сгорания.

Но никакого отношения к детонации эти способы не имеют!!

Можно предложить дальнейшее развитие таких экзотических способов повышения литровой мощности — использовать вместо кислорода фтора. Это более сильный окислитель, т.е. реакции с ним идут с большим выделением энергии.

Увеличение скорости истечения реактивной струи

Залужение второе.
В двигателях ракет, использующих детонационные режимы работы, в результате того, что режим сгорания происходит на скоростях выше скорости звука в данной среде (которая зависит от температуры и давления), в камере сгорания параметры давления и температуры увеличиваются в несколько раз, повышается скорость выходящей реактивной струи. Это пропорционально улучшает все параметры подобного двигателя, в том числе, снижает его массу и расход, а значит и необходимый запас топлива.

Как уже отмечалось выше нельзя повысить степень сжатия более чем в 2 раза. Но опять-таки скорость истечения газов зависит от подведенной энергии и их температуры! (Закон сохранения энергии). При том же количестве энергии (том же количестве топлива) повысить скорость можно только понизив их температуру. Но этому уже препятствуют законы термодинамики.

Детонационные ракетные двигатели — будущее межпланетных полетов

Заблуждение третье.

Только ракетные двигатели на детонационных технологиях позволяют получить скоростные параметры требуемые для межпланетных перелетов на основе химической реакции окисления.

Ну это заблуждение хотя бы логически последовательное. Вытекает из первых двух.

Никакие технологии не способны ничего уже выжать из реакции окисления! По крайней мере для известных веществ. Скорость истечения определяется энергетическим балансом реакции. Часть этой энергии, согласно законам термодинамики, можно перевести в работу (кинетическую энергию). Т.е. даже если вся энергия перейдет в кинетическую, то это предел на основе закона сохранения энергии и никакими детонациями, степенями сжатия и тд его нельзя преодолеть.

Кроме энергетического баланса очень важный параметр — «энергия на нуклон». Если сделать небольшие расчеты, то можно получить что реакция окисления атома углерода(C) дает в 1,5 раза больше энергии чем реакция окисления молекулы водорода (H2). Но из-за того что продукт окисления углерода (СО2) в 2,5 раза тяжелее продукта окисления водорода (Н2О), скорость истечения газов из водородных двигателей на 13%. Правда, надо еще учитывать теплоемкость продуктов горения, но это дает совсем небольшую поправку.