Дизельное топливо вид iii. Дизельное топливо

Нередко приходится слышать вопрос “А можно ли дизельный двигатель заправить соляркой?». Ведь это топливо, и как почти все их виды, из нефти. Давайте внимательно посмотрим, чем же дизельное топливо отличается от солярки.

Что такое дизельное топливо?

Оно получается из керосиново-газойлевых фракций при прямой перегонки нефти. Основной показатель тут – цетановое число Л-45. Возгорание ДТ происходит не выше температуры 70 градусов по Цельсию. Используется для двигателей с высокими оборотами в железнодорожном транспорте, водном и сельскохозяйственной технике.

Цетановое число численно равно объёмной доле цетана (С16Н34, гексадекана), цетановое число которого принимается за 100, в смеси с a-метилнафталином (цетановое число которого, в свою очередь, равно 0). Когда дизельное топливо характеризуется такой же воспламеняемостью, определённой на опытном двигателе(ASTM D 613, EN 5165, ISO 5165, ГОСТ 3122), что и модельная смесь этих двух углеводородов, цетановое число данного топлива считается равным % доли цетана в этой смеси. Чем оно больше, тем лучше воспламеняемость смеси при сжатии.

Что такое солярное масло?

Солярное масло, или что нам привычней называть «соляра». Это продукт прямого перегона нефти, который прошел обработку щелочью. Основное назначение, это использование в двигателях с малыми оборотами. Этот продукт имеет вязкость 5 - 9 мм2/с и температуру кипения около от 240 до 400°С.

Основные отличия дизеля от солярки

Итак, солярное масло применяют для тихоходных машин, например тракторов, а для скоростных двигателей, как самолеты. И основные физические характеристики у них разнятся.
В своем составе дизельное топливо содержит углеводороды, которые имеют температуру кипения от 180 до 350°С. После определенной очистки и добавления разного рода присадок, эти продукты перегонки нефти приобретают вязкость 2 - 4,5 мм2/с.
В свою очередь, «соляровое масло», (солярка)», представляет собой фракцию нефти, с вязкостью 5 - 9 мм2/с. и температурой кипения от 240 до 400°С.
Подводя итоги, можем сделать вывод, что «солярка» и «дизельное топливо» - это два совершенно разных понятия. Использование «соляра» в современных автомобильных двигателях недопустимо. В противном случае вы испортите двигатель, и его ремон выйдет в немалую сумму.

Маркировка указывает на тип дизельного топлива, географическую область применения и сезонность, а также наглядно показывает уровень его экологичности.

В 2011 году на территории Республики Казахстан, Российской Федерации и Республики Беларусь был принят технический регламент ТР ТС 013/2011, регламентирующего способ обозначения дизельного топлива, маркировка которого обозначается в виде трех групп знаков:

  • В первой группе знаков указывается принадлежность к виду дизельного топлива: ДТ.
  • Во второй группе указывается сезонность топлива:
  1. Летнее (без определения температуры фильтруемости) – Л;
  2. Межсезонное (-15°С) – Е;
  3. Зимнее (-20°С) – З;
  4. Арктическое (-38°С) – А.
  • В третьей группе обозначается экологический класс, характеризующийся количественным показателем содержания серы:
    1. К2 (не более 500мг/кг);
    2. К3 (не более 350мг/кг) – соответствие с вид I (ГОСТ Р 52368-2005);
    3. К4 (не более 50мг/кг) – соответствие с вид II (ГОСТ Р 52368-2005);
    4. К5 (не более 10мг/кг) – соответствие с вид III (ГОСТ Р 52368-2005).

    В результате на рынке Российской Федерации появилось два действующих документа, регламентирующих обозначение дизельного топлива.

    1 июля 2014 года на территории РФ начал действовать ГОСТ Р 55475-2013 «Топливо дизельное зимнее и арктическое депарафинированное» для видов топлива, предназначенных к применению в условиях холодного климата, изготовленных методом каталитической депарафинизации.

    Маркировка топлива по данному стандарту состоит из четырех групп знаков. Первая группа – принадлежность к типу дизтоплива (ДТ). Вторая группа обозначает сезонность – арктическая или зимняя. Третья группа – экологический класс (К3, К4 и К5) соответствует экологическому классу ТР ТС 013/2011. Четвертая группа обозначает минимальную температуру фильтруемости дизельного топлива, знак отрицательной температуры обозначается как «минус».

    Данный стандарт не отменяет действия ГОСТ Р 52368-2005.

    Необходимо указать, что с 01.01.2016 года на территории Российской Федерации дизельное топливо ниже экологического класса К5(вид III) запрещено к выпуску и обращению.

    В настоящее время маркировка дизтоплива дает информацию о количестве серы и температуре использования, остальная информация приводится в паспорте качества.

    Сравнительная таблица характеристик различных марок дизельного топлива

    Марка Границы кипения, °С Сера, % не более Температура применения, °С Температура помутнения, °С Температура застывания, °С Температура вспышки в закрытом тигле, °С Кинематическая вязкость, Ст (сантистокс) Цетановое число
    ДТЛ-0,5-40 (summer diesel L-0,5-40) 180÷360 0,5 0 -10 -5 +40 3÷6 -
    ДТЛ-0,2-40 (summer diesel L-0,2-40) 180÷360 0,2 0 -10 -5 +40 3÷6 -
    А-0,2 (arcticdiesel A-0,2) для тепловозных и судовых двигателей 180÷360 0,2 -50 - -55 +35 - -
    ДТЛ-0,5-62 (summer diesel L-0,5-62) 180÷360 0,5 0 -10 -5 +62 3÷6 -
    ДТЛ-0,2-62 (summer diesel L-0,2-62) 180÷360 0,2 0 -10 -5 +62 3÷6 -
    А-0,4 (arcticdiesel A-0,4) 180÷360 0,4 -50 - -55 +30 - -
    А-0,2 (arcticdiesel A-0,2) для автотракторных дизелей 180÷360 0,2 -50 - -55 +30 - -
    arctic diesel ecologicaly safe 180÷360 0,05 (0,1) -50 - -55 +30 - -
    ДЗп winter diesel DZp 180÷360 0,2 -15 -5 -35 +40 3÷6 -
    ДТ ДЛЭЧ diesel (summer ecologicaly safe) 180÷360 0,2-0,5 -15 -5 -35 +62 3÷6 -
    ДТ ДЛЭ summer diesel (export grade) 180÷360 0,2 0 -5 -10 +65 3÷6 -
    ДТДЗЭ winter diesel (export grade) 180÷360 0,2 -30 - - +60 2,7÷6 -
    3-0,5 минус 35 winter diesel Z-0,5 minus 35 180÷360 0,5 -20 -25 -35 +65 3÷6 -
    3-0,2 минус 35 winter diesel Z-0,2 minus 35 180÷360 0,2 -20 -25 -35 +65 3÷6 -
    3-0,5 минус 35 winter diesel Z-0,5 minus 45 180÷360 0,5 -30 -35 -45 +65 3÷6 -
    3-0,2 минус 35 winter diesel Z-0,2 minus 45 180÷360 0,2 -30 -35 -45 +65 3÷6 -
    gasoilmotuer 180÷360 0,3 - - - - 48
    lowsulphur №2 oil 180÷360 0,05 - - - +54 - 40÷45
    gasoilJapan-A 180÷360 0,5 - -5 (Л) -10 (З) - - - 45
    gasoilJapan-A 180÷360 0,5 - -5 (Л) -10 (З) - - - 50
    gasoil Singapore regular 0,5pct 180÷360 0,5 - 6÷15 - 1,8÷5,5 - 48
    gasoil Singapore regular 1pct 180÷360 0,5 - 6÷15 - 1,8÷5,5 - 48

    В настоящее время также можно встретить запросы с устаревшей маркировкой дизельного топлива.

    Ранее существовал стандарт маркировки ГОСТ 305-82 (дата введения: 01.01.83, в настоящее время устарел). Маркировка дизельного топлива зависела от сезонности с обязательным указанием максимально возможного процентного содержания серы. Сезонность топлива обозначалась литерами, обозначая летнее «Л» (фильтруемость до 0°С), зимнее «З» (-20°С) или арктическое «А» (-50°С) топливо. Максимально допустимое процентное содержание серы регламентировалось в пределах 0,2;0,4 или 0,5 процента. В маркировке летней марки топлива должна была указываться температура вспышки, в маркировке зимних должно было быть указание температуры застывания. При маркировании зимнего топлива в целях исключения ошибок при чтении маркировки знак отрицательного числа не мог обозначаться знаком «–», обозначение делалось словом «минус» или «minus».

    На смену устаревшего стандарта в 2005 году был принят к исполнению стандарт ГОСТ 52368-2005, действовавший до 2014 года. Данный государственный стандарт действовал на территории Российской федерации. Регламент принимал европейский тип классификации дизельного топлива EN 590, более известного под названием ЕВРО-5.В данном стандарте ограничивалось содержание массовой доли серы:

    • Вид I – максимальное содержание серы до 350 мг/кг;
    • Вид II – до 50 мг/кг;
    • Вид III – до 10 мг/кг.

    Также дизельное топливо по данному стандарту классифицировалось по климатическим зонам. В качестве классификатора принималась температура фильтруемости топлива, при котором топливо уже не может течь по топливным магистралям.

    Дизельное топливо или, как говорится в народе, солярка - это топливо, используемое в дизельных двигателях, ДВС с воспламенением от сжатия.

    Маловязкие сорта состоят из керосиногазойлевых фракций прямой перегонки и до 20% из газойлей получаемых каталитическим крекингом. Остаточные (вязкие сорта) - это смесь керосиногазойлевых фракций с мазутом.

    Также существует сезонная классификация дизельного топлива.

    • А - арктическое
    • Л - летнее дизтопливо

    Рассмотрим сезонные характеристики дизтоплива подробней:

    • А - арктическое дт. Используется при температуре окружающей среды до - 50 о. Цетановое число - 40, плотность при 20 о - не более 830 кг/м3, вязкость при 20 о - от 1,4 до 4 кв. мм/с, температура застывания составляет -55 о.
    • Л - дизельное топливо летнее. Используется при температуре воздуха до 0 о и выше. Цетановое число - не ниже 45, плотность при 20 о - не более 860 кг/м3, вязкость при 20о - от 3 до 6 кв. мм/с, температура застывания составляет -5 о.

    Вышеперечисленные характеристики относятся к устаревшему ГОСТу 305-82.
    В 2006г. был введен в строй новый ГОСТ Р 52368-2005 (ЕН 590:2004).

    Топливо дизельное евро.

    Введена новая система маркировок ДТ:

    • СОРТ - предельная температура фильтруемости.
    • КЛАСС - температура помутнения.
    • ВИД - количество сернистых соединений.

    Как пример - ТД ЕВРО Сорт С вид 2 имеет температуру фильтруемости до -5С° и содержание сернистых соединений, которое соответствует стандарту ЕВРО 2.

    Область применения этого вида топлива очень и очень широка. Это и автомобильные, судовые, железнодорожные, сельскохозяйственные двигатели внутреннего сгорания, и автономная электроэнергия (дизель генераторы), смазка различных механизмов, кожевенное производство.

    Говоря о дизельном топливе, в первую очередь имеется в виду многокомпонентная смесь, содержащая в себе несколько различных фракций - продуктов прямой нефтеперегонки. Данное горючее получило всеобщую популярность - около трети всех транспортных средств, колесящих дороги не только в нашей стране, но и за рубежом, оснащены мотором дизельного типа. К числу достоинств данного двигателя следует отнести его повышенный эксплуатационный ресурс, простоту ухода, достойную мощность, возможность использования внутри территорий с экстремальными погодными условиями. Кроме того, использование соляры (так в обиходе нередко называют указанное выше горючее) позволяет снизить финансовые издержки водителей - реализуется горючее в сети автозаправочных станциях по более доступным, нежели, чем бензин, ценам. На сегодняшний день продажа дизтоплива осуществляется десятками отечественных и зарубежных компаний, занятых в нефтехимической промышленности - вниманию владельцев авто предоставлена возможность выбора горючего, использовать которое возможно при нахождении как в жарких регионах, так и в условиях Крайнего севера.

    А что автомобилистам следует знать о самом топливе? Какие требования к его качеству предъявляются в последние годы? Общемировой тенденцией следует считать ужесточение процентного содержания в составе продукта серы. Так, в Швеции в дизтопливе I класса не допускается содержание данного элемента свыше 10 мг/кг, для горючего II класса - свыше 50 мг/кг, соответственно.

    Общеевропейский стандарт EN 590 предусматривает, чтобы в конечном продукте содержание серы было снижено до 0.035%, цетановое же число было, наоборот, увеличено до 51 единицы. Соответствующие изменения введены и в отношении вязкости углеводорода: 2-4.5 при температуре 400 С, и 2.7-6.5 мм2/с при температуре 200 С.

    Как уже было сказано выше, продажа дизельного топлива производится с учетом климатических условий эксплуатации транспортных средств. Низкотемпературные свойства горючего обусловлены показателями температуры застывания, фильтрации. Данный параметр характеризует потерю текучести углеводорода с понижением температуры (вследствие увеличения вязкости). При достижения дизельным топливом данной границы подача его в цилиндры двигателя не представляется возможной. Автовладельцам рекомендуется использовать соляру зимнюю и арктическую, не изменяющую агрегатного состояния при заливе в баки в условиях низкой температуры окружающего воздуха.

    В нашей компании вы можете приобрести дизельное топливо отвечающее стандартам ГОСТа, по низким ценам и в точно указанные сроки.

    Бензин и дизельное топливо — продукты дистилляции сырой нефти. Они состоят из множества различных углеводородов. Температура кипения бензина находится в диапазоне от 30 до 210 °С, а дизельного то­плива — от 180 до 370 °С. Дизельное топливо воспламеняется в среднем при температуре приблизительно 350 °С (нижний предел — 220 °С), то есть значительно при меньших температурах, по сравнению с бензином (в среднем-500 °С).

    Содержание

    Характеристики автомобильного топлива

    Теплотворная способность топлива

    Обычно чистая теплотворная способность H n обуславливает энергетическое содержание топлива; она соответствует используемому количеству теплоты, выделяемому во время полного сгорания. Полная теплотворная спо­собность H g , с другой стороны, определяет полную теплоту, включая как механически создаваемое тепло, так и тепло, выделяемое при конденсации водяных паров. Однако, этот компонент не учитывается примени­тельно к автомобилям.

    Чистая теплотворная способность дизель­ного топлива, равная 42,9-43,1 МДж/кг, не­много выше, чем у бензина (40,1-41,9 МДж/кг).

    Окислители, то есть, топлива или компо­ненты топлива, содержащие кислород, такие как спиртовые топлива, эфир или метиловые эфиры жирной кислоты, имеют меньшую теплотворную способность, чем чистые угле­водороды, поскольку кислород, присутству­ющий в этих соединениях, не способствует процессу сгорания. Поэтому двигатель, име­ющий сопоставимую мощность с мотором, питаемым обычным топливом, имеет повы­шенный расход топлива.

    Теплота сгорания топливовоздушной смеси

    Теплота сгорания топливовоздушной смеси определяет выходную мощность двигателя. При стехиометрическом соотношении воздух/топливо теплота сгорания для сжижен­ных газообразных и жидких автомобильных топлив составляет примерно 3,5-3,7 МДж/м 3 .

    Содержание серы в автомобильном топливе

    В интересах сокращения эмиссии диоксида серы SO 2 и защиты каталитических нейтра­лизаторов отработавших газов, содержание серы в бензине и дизельном топливе было ограничено с 2009 года до 10 мг/кг на всей территории Европы. Топливо, соответствую­щее этому предельному значению, известно как «топливо, свободное от серы». Таким об­разом, достигается обессеривание топлива. До 2009 года для использования в Европе было разрешено, введенное в начале 2005 года, использование топлива с содержанием серы <50 мг/кг. Германия занимает лидирую­щие позиции в обессеривании топлива — уже с 2003 года, под действием мер в области на­логообложения, в этой стране используется топливо, свободное от серы.

    В США, предельное значение содержания серы в бензинах, выпускаемых в промыш­ленном масштабе, с 2006 года ограничивается величиной 80 мг/кг, при этом среднее значение для общего количества проданного и импортированного топлива составляет 30 мг/кг. Отдельные штаты, например, Кали­форния, установили более низкие ограниче­ния.

    Кроме того, с 2006 года в США выпуска­ется свободное от серы дизельное топливо (содержание серы составляет максимум 15 мг/кг, ULSD — дизель с ультранизким со­держанием серы). К концу 2009 года, однако, только 20% топлива имело содержание серы не более 500 мг/кг.

    Бензины

    В Германии продаются следующие : Normal, Super и Super Plus. Отдельные по­ставщики заменили Super Plus на топливо с октановым числом 100 (V-Power 100, Ultimate 100, Super 100), у которых, кроме октанового числа, были изменены присадки.

    В США бензин продается под марками Regular и Premium; они примерно сопо­ставимы, соответственно, с выпускаемыми в Германии Normal и Super. Бензины Super или Premium, благодаря более высокому ароматическому содержанию основы и добавлению компонентов, содержащих кисло­род, демонстрируют высокое сопротивление детонации и имеют более предпочтительное применение в двигателях с более высокой степенью сжатия.

    Переформулированный бензин — термин, используемый для описания бензина, кото­рый, благодаря измененному составу, отли­чается меньшими испаряемостью и эмиссией отработавших газов, чем обычный бензин. Требования к переформулированному бен­зину приводятся в Законе о чистом воздухе, принятом в США в 1990 году. Этот закон регламентирует, например, меньшие значения давления насыщенных паров, содержания ароматиков и бензола и температуры выкипа­ния. Он также предписывает использование присадок, очищающих топливную систему от загрязнений и отложений.

    Топливные стандарты для бензинов

    Европейский стандарт EN 228 (2008) опре­деляет требования к неэтилированному бен­зину для использования в двигателях с искро­вым зажиганием. Определенные для каждой страны отдельные значения изложены в на­циональных приложениях к этому стандарту. Этилированный бензин в Европе запрещен. Технические требования США к топливам для двигателей с искровым зажиганием содер­жатся в ASTM D4814 (ASTM — Американское общество по испытанию материалов).

    Большинство топлив для двигателей с ис­кровым зажиганием, которые продаются се­годня, имеют в своем составе компоненты, которые содержат кислород (окисляются). В этом отношении особое практическое зна­чение получил этанол, так как «Директива биотоплива ЕС» предусматривает минималь­ный объем выпуска для возобновляемого топлива (см. ).

    Многие страны определили минимальные доли для биогенных компонентов в бензинах, которые достигнуты по большей части за счет использования биоэтанола. Но также исполь­зуются и эфиры, произведенные из мета­нола или этанола — МТВЕ (метилбутиловые эфиры) и ЕТВЕ (этилбутиловые эфиры), их добавляют в Европе до 15% по объему.

    Добавление спиртов может привести к не­которым трудностям. Спирты увеличивают испаряемость, могут повредить материалы, используемые в топливной системе, напри­мер, могут вызвать распухание эластомера и коррозию. Кроме того, в зависимости от содержания алкоголя и температуры, появ­ление даже небольшого количества воды мо­жет привести к расслоению и формированию водной спиртовой фазы.

    Эфиры в бензине

    Эфиры не сталкиваются с проблемой рас­слоения. Эфиры, обладая более низким дав­лением насыщенных паров, более высокой теплотворной способностью и более высоким октановым числом, чем этанол, являются хи­мически устойчивыми компонентами с хоро­шей физической совместимостью. Поэтому они демонстрируют преимущества с точки зрения, как логистики, так и работы двигателя. По причинам большей устойчивости и боль­шего сохранения СO 2 , при установлении квот для биогенного топлива, в основном отдается предпочтение ЕТВЕ. Существующие заводы МТВЕ переоборудуются на производство ЕТВЕ.

    В европейском стандарте бензина EN 228 содержание этанола ограничено 5 % по объему (Е5). В Америке примерно одна треть всех бензинов содержит этанол — до 10% по объему (Е10), для которого дав­ление насыщенных паров, превышающее приблизительно 7 кПа, разрешено согласно американскому стандарту ASTM D4814.

    В настоящее время на европейском рынке не все транспортные средства оборудованы материалами, позволяющими функциони­ровать с Е10. Европейский стандарт для Е10 продолжает действовать. Чтобы позво­лить топливу Е10 быть введенным на немец­ком рынке, в апреле 2010 года был издан стандарт Е DIN 51626-1:2010-04. Он уста­навливает, в дополнение к характеристикам Е10, требования, охраняющие существую­щий стандарт с максимальным содержанием этанола 5% по объему для транспортных средств, которые не являются совместимыми с Е10. В Бразилии бензин всегда содержит этанол в количестве 22-26% по объему.

    Характеристики бензинов

    Плотность бензинов

    Европейский стандарт EN 228 ограни­чивает плотность бензинов диапазоном 720-775 кг/м 3 . Поскольку топливо повышен­ного качества, в основном, включает более вы­сокую пропорцию ароматических соединений, оно имеют большую плотность, чем высокоо­ктановый бензин, а также обладает немного более высокой теплотворной способностью.

    Антидетонационные свойства (октановое число)

    Октановое число определяет детонационную стойкость бензина (сопротивление детона­ции). Чем выше октановое число, тем больше сопротивление детонации. Наибольшей де­тонационной стойкостью обладает изооктан, его стойкость принимается за 100 единиц, наименьшей — п-гептан, стойкость которого принимается равной нулю.

    Октановое число топлива определяется на стандартизированном испытательном двига­теле. Численное значение соответствует про­порции (в % по объему) изооктана в смеси изооктана и п-гептана, которая демонстри­рует то же самое сопротивление детонации, как топливо, которое будет испытываться.

    Исследовательский и моторный методы определения октанового числа

    Октановое число, определяемое испыта­ниями по исследовательскому методу, имеет сокращение RON (исследовательское октановое число). RON характеризует дето­национную стойкость бензинов при исполь­зовании их в двигателях, работающих в усло­виях неустановившихся режимов (движение по городу). Октановое число, определяемое испытаниями по моторному методу, имеет сокращение MON (моторное октано­вое число). MON определяет детонационную стойкость топлива при высоких скоростях.

    Моторный метод отличается от исследова­тельского метода использованием предвари­тельно подогреваемых смесей, более высокой частотой вращения коленчатого вала двигателя и переменным распределением зажигания, таким образом, созданием более строгих тепловых тре­бований к топливу при испытании. Значения MON для одного и того же топлива ниже, чем RON.

    Увеличение сопротивления детонации

    Нормальный (неочищенный) бензин прямой гонки показывает низкие антидетонацион­ные свойства. Только смешиванием такого бензина с различными компонентами нефтеперегонки, обладающими сопротивлением детонации, (преобразованные компоненты) можно получить топливо с высоким октано­вым числом, подходящим для современных двигателей. Можно увеличить сопротивление детонации, добавляя компоненты, содержа­щие кислород, такие как спирты и эфиры.

    Испаряемость бензинов

    Для обеспечения успешной эксплуатации двига­теля бензины должны удовлетворять достаточно жестким требованиям по испаряемости. С одной стороны, автомобильное топливо должно со­держать большое количество высоколетучих соединений для обеспечения надежного запуска холодного двигателя, но, с другой стороны, име­ются ограничения по испаряемости топлива, с тем чтобы не ухудшать эксплуатацию и запуск прогре­того двигателя. Кроме того, потери топлива за счет испарения, в соответствии с действующими нор­мативными актами по охране окружающей среды, должны быть на низком уровне. Испаряемость бензинов определяется различными способами.

    Стандарт EN 228 классифицирует испаряе­мость топлив по классам, различающимся по уровням давления насыщенных паров, зависи­мости температуры испарения от индекса обра­зования паровой пробки VLI. В зависимости от местных климатических условий в европейских странах разработаны свои национальные стан­дарты испаряемости автомобильного топлива. Различные значения испаряемости устанавли­ваются в стандартах для лета и зимы.

    Температура перегонки бензинов

    Для того чтобы оценить действие топлива, необходимо рассмотреть различные значения температуры перегонки. Стандарт EN 228 опре­деляет предельные значения, установленные для испаряемых объемов топлива при 70, 100 и 150 °С. табл.. Объем испаряемого топлива при 70 °С должен быть достаточным для того, чтобы гарантировать легкий запуск холодного двига­теля (это было важно для карбюраторных дви­гателей). Однако, объем перегоняемого при этой температуре топлива не должен быть слишком большим, иначе на горячем двигателе в топливе будут образовываться пузырьки пара. Объем топлива, перегоняемого при 100 °С, определяет характеристики прогретого двигателя, влияю­щие на ускорение и реакцию двигателя, на­гретого до нормальной рабочей температуры. Объем топлива, перегоняемого при 150 °С, должен быть достаточно высоким, чтобы минимизировать разжижение моторного масла. В особенности это важно для холодного двига­теля, когда плохо испаряемые нелетучие компо­ненты бензина могут пройти из камеры сгорания по стенкам цилиндров в моторное масло.

    Давление насыщенных паров

    Давление насыщенных паров, измеряемое при температуре 37,8 °С (100 °F), в соответ­ствии со стандартом EN 13016-1, является показателем безопасности, при котором то­пливо может прокачиваться из топливного бака автомобиля и закачиваться в него. У давления насыщенных паров существуют пределы, прописанные в технических требо­ваниях. В Германии, например, это максимум 60 кПа летом и максимум 90 кПа зимой.

    При разработке системы впрыска топлива также важно знать давление насыщенных паров при более высоких температурах (80-100 °С), поскольку повышение давления насыщенных паров из-за примеси спиртов, например, особенно становится очевидным при более высоких температурах. Если давле­ние насыщенных паров превышает давление впрыска, например, из-за роста температуры двигателя во время эксплуатации автомо­биля, это может привести к сбоям, вызван­ным формированием пузырьков пара.

    Фракционный состав бензина

    По фракционному составу, выражаемому в относительном объеме испаряемого топлива, оценивается склонность топлива к перегонке.

    Падение давления в топливной системе (например, во время движения автомобиля в условиях высокогорья), сопровождающееся повышением температуры топлива, способствует испаряемости топлива и изме­нению фракционного состава, приводящим к ухудшению условий эксплуатации. Стан­дарт ASTM D4814 устанавливает, например, для каждого класса испаряемости темпера­туру, при которой отношение пара к жидко­сти не должно быть больше 20.

    Индекс образования паровой пробки

    Индекс образования паровой пробки (VLI) является математически рассчитываемой общей суммой десятикратного давления на­сыщенных паров (в кПа при 37,8 °С) и семи­кратного объема топлива, которое испаряется при 70 °С. С помощью этого дополнительного предельного значения можно ограничить ис­паряемость топлива так, чтобы в итоге мак­симальные значения давления насыщенных паров и температуры конца кипения не могли быть достигнуты в ходе производства то­плива.

    Присадки в бензины

    Присадки добавляются для улучшения ка­чества топлива, чтобы противодействовать ухудшению работы двигателя и токичности отработавших газа во время эксплуатации автомобиля. Пакеты присадок в основном используются в сочетании с отдельными компонентами с различными признаками. Чрезвычайная осторожность и точность тре­буются при испытании присадок и определе­нии их оптимальных составов и концентраций. Следует избегать нежелательных побочных эффектов. Присадки обычно добавляются к индивидуально маркируемым топливам на бензозаправочных станциях нефтеперерабатывающего завода, когда автоцистерны заполнены (дозирование конечного состоя­ния). Введение присадок в топливный бак ав­томобиля подвергает транспортное средство риску технических сбоев, если эти присадки несовместимы с конструкцией автомобиля.

    Ингибиторы загрязнения топливной системы (моющие присадки)

    Системы подачи топлива автомобильного двигателя (топливные форсунки, пусковые клапаны) необходимо предохранять от за­грязнений и осадочных отложений. Под­держание этих систем в незагрязненном состоянии является обязательным условием безопасной эксплуатации двигателя и сни­жения до минимума содержания токсичных компонентов в отработавших газах. Для до­стижения этого в топливо добавляются спе­циальные моющие присадки.

    Ингибиторы коррозии для бензинов

    Проникновение извне воды/влажности может привести к коррозии компонентов топливной системы. Коррозия может быть эффективно устранена добавлением ингибиторов корро­зии, которые формируют тонкую защитную пленку на металлической поверхности.

    Стабилизаторы окисления для бензинов

    Присадки, противодействующие старению топлива (антиоксиданты) добавляются в то­пливо, для того чтобы улучшить его стабильность во время хранения. Эти присадки предотвращают быстрое окисление топлива кислородом воздуха.

    Дизельное топливо

    Топливные стандарты для дизельного топлива

    Требования для дизельных топлив в Европе устанавливает стандарт ЕN 590 (2009). Наиболее важные характеристки дизельных топлив изложены в табл.. Даже особые марки дизельных топлив, продаваемые на некоторых бензозаправочных станциях (на­пример, Super, Ultimate, V-Power), удовлетво­ряют этому стандарту. У всех этих дизельных топлив существуют различия в основных ха­рактеристиках и в составе присадок. V-Power содержит 5% по объему синтетического ди­зельного топлива.

    В соответствии со стандартом EN 590, в допускается добавлять до 7% по объему биодизеля (FAME — мети-лэфиры на основе жирных кислот), качество которого предусмотрено нормами EN 14214 (2009). Добавка биодизеля улучшает сма­зывающую способность топлива, но также уменьшает стабильность к окислению. С це­лью проверки стабильности к окислению, в 2009 году был дополнен стандарт EN 590, в который также был включен параметр за­паса по старению, измеряемый как индукци­онный период при 110 °С, составляющий, по крайней мере, 20 часов в условиях испыта­ний, определенных нормами EN 15751.

    Стандарт США для дизельных топлив ASTM D975 определяет меньшее число характеристик и устанавливает менее стро­гие ограничения. Он разрешает добавлять максимум 5% по объему биодизеля, который должен удовлетворять требованиям стандарта ASTM D6751.

    Характеристики дизельного топлива

    Цетановое число и дизельный индекс

    Цетановое число (CN) характеризует вос­пламеняемость дизельного топлива. Чем выше цетановое число, тем больше тенден­ция топлива к воспламенению. Поскольку дизельный двигатель обходится без по­даваемой извне искры зажигания, топливо должно воспламеняться спонтанно (само­воспламенение) и с минимальной задержкой воспламенения при впрыскивании в горячий воздух, сжатый в камере сгорания. Цетано­вое число, равное 100, соответствует легко воспламеняемому н-гексадекану (цетану), а цетановое число, равное 0, соответствует медленно воспламеняющемуся альфаметилнафталину. Цетановое число дизельного топлива определяется на стандартизирован­ном одноцилиндровом испытательном дви­гателе CFR (CFR — объединенный комитет по изучению моторных топлив). Степень сжатия измеряется с постоянной задержкой воспла­менения. Сравниваемые топлива, содержа­щие цетан и альфаметилнафталин, испыты­ваются с установленной степенью сжатия. Содержание цетана в смеси изменяется, пока не будет получена та же самая задержка вос­пламенения. Содержание цетана в процентах определяет цетановое число.

    Цетановое число, превышающее 50, более предпочтительно для оптимальной работы современных двигателей, особенно в усло­виях холодного старта. Высококачественные дизельные топлива содержат большой про­цент парафинов с высокими цетановыми числами. Наоборот, ароматические углево­дороды имеют низкую воспламеняемость.

    Еще одним параметром воспламеняемо­сти топлива является дизельный индекс, который вычисляется на основе плотности топлива и различных точек на кривой кипе­ния. Этот чисто математический параметр не принимает во внимание влияние присадок, улучшающих свойства цетана, на воспламе­няемость. Для того чтобы ограничить регу­лирование цетанового числа посредством присадок, улучшающих свойства цетана, цетановое число и дизельный индекс были включены в список требований стандарта EN 590. Топливо, цетановое число которого уве­личено присадками, улучшающими свойства цетана, действует по-другому во время сгора­ния в двигателе, чем топливо с тем же самым естественным цетановым числом.

    Температурный диапазон изменения фракционного состава

    Температурный диапазон изменения фрак­ционного состава топлива, то есть темпера­турный диапазон, при котором испаряется топливо, зависит от состава топлива. Низкая точка кипения делает топливо более под­ходящим для использования в условиях хо­лодного климата, но также означает более низкое цетановое число и плохая смазы­вающая способность. Это увеличивает риск изнашивания компонентов системы впрыска. Однако, если точка кипения высокая, это мо­жет привести к большей эмиссии сажи и по­явлению нагара в распылителях форсунок. Это, в свою очередь, вызывает образование отложений в результате химического раз­ложения нелетучих топливных компонентов в отверстиях и колодце распылителя и добав­ление остаточных продуктов сгорания. Когда точка кипения выше, возможно протекание топлива по стенкам цилиндров и смешива­ние с моторным маслом. Поэтому процент нелетучих топливных компонентов не дол­жен быть слишком высоким. Ограничение добавки биодизеля до максимальных 7% по объему также вызвано его высокой точкой кипения (320-360 °С).

    Предел фильтрации дизельного топлива

    Осаждение кристаллов парафина при низких температурах может привести к забиванию то­пливного фильтра и, в конечном счете, к пре­рыванию подачи топлива. В худшем случае макрочастицы парафина начинают выпадать при 0 °С или при еще больших температурах. Пригодность топлива для использования в холодное время оценивается «пределом фильтрации» (CFPP). Европейский стандарт EN 590 регламентирует показатель CFPP для различных классов дизельных топлив, и, кроме того, это предельное значение может быть установлено отдельными государствами-членами ЕС, в зависимости от преобладающих географических и климатических условий.

    Прежде, владельцы автомобилей с ди­зельным двигателем иногда добавляли в то­пливный бак высокооктановый бензин, чтобы улучшить показатели дизельного топлива на холоде. Эта практика не требуется в настоя­щее время, когда топливо соответствует стан­дартам, и это может в любом случае привести к повреждению, особенно в системах с то­пливным впрыском под высоким давлением.

    Точка воспламенения дизельного топлива

    Точка воспламенения — температура, при которой количество испарений топлива, на­копившихся в атмосфере, оказывается достаточным для воспламенения топливовоз­душной смеси. Соображения безопасности (при перевозке и хранении топлив) диктуют необходимость соответствия дизельного топлива требованиям стандарта класса A III «Опасные материалы», где определено, что точка воспламенения должна быть выше 55 °С. Добавление в дизельное топливо менее 3% бензина оказывается достаточным для того, чтобы возгорание горючей смеси могло произойти при комнатной температуре.

    Плотность дизельного топлива

    Энергетическое содержание дизельного то­плива в единице объема увеличивается с ро­стом плотности. Учитывая постоянное срабаты­вание форсунок (то есть, постоянный впрыск определенного количества топлива), исполь­зование топлива с плотностью, изменяющейся в широких пределах, вызывает изменение со­става смеси (изменение коэффициента избытка воздуха λ) из-за колебаний теплотворной спо­собности топлива. Когда двигатель работает на топливе, у которого имеется большой разброс по плотности, это приводит к увеличению эмис­сии сажи; если плотность топлива уменьша­ется, этот параметр также снижается. Поэтому должны соблюдаться требования к низкому разбросу плотности дизельного топлива.

    Вязкость дизельного топлива

    Вязкость дизельного топлива — мера сопротивления течения топлива из-за внутреннего трения. Если вязкость слиш­ком мала, это приводит к увеличенным потерям утечек топлива, большему нагреванию системы впрыска и усиленному риску изнашивания и ка­витационной эрозии. Слишком большая вяз­кость, имеющая место, например, при исполь­зовании чистого биодизеля (FAME), вызывает пиковое давление впрыска при высоких темпе­ратурах в таких, например, топливных системах, как электронно-управляемые насос-форсунки, по сравнению с нефтяным дизельным топливом. И наоборот, система впрыска топлива не может развивать допустимое пиковое давление при использовании нефтяного дизельного топлива. Высокая вязкость также изменяет форму рас­пыла из-за формирования больших капель.

    Смазывающая способность дизельного топлива

    Смазывающая способность дизельных то­плив важна не столько при гидродинами­ческом трении, сколько при смешанном. Применение новых гидрогенизированных и десульфированных дизельных топлив с улучшенными экологическими характеристиками приводит к повышенному износу топливных насосов высокого давления.

    Десульфирование также приводит к уда­лению компонентов топлива, которые важны для обеспечения смазывающей способности. В топливо приходится добавлять специ­альные присадки, улучшающие смазочную способность, чтобы избежать этих проблем. Стандарт EN 590 предписывает обеспечение минимальной смазочной способности, опре­деляемой диаметром пятна изнашивания, ко­торый должен составлять максимум 460 мкм при испытаниях на установке с высокочастот­ным возвратно-поступательным движением рабочего органа (установка HFRR).

    Показатель углеродистых отложений

    Показатель углеродистых отложений характери­зует свойство дизельного топлива образовывать нагар на поверхностях выпускного отверстия топливных форсунок. Механизм образования на­гара имеет комплексный характер и не поддается простому описанию. Продукты испарения дизель­ного топлива оказывают незначительное влияние на образование нагара (закоксовывание).

    Общее загрязнение

    К общему загрязнению относятся суммарные включения нерастворимых посторонних ма­крочастиц в топливе, таких как песок, продукты коррозии, и нерастворимых органических компо­нентов, включая продукты старения полимеров, содержащихся в топливе. Стандарт EN 590 допу­скает максимальное общее загрязнение топлива 24 мг/кг. Имеющие большую твердость силикаты, которые содержатся в минеральной пыли, осо­бенно разрушительны для топливных систем впрыска высокого давления с узкими распыливающими отверстиями. Даже фракция твердых ма­крочастиц с допустимым общим уровнем загрязнения может вызывать эрозионное и абразивное изнашивание (например, в соленоидных клапа­нах). Изнашивание такого рода приводит к утечке клапана, что понижает давление впрыска, ухуд­шает работу двигателя и увеличивает эмиссию твердых частиц с отработавшими газами. Типич­ные европейские дизельные топлива содержат приблизительно 100000 макрочастиц на 100 мл. Особенно критичные размеры макрочастиц — 4-7 мкм. Поэтому необходимы высокоэффективные топливные фильтры с хорошей эффективностью фильтрации, с тем чтобы предотвратить ущерб, наносимый макрочастицами.

    Вода в дизельном топливе

    Дизельное топливо может абсорбировать воду в количестве приблизительно 100 мг/кг при комнатной температуре. Предел растворимости определяется составом дизельного топлива, его присадками и окружающей температурой. Стандарт EN 590 допускает максимальное со­держание воды в топливе 200 мг/кг. Хотя во многих странах бывает более высокое содержа­ние воды в дизельном топливе, исследование рынка показывает, что содержание воды редко превышает 200 мг/кг. Образцы часто не обнару­живают воды, или обнаружение является непол­ным, так как вода оседает на стенках в форме нерастворенной «свободной» воды, или она скапливается на дне топливного бака. Принимая во внимание, что растворенная вода не повреждает топливную систему впрыска, нужно иметь ввиду, что даже очень небольшое количество свободной воды за короткий период времени может вызвать изнашивание или коррозионное повреждение компонентов системы впрыска.

    Присадки в дизельное топливо

    Присадки к автомобильным бензинам нахо­дят применение и для дизельного топлива. Различные вещества объединены в пакеты присадок, чтобы одной добавкой достигнуть множества целей. Поскольку полная концентрация комплекта присадок в топливе не превышает 0,1%, физические характеристики топлива — такие как плот­ность, вязкость, и фракционный состав — остаются неизменными.

    Присадки, повышающие смазывающую способность

    Смазывающую способность дизельных топлив с бедными свойствами смазывания, вызван­ными, например, процессами гидратации во время десульфирования, можно улучшить, до­бавляя в топливо жирные кислоты или глице­риды. Биодизель также содержит глицериды как побочный продукт. В этом случае, в дизельное топливо, если оно уже содержит какую-то добавку биодизеля, присадки, улучшающие сма­зывающую способность, можно не добавлять.

    Присадки, повышающие цетановое число

    Присадками, повышающими цетановое число, являются спиртовые производные сложных эфиров азотной кислоты, добавление которых приводит к сокращению задержки воспламенения. Эти присадки по­могают, особенно во время холодного пуска, предотвратить увеличение шума сгорания (шум двигателя) и сильное дымление.

    Присадки, повышающие текучесть

    Присадки, повышающие текучесть, состоят из полимерных материалов, которые пони­жают предел фильтрации. Они, в основном, добавляются в зимний период, чтобы гаран­тировать безотказную работу двигателя при низких температурах. Хотя эти присадки не могут предотвратить выпадение парафино­вых кристаллов в дизельном топливе, они могут строго ограничить их рост. Размеры об­разуемых кристаллов становятся настолько маленькими, что они могут проходить через поры топливного фильтра.

    Моющие присадки

    Моющие присадки чищают систему подачи топлива с целью формирования эффектив­ной рабочей смеси; замедляют образование отложений на поверхностях выпускного от­верстия форсунок топливного насоса.

    Ингибиторы коррозии

    Ингибиторы коррозии, покрывающие поверх­ности металлических деталей, повышают коррозионную стойкость металлических эле­ментов топливной системы двигателя.

    Антипенные присадки

    Добавление антипенной присадки позволяет избежать чрезмерного вспенивания топлива, когда автомобиль быстро заправляется го­рючим.

    В следующей статье я расскажу об .


    Дизельное топливо. Свойства.

    Дизельные двигатели на единицу произведенной работы вследствие более высокой степени сжатия расходуют на 20-25% меньше топлива, чем бензиновые.

    Это преимущество явилось основной причиной широкого использования автомобилей с двигателями, работающими на дизельном топливе.

    Основными эксплуатационными свойствами дизельного топлива является его испаряемость, воспламеняемость, прокачиваемость, вязкость, температура помутнения, температура застывания, склонность к образованию отложений и нагара, его коррозионное действие.

    1. Испаряемость дизельного топлива определяется фракционным составом.

    При высоком содержании легких фракций увеличивается скорость сгорания топлива, но двигатель из-за снижения вязкости топлива работает более жестко. Температура выкипания (перегонки) 50% топлива характеризует его пусковые свойства (при использовании дизтоплива с более низкой температурой выкипания облегчается запуск двигателя).

    Температура выкипания 95% топлива свидетельствует о содержании в нем тяжелых фракций, ухудшающих смесеобразование и влекущее неполное сгорание топлива.

    2. Воспламеняемость – способность топлива загораться в камере сгорания цилиндра без воздействия постороннего источника зажигания.

    Самовоспламенение топлива, впрыскиваемого в камеру сгорания, происходит не сразу, а по истечении определенного периода, который называется периодом задержки самовоспламенения . В период задержки самовоспламенения топливный насос продолжает подачу топлива в камеру сгорания. Чем продолжительней этот период, тем больше топлива накапливается в цилиндре к моменту самовоспламенения. Это вызывает при самовоспламенении топлива резкое нарастание давления в цилиндре, которое сопровождается глухими стуками и нередко приводит к преждевременному износу подшипников и шеек коленчатого вала (двигатель работает жестко).

    Для обеспечения нормальной работы двигателя требуется использовать топлива с оптимальной длительностью периода задержки воспламенения, который оценивается цетановым числом. Цетановое число определяют на одноцилиндровом двигателе так же, как и октановое число, сопоставляя самовоспламеняемость испытуемого и эталонного топлив. В качестве эталонных топлив приняты два углеводорода: цетан и альфа–метилнафталин. Цетан легковоспламеняющийся, цетановое число по нему принято за 100; альфа–метилнафталин самовоспламеняемость имеет плохую (цетановое число принято за 0 единиц).

    3. Цетановое число дизельного топлива численно равно проценту (по объему) содержания цетана в смеси с альфа–метилнафталином, которая по самовоспламеняемости равноценна данному топливу.

    Чем ниже цетановое число, тем больше период задержки самовоспламенения. Поэтому применение дизельных топлив с цетановым числом менее 45 единиц приводит к жесткой работе двигателя.

    С повышением цетанового числа процесс сгорания протекает более плавно, двигатель работает экономично и не так жестко. Но с цетановым числом более 50 единиц топливо в цилиндре воспламеняется, не успев распространиться по всей камере сгорания и перемешаться с воздухом: в результате происходит неполное сгорание, снижается мощность и увеличивается расход топлива.

    4. Прокачиваемость дизельного топлива по топливной системе, главным образом через фильтры грубой и тонкой очистки, оценивается вязкостью, температурами помутнения и застывания, содержанием механических примесей и воды. Фильтры грубой очистки задерживают механические частицы размером более 50-60 мкм, тонкой-более2-5 мкм.

    5. Вязкость дизельного топлива в большей степени определяет качество распыливания топлива и смесеобразования.

    Вязкость регламентируется действующими ГОСТами на дизтопливо при температуре 20°С и находится в пределах 1,2-6,0 мм 2 /с (с Ст).

    Топлива с невысокой вязкостью хорошо распыливаются, но при слишком малой вязкости подтекают через распыливающие отверстия форсунок, вызывая их закоксовывание. Из-за недостаточной дальнобойности струи топливо сосредотачивается и сгорает у распылителя форсунки, не распределяясь равномерно по всей камере сгорания. В результате – неоднородность смеси, ухудшение процесса сгорания и падение мощности. Маловязкое топливо ухудшает условия смазки деталей топливной аппаратуры.

    С увеличением вязкости топлива качество смесеобразования ухудшается, т.к. при распыливании образуются капли, которые не успевают испарится. Топливо полностью не сгорает, увеличивается его расход, наблюдается дымный выпуск отработавших газов.

    Для летней эксплуатации вязкость дизельного топлива должна находится в пределах 3,0-6,0, для зимней 1,8-5,0 и для арктической – в пределах 1,2-4,0 сантистокс (мм 2 /с).

    6. Температурой помутнения является температура, при которой дизельное топливо мутнеет вследствие выделения из топлива кристаллов твердых углеводородов (парафинов). Для нормальной работы дизеля нужно, чтобы температура помутнения дизтоплива была на 3-5°С ниже температуры окружающего воздуха.

    7. Температурой застывания является температура, при которой топливо теряет свою текучесть. Эта температура должна быть на 10°С ниже температуры окружающего воздуха.

    8. Склонность топлива к образованию отложений и нагара. При содержании в дизельном топливе значительного количества смолистых отложений, тяжелых фракций и механических примесей на клапанах, форсунках и поршневых кольцах образуются лакообразные соединения и нагар. Они вызывают перегрев двигателя, пригорание (закоксовывание) поршневых колец, засорение отверстий распылителей форсунок.

    Склонность дизельного топлива к нагарообразованию оценивается по показателям коксуемости и зольности. Коксуемостью называют свойство топлива образовывать углистые остатки в результате его прокаливания без доступа воздуха. Чем меньше показатель коксуемости, тем выше качество топлива. Зольность топлива должна быть не более 0,01%, так как зола несгораема и способствует усиленному нагарообразованию и вызывает повышенный износ деталей двигателя.

    Автотранс-консультант ру.