Двигатель постоянного тока последовательного возбуждения (ДПТ ПВ). Виды возбуждения и схемы включения двигателей постоянного тока Двигатель с последовательным возбуждением

Рис. 11

В двигателях последовательного возбуждения обмотка возбуждения включается последовательно с обмоткой якоря (рис. 11). Ток возбуждения двигателя здесь равен току якоря , что придает этим двигателям особые свойства.

Для двигателей последовательного возбуждения недопустим режим холостого хода. При отсутствии нагрузки на валу ток в якоре и создаваемый им магнитный поток будут небольшими и, как видно из равенства

частота вращения якоря достигает чрезмерно больших значений, что ведет к «разносу» двигателя. Поэтому пуск и работа двигателя без нагрузки или с нагрузкой менее 25% от номинальной недопустимы.

При небольших нагрузках , когда магнитная цепь машины не насыщена (), электромагнитный момент пропорционален квадрату тока якоря

В силу этого двигатель последовательного возбуждения имеет большой пусковой момент и хорошо справляется с тяжелыми условиями пуска.

С увеличением нагрузки магнитная цепь машины насыщается, и пропорциональность между и нарушается. При насыщении магнитной цепи поток практически постоянен, поэтому момент становится прямо пропорциональным току якоря.

С ростом момента нагрузки на валу ток двигателя и магнитный поток увеличиваются, а частота вращения уменьшается по закону, близкому к гиперболическому, что видно из уравнения (6).

При значительных нагрузках, когда магнитная цепь машины насыщается, магнитный поток практически остается неизменным, и естественная механическая характеристика становится почти прямолинейной (рис.12, кривая 1). Такая механическая характеристика называется мягкой.

При введении пуско-регулировочного реостата в цепь якоря механическая характеристика смещается в область меньших скоростей (рис.12, кривая 2) и называется искусственной реостатной характеристикой.

Рис. 12

Регулирование частоты вращения двигателя последовательного возбуждения возможно тремя способами: изменением напряжения на якоре, сопротивления цепи якоря и магнитного потока. При этом регулирование частоты вращения изменением сопротивления цепи якоря производится так же, как и в двигателе параллельного возбуждения. Для регулирования частоты вращения изменением магнитного потока параллельно обмотке возбуждения подключается реостат (см. рис. 11),

откуда . (8)

При уменьшении сопротивления реостата его ток увеличивается, а ток возбуждения уменьшается по формуле (8). Это приводит к уменьшению магнитного потока и росту частоты вращения (см. формулу 6).

Уменьшение сопротивления реостата сопровождается уменьшением тока возбуждения, а значит, уменьшением магнитного потока и ростом частоты вращения. Механическая характеристика, соответствующая ослабленному магнитному потоку, изображена на рис. 12, кривая 3.


Рис. 13

На рис. 13 представлены рабочие характеристики двигателя последовательного возбуждения.

Пунктирные части характеристик относятся к тем нагрузкам, при которых не может быть допущена работа двигателя вследствие большой частоты вращения.

Двигатели постоянного тока с последовательным возбуждением применяются как тяговые на железнодорожном транспорте (электропоезда), в городском электрическом транспорте (трамваи, поезда метро) и в подъемно-транспортных механизмах.


ЛАБОРАТОРНАЯ РАБОТА 8

32. Механические характеристики ЭД постоянного тока

Двигатель постоянного тока последовательного возбуждения: Уравнение механической характеристики имеет вид:

, где ω - частота вращения, рад/с; Rob - сопротивление обмотки последовательного возбуждения, Ом; α- коэффициент линейной зависимости (в первом приближении) магнитного потока от тока якоря.

Регулирование скорости вращения этого двигателя осуществляют путем введения в цепь якоря дополнительного сопротивления. Чем оно больше по величине, тем круче проходят механические характеристики (рис. 17.5, б). Регулируют скорость также путем шунтирования якоря.

Из рассмотрения рис. следует, что механические характеристики рассматриваемого двигателя (естественная и реостатные) являются мягкими и имеют гиперболический характер. При малых нагрузках частота вращения и резко возрастает и может превысить максимально допустимое значение (двигатель идет в «разнос»). Поэтому такие двигатели нельзя применять для привода механизмов, работающих в режиме холостого хода или при небольшой нагрузке (различные станки, транспортеры и пр.). Обычно минимально допустимая нагрузка составляет (0,2 -- 0,25) IН0М; только двигатели малой мощности (десятки ватт) используют для работы в устройствах, где возможен холостой ход. Чтобы предотвратить возможность работы двигателя без нагрузки, его соединяют с приводным механизмом жестко (зубчатой передачей или глухой муфтой); применение ременной передачи или фрикционной муфты для включения недопустимо.

Несмотря на указанный недостаток, двигатели с последовательным возбуждением широко применяют в различных электрических приводах, особенно там, где имеется изменение нагрузочного момента в широких пределах и тяжелые условия пуска (грузоподъемные и поворотные механизмы, тяговый привод и пр.). Это объясняется тем, что мягкая характеристика рассматриваемого двигателя более благоприятна для указанных условий работы, чем жесткая характеристика двигателя с параллельным возбуждением.

Двигатель постоянного тока независимого возбуждения: Характерной особенностью двигателя является то, что его ток возбуждения не зависит от тока якоря (тока нагрузки), так как питание обмотки возбуждения по существу независимое. Следовательно, пренебрегая размагничивающим действием реакции якоря, можно приближенно считать, что и поток двигателя не зависит от нагрузки. Следовательно, механическая характеристика будет линейной.

Уравнение механической характеристики имеет вид: где ω - частота вращения, рад/с; U - напряжение, приложенное к цепи якоря, В; Ф - магнитный поток, Вб; Rя, Rд - сопротивление якоря и добавочное в его цепи, Ом: α- конструктивная постоянная двигателя.

где р - число пар полюсов двигателя; N - число активных проводников якоря двигателя; α - число параллельных ветвей обмотки якоря. Вращающий момент двигателя, Н*м.


- ЭДС двигателя постоянного тока, В. При постоянном магнитном потоке Ф = const, полагая с=к Ф, Тогда выражение для вращающего момента, Н*м:

1. Механическая характеристика е, полученная для условий Rд = О, Rв = 0, т.е. напряжение на якоре и магнитный поток двигателя равны номинальным значениям, называется естественной (рис. 17.6).

2, Если Rд > О (Rв = 0), получаются искусственные - реостатные характеристики 1 и 2, проходящие через точку ω0 -скорость идеального холостого хода машины. Чем больше Яд, тем характеристики круче.

3, Если изменять напряжение на зажимах якоря посредством преобразователя при условии, что Rд = 0 и Rв = 0, то искусственные механические характеристики имеют вид 3 и 4и проходят параллельно естественной и тем ниже, чем меньше величина напряжения.

4, При номинальном напряжении на якоре (Rд = 0) и уменьшении магнитного потока (Rв > 0) характеристики имеют вид5 и проходят тем выше естественной и круче ее, чем меньше магнитный поток.

Двигатель постоянного тока смешанного возбуждения: Характеристики этих двигателей являются промежуточными между характеристиками двигателей параллельного и последовательного возбуждения.

При согласном включении последовательной и параллельной обмоток возбуждения двигатель смешанного возбуждения имеет больший пусковой момент, по сравнению с двигателем параллельного возбуждения. При встречном включении обмоток возбуждения двигатель приобретает жесткую механическую характеристику. С увеличением нагрузки магнитный поток последовательной обмотки увеличивается и, вычитаясь из потока параллельной обмотки, уменьшает общий поток возбуждения. При этом скорость вращения двигателя не только не уменьшается, а может даже увеличиваться (рис.6.19). И в том, и в другом случае наличие магнитного потока параллельной обмотки исключает режим "разноса" двигателя при снятии нагрузки.

Двигатель смешанного возбуждения

Двигатель смешанного возбуждения имеет две обмотки воз­буждения: параллельную и последовательную (рис. 29.12, а). Час­тота вращения этого двигателя

, (29.17)

где и - потоки параллельной и последовательной обмоток возбуждения.

Знак плюс соответствует согласованному включению обмоток возбуждения (МДС обмоток складываются). В этом случае с увеличением нагрузки общий магнитный поток возрастает (за счет потока последовательной обмотки ), что ведет к умень­шению частоты вращения двигателя. При встречном включе­нии обмоток поток при увеличении нагрузки размагничивает машину (знак минус), что, наоборот, повышает частоту вращения. Работа двигателя при этом становится неустойчивой, так как с увеличением нагрузки частота вращения неограниченно растет. Однако при небольшом числе витков последовательной обмотки с увеличением нагрузки частота вращения не возрастает и во всем диапазоне нагрузок остается практически неизменной.

На рис. 29.12, б показаны рабочие характеристики двигателя смешанного возбуждения при согласованном включении обмоток возбуждения, а на рис. 29.12, в - механические характеристики. В отличие от механических характеристик двигателя последователь­ного возбуждения последние имеют более пологий вид.

Рис. 29.12. Схема двигателя смешанного возбуждения (а), его рабо­чие (б) и механические (в) характеристики

Следует отметить, что по своей форме характеристики двига­теля смешанного возбуждения занимают промежуточное положе­ние между соответствующими характеристиками двигателей па­раллельного и последовательного возбуждения в зависимости от того, в какой из обмоток возбуждения (параллельной или последо­вательной) преобладает МДС.

Двигатель смешанного возбуждения имеет преимущества по сравнению с двигателем последовательного возбуждения. Этот двигатель может работать вхолостую, так как поток параллельной обмотки ограничивает частоту вращения двигателя в режиме х.х. и устраняет опасность «разноса». Регулировать частоту вра­щения этого двигателя можно реостатом в цепи параллельной об­мотки возбуждения. Однако наличие двух обмоток возбуждения делает двигатель смешанного возбуждения более дорогостоящим по сравнению с двигателями рассмотренных выше типов, что не­сколько ограничивает его применение. Двигатели смешанноговозбуждения применяют обычно там, где требуются значительные пусковые моменты, быстрое ускорение при разгоне, устойчивая работа и допустимо лишь небольшое снижение частоты вращения при увеличении нагрузки на вал (прокатные станы, грузовыеподъемники, насосы, компрессоры).

49.​ Пусковые и перегрузочные свойства двигателей постоянного тока.

Пуск двигателя постоянного тока прямым включением его на напряжение сети допустим только для двигателей небольшой мощности. При этом пик тока в начале пуска может быть порядка 4 - 6-кратного номинального. Прямой пуск двигателей постоянного тока значительной мощности совершенно недопустим, потому что начальный пик тока здесь будет равен 15 - 50-кратному номинальному. Поэтому пуск двигателей средних и больших мощностей производят при помощи пускового реостата, который ограничивает ток при пуске до допустимых по коммутации и механической прочности значений.

Пусковой реостат выполняется из провода или ленты с высоким удельным сопротивлением, разделенных на секции. Провода присоединяются к медным кнопочным или плоским контактам в местах перехода от одной секции к другой. По контактам перемещается медная щетка поворотного рычага реостата. Реостаты могут иметь и другое выполнение. Ток возбуждения при пуске двигателя с параллельным возбуждением устанавливается соответствующим нормальной работе, цепь возбуждения включается прямо на напряжение сети, чтобы не было уменьшения напряжения, обусловленного падением напряжения в реостате (см. рис. 1).

Необходимость иметь нормальный ток возбуждения связана с тем, что при пуске двигатель должен развивать возможно больший допустимый момент Мэм, необходимый для обеспечения быстрого разгона. Пуск двигателя постоянного тока производится при последовательном уменьшении сопротивления реостата, обычно - путем перевода рычага реостата с одного неподвижного контакта реостата на другой и выключения секций; уменьшение сопротивления может производиться и путем замыкания накоротко секций контакторами, срабатывающими по заданной программе.

При пуске вручную или автоматически ток изменяется от максимального значения, равного 1,8 -2,5-кратному номинальному в начале работы при данном сопротивлении реостата, до минимального значения, равного 1,1 - 1,5-кратному номинальному в конце работы и перед переключением на другое положение пускового реостата. Ток якоря после включения двигателя при сопротивлении реостата rп составляет

где Uс - напряжение сети.

После включения начинается разгон двигателя, при этом возникает противо-ЭДС Е и уменьшается ток якоря. Если учесть, что механические характеристики n = f1(Mн) и n = f2 (Iя) практически линейны, то при разгоне увеличение скорости вращения будет происходить по линейному закону в зависимости от тока якоря (рис. 1).

Рис. 1. Диаграмма пуска двигателя постоянного тока

Пусковая диаграмма (рис. 1) для различных сопротивлений в цепи якоря представляет собой отрезки линейных механических характеристик. При уменьшении тока якоря IЯ до значения Imin выключается секция реостата с сопротивлением r1 и ток возрастает до значения

где E1 - ЭДС в точке А характеристики; r1-сопротивление выключаемой секции.

Затем снова происходит разгон двигателя до точки В, и так далее вплоть до выхода на естественную характеристику, когда двигатель будет включен прямо на напряжение Uc. Пусковые реостаты рассчитаны по нагреву на 4 -6 пусков подряд, поэтому нужно следить, чтобы в конце пуска пусковой реостат был полностью выведен.

При остановке двигатель отключается от источника энергии, а пусковой реостат полностью включается - двигатель готов к следующему пуску. Для устранения возможности появления больших ЭДС самоиндукции при разрыве цепи возбуждения и при ее отключении цепь может замыкаться на разрядное сопротивление.

В регулируемых приводах пуск двигателей постоянного тока производится путем постепенного повышения напряжения источника питания так, чтобы ток при пуске поддерживался в требуемых пределах или сохранялся в течение большей части времени пуска примерно неизменным. Последнее можно осуществить путем автоматического управления процессом изменения напряжения источника питания в системах с обратными связями.

Пуск и Остановка МПТ

Прямым включением его на напряжение сети допустим только для двигателей небольшой мощности. При этом пик тока в начале пуска может быть порядка 4 - 6-кратного номинального. Прямой пуск двигателей постоянного тока значительной мощности совершенно недопустим, потому что начальный пик тока здесь будет равен 15 - 50-кратному номинальному. Поэтому пуск двигателей средних и больших мощностей производят при помощи пускового реостата, который ограничивает ток при пуске до допустимых по коммутации и механической прочности значений.

Пуск двигателя постоянного тока производится при последовательном уменьшении сопротивления реостата, обычно - путем перевода рычага реостата с одного неподвижного контакта реостата на другой и выключения секций; уменьшение сопротивления может производиться и путем замыкания накоротко секций контакторами, срабатывающими по заданной программе.

При пуске вручную или автоматически ток изменяется от максимального значения, равного 1,8 -2,5-кратному номинальному в начале работы при данном сопротивлении реостата, до минимального значения, равного 1,1 - 1,5-кратному номинальному в конце работы и перед переключением на другое положение пускового реостата.

Торможение необходимо для того, чтобы уменьшить время выбега двигателей, которое при отсутствии торможения может быть недопустимо велико, а также для фиксации приводимых механизмов в определенном положении. Механическое торможение двигателей постоянного тока обычно производится при наложении тормозных колодок на тормозной шкив. Недостатком механических тормозов является то, что тормозной момент и время торможения зависят от случайных факторов: попадания масла или влаги на тормозной шкив и других. Поэтому такое торможение применяется, когда не ограничены время и тормозной путь.

В ряде случаев после предварительного электрического торможения при малой скорости можно достаточно точно произвести остановку механизма (например, подъемника) в заданном положении и зафиксировать его положение в определенном месте. Такое торможение применяется и в аварийных случаях.

Электрическое торможение обеспечивает достаточно точное получение требуемого тормозящего момента, но не может обеспечить фиксацию механизма в заданном месте. Поэтому электрическое торможение при необходимости дополняется механическим, которое входит в действие после окончания электрического.

Электрическое торможение происходит, когда ток протекает согласно с ЭДС двигателя. Возможны три способа торможения.

Торможение двигателей постоянного тока с возвратом энергии в сеть. При этом ЭДС Е должна быть больше напряжения источника питания UС и ток будет протекать в направлении ЭДС, являясь током генераторного режима. Запасенная кинетическая энергия будет преобразовываться в электрическую и частично возвращаться в сеть. Схема включения показана на рис. 2, а.

Рис. 2. Схемы электрического торможения двигателей постоянного тока: я - с возвратом энергии в сеть; б - при противовключении; в - динамическое торможение

Торможение двигателя постоянного тока может быть выполнено, когда уменьшается напряжение источника питания так, что Uc< Е, а также при спуске грузов в подъемнике и в других случаях.

Торможение при противовключении выполняется путем переключения вращающегося двигателя на обратное направление вращения. При этом ЭДС Е и напряжение Uc в якоре складываются, и для ограничения тока I следует включать резистор с начальным сопротивлением

где Imах - наибольший допустимый ток.

Торможение связано с большими потерями энергии.

Динамическое торможение двигателей постоянного тока выполняется при включении на зажимы вращающегося возбужденного двигателя резистора rт (рис. 2, в). Запасенная кинетическая энергия преобразуется в электрическую и рассеивается в цепи якоря как тепловая. Это наиболее распространенный способ торможения.

Схемы включения двигателя постоянного тока параллельного (независимого) возбуждения: а - схема включения двигателя, б - схема включения при динамическом торможении, в - схема для противовключения.

Переходные процессы в МПТ

В общем случае в электрической цепи переходные процессы могут возникать, если в цепи имеются индуктивные и емкостные элементы, обладающие способностью накапливать или отдавать энергию магнитного или электрического поля. В момент коммутации, когда начинается переходный процесс, происходит перераспределение энергии между индуктивными, емкостными элементами цепи и внешними источниками энергии, подключенными к цепи. При этом часть энергия безвозвратно преобразуется в другие виды энергий (например, в тепловую на активном сопротивлении).

После окончания переходного процесса устанавливается новый установившийся режим, который определяется только внешними источниками энергии. При отключении внешних источников энергии переходный процесс может возникать за счет энергии электромагнитного поля, накопленной до начала переходного режима в индуктивных и емкостных элементах цепи.

Изменения энергии магнитного и электрического полей не могут происходить мгновенно, и, следовательно, не могут мгновенно протекать процессы в момент коммутации. В самом деле, скачкообразное (мгновенное) изменение энергии в индуктивном и емкостном элементе приводит к необходимости иметь бесконечно большие мощности p = dW/dt, что практически невозможно, ибо в реальных электрических цепях бесконечно большой мощности не существует.

Таким образом, переходные процессы не могут протекать мгновенно, так как невозможно в принципе мгновенно изменять энергию, накопленную в электромагнитном поле цепи. Теоретически переходные процессы заканчиваются за время t→∞. Практически же переходные процессы являются быстропротекающими, и их длительность обычно составляет доли секунды. Так как энергия магнитного W М и электрического полей W Э описывается выражениями

то ток в индуктивности и напряжение на емкости не могут изменяться мгновенно. На этом основаны законы коммутации.

Первый закон коммутации состоит в том, что ток в ветви с индуктивным элементом в начальный момент времени после коммутации имеет то же значение, какое он имел непосредственно перед коммутацией, а затем с этого значения он начинает плавно изменяться. Сказанное обычно записывают в виде i L (0 -) = i L (0 +), считая, что коммутация происходит мгновенно в момент t = 0.

Второй закон коммутации состоит в том, что напряжение на емкостном элементе в начальный момент после коммутации имеет то же значение, какое оно имело непосредственно перед коммутацией, а затем с этого значения оно начинает плавно изменяться: U C (0 -) = U C (0 +).

Следовательно, наличие ветви, содержащей индуктивность, в цепи, включаемой под напряжение, равносильно разрыву цепи в этом месте в момент коммутации, так как i L (0 -) = i L (0 +). Наличие в цепи, включаемой под напряжение, ветви, содержащей разряженный конденсатор, равносильно короткому замыканию в этом месте в момент коммутации, так как U C (0 -) = U C (0 +).

Однако в электрической цепи возможны скачки напряжений на индуктивностях и токов на емкостях.

В электрических цепях с резистивными элементами энергия электромагнитного поля не запасается, вследствие чего в них переходные процессы не возникают, т.е. в таких цепях стационарные режимы устанавливаются мгновенно, скачком.

В действительности любой элемент цепи обладает каким-то сопротивлением r, индуктивностью L и емкостью С, т.е. в реальных электротехнических устройствах существуют тепловые потери, обусловленные прохождением тока и наличием сопротивления r, а также магнитные и электрические поля.

Переходные процессы в реальных электротехнических устройствах можно ускорять или замедлять путем подбора соответствующих параметров элементов цепей, а также за счет применения специальных устройств

52. Магнитогидродинамические машины постоянного тока. Магнитная гидродинамика (МГД) является областью науки, изучающей законы физических явлений в электропроводящих жидких и газовых средах при их движении в магнитном поле. На этих явлениях основан принцип действия различных магнитогидродинамических (МГД) машин постоянного и переменного тока. Некоторые МГД машины находят применение в различных областях техники, а другие имеют значительные перспективы применения в будущем. Ниже рассматриваются принципы устройства и действия МГД машин постоянного тока.

Электромагнитные насосы для жидких металлов

Рисунок 1. Принцип устройства электромагнитного насоса постоянного тока

В насосе постоянного тока (рисунок 1) канал 2 с жидким металлом помещается между полюсами электромагнита 1 и с помощью электродов 3, приваренных к стенкам канала, через жидкий металл пропускается постоянный ток от внешнего источника. Так как ток к жидкому металлу в данном случае подводится кондуктивным путем, то такие насосы называются также кондукционными.

При взаимодействии поля полюсов с током в жидком металле на частицы металла действуют электромагнитные силы, развивается напор и жидкий металл приходит в движение. Токи в жидком металле искажают поле полюсов ("реакция якоря"), что приводит к снижению эффективности насоса. Поэтому в мощных насосах между полюсными наконечниками и каналом помещаются шины ("компенсационная обмотка"), которые включаются последовательно в цепь тока канала во встречном направлении. Обмотка возбуждения электромагнита (на рисунке 1 не показана) обычно включается последовательно в цепь тока канала и имеет при этом только 1 – 2 витка.

Применение кондукционных насосов возможно для малоагрессивных жидких металлов и при таких температурах, когда стенки канала можно изготовить из жаропрочных металлов (немагнитные нержавеющие стали и так далее). В противном случае более подходящими являются индукционные насосы переменного тока.

Насосы описанного типа стали находить применение около 1950 года в исследовактельских целях и в таких установках с ядерными реакторами, в которых для отвода тепла из реакторов используются жидкометаллические носители: натрий, калий, их сплавы, висмут и другие. Температура жидкого металла в насосах при этом составляет 200 – 600 °С, а в некоторых случаях до 800 °С. Один из выполненных насосов для натрия имеет следующие расчетные данные: температура 800 °С, напор 3,9 кгс/см², расход 3670 м³/ч, полезная гидравлическая мощность 390 кВт, потребляемый ток 250 кА, напряжение 2,5 В, потребляемая мощность 625 кВт, коэффициент полезного действия 62,5 %. Другие характерные данные этого насоса: сечение канала 53 × 15,2 см, скорость течения в канале 12,4 м/с, активная длина канала 76 см.

Преимущество электромагнитных насосов состоит в том, что они не имеют движущихся частей и тракт жидкого металла может быть герметизирован.

Насосы постоянного тока требуют для питания источников с большой силой тока и малым напряжением. Для питания мощных насосов выпрямительные установки малопригодны, так как они получаются громоздкими и с малым коэффициентом полезного действия. Более подходящими в этом случае являются униполярные генераторы, смотрите статью "Специальные типы генераторов и преобразователей постоянного тока".

Плазменные ракетные двигатели

Рассмотренные электромагнитные насосы являются своеобразными двигателями постоянного тока. Подобные устройства в принципе пригодны также для разгона, ускорения или перемещения плазмы, то есть высокотемпературного (2000 – 4000 °С и больше) ионизированного и поэтому электропроводящего газа. В связи с этим производится разработка реактивных плазменных двигателей для космических ракет, причем ставится задача получения скоростей истечения плазмы до 100 км/с. Такие двигатели не будут обладать большой силой тяги и поэтому будут пригодны для работы вдали от планет, где поля тяготения слабы; однако они имеют то преимущество, что массовый расход вещества (плазмы) мал. Необходимую для их питания электрическую энергию предполагается получать с помощью ядерных реакторов. Для плазменных двигателей постоянного тока трудную проблему составляет создание надежных электродов для подвода тока к плазме.

Магнитогидродинамические генераторы

МГД машины, как и всякие электрические машины, обратимы. В частности, устройство, изображенное на рисунке 1, может работать также в режиме генератора, если через него прогонять проводящую жидкость или газ. При этом целесообразно иметь независимое возбуждение. Генерируемый ток снимается с электродов.

На таком принципе строятся электромагнитные расходомеры воды, растворов щелочей и кислот, жидких металлов и тому подобного. Электродвижущая сила на электродах при этом пропорциональна скорости движения или расходу жидкости.

МГД генераторы представляют интерес с точки зрения создания мощных электрических генераторов для непосредственного превращения тепловой энергии в электрическую. Для этого через устройство вида, изображенного на рисунке 1, необходимо пропускать со скоростью порядка 1000 м/с проводящую плазму. Такую плазму можно получить при сжигании обычного топлива, а также путем нагревания газа в ядерных реакторах. Для увеличения проводимости плазмы в нее можно вводить небольшие присадки легко ионизируемых щелочных металлов.

Электропроводность плазмы при температурах порядка 2000 – 4000 °С относительно мала (удельное сопротивление около 1 Ом × см = 0,01 Ом × м = 104 Ом × мм² / м, то есть примерно в 500 000 раз больше, чем у меди). Тем не менее в мощных генераторах (порядка 1 млн. кВт) возможно получение приемлемых технико-экономических показателей. Разрабатываются также МГД генераторы с жидкометаллическим рабочим телом.

При создании плазменных МГД генераторов постоянного тока возникают трудности с выбором материалов для электродов и с изготовлением надежных в работе стенок каналов. В промышленных установках также сложную задачу представляет собой преобразование постоянного тока относительно низкого напряжения (несколько тысяч вольт) и большой силы (сотни тысяч ампер) в переменный ток.

53. Униполярные машины. Первыйлярный генератор изобрел Майкл Фарадей. Суть эффекта, открытого Фарадеем, заключается в том, что при вращении диска в поперечном магнитном поле, на электроны в диске действует сила Лоренца, которая смещает их к центру или к периферии, в зависимости от направления поля и вращения. Благодаря этому, возникает электродвижущая сила, и через токосъемные щетки, касающиеся оси и периферии диска, можно снимать значительный ток и мощность, хотя напряжение небольшое (обычно, доли Вольта). Позднее, было обнаружено, что относительное вращение диска и магнита не является необходимым условием. Два магнита и токопроводящий диск между ними, вращающиеся вместе, также показывают наличие эффекта униполярной индукции. Магнит, сделанный из электропроводящего материала, при вращении, также может работать, в качестве униполярного генератора: он сам является и диском с которого щетками снимаются электроны, и он же является источником магнитного поля. В связи с этим, принципы униполярной индукции развиваются в рамках концепции движения свободных заряженных частиц относительно магнитного поля, а не относительно магнитов. Магнитное поле, в таком случае, считается неподвижным.

Споры о таких машинах шли долго. Понять, что поле есть свойство «пустого» пространства, физики, отрицающие существование эфира, не могли. Это правильно, поскольку «пространство не пустое», в нем есть эфир, и именно он обеспечивает среду существования магнитного поля, относительно которого вращаются и магниты, и диск. Магнитное поле можно понимать, как замкнутый поток эфира. Поэтому, относительное вращение диска и магнита не является обязательным условием.

В работах Тесла, как мы уже отмечали, были сделаны усовершенствования схемы (увеличен размер магнитов, а диск сегментирован), что позволяет создавать самовращающиеся униполярные машины Тесла.

В двигателе последовательного возбуждения, который иногда называют сериесным, обмотка возбуждения включена последовательно с обмоткой якоря (рис. 1). Для такого двигателя справедливо равенство I в =I a =I, следовательно, его магнитный поток Ф зависит от нагрузки Ф=f(I a). В этом главная особенность двигателя последовательного возбуждения и она определяет его свойства.

Рис. 1 — Схема электродвигателя последовательного возбуждения

Скоростная характеристика представляет зависимость n=f(I a) при U=U н. Она не может быть точно выражена аналитически во всем диапазоне изменения нагрузки от холостого хода до номинальной из-за отсутствия прямой пропорциональной зависимости между I a и Ф. Приняв допущение Ф=кI a , запишем аналитическую зависимость скоростной характеристики в виде

При увеличении тока нагрузки гиперболический характер скоростной характеристики нарушается и приближается к линейному, так как при насыщении магнитной цепи машины с увеличением тока I a магнитный поток остается практически постоянным (рис. 2). Крутизна характеристики зависит от величины?r.

Рис. 2 — Скоростные характеристики двигателя последовательного возбуждения

Таким образом, скорость сериесного двигателя резко изменяется с изменением нагрузки и такая характеристика называется «мягкой».

При малых нагрузках (до 0,25 I н) скорость двигателя после­довательного возбуждения может возрасти до опасных пределов (двигатель идет «вразнос»), поэтому работа таких двигателей на холостом ходу не допускается.

Моментная характеристика — это зависимость M=f(I a) при U=U н. Если предположить, что магнитная цепь не насыщена, то Ф=кI a и, следовательно, имеем

М=с м I a Ф=с м кI a 2

Это уравнение квадратичной параболы.

Кривая моментной характе­ристики изображена на рисунке 3.8. По мере увеличения тока I a магнитная система двигателя насыщается, и характеристика постепенно приближается к прямой.

Рис. 3 — Моментная характеристика двигателя последовательного возбуждения

Таким образом, электродвигатель последовательного возбуждения развивает момент, пропорциональный I a 2 , что и определяет главное его преимущество. Так как при пуске I a =(1,5..2)I н, то двигатель последовательного возбуждения развивает значительно больший пусковой момент по сравнению с двигателями параллельного возбуждения, поэтому он широко используется в условиях тяжелых пусков и при возможных перегрузках.

Механическая характеристика представляет собой зависимость n=f(M) при U=U н. Аналитическое выражение этой характеристики может быть получено только в частном случае, когда магнитная цепь машины ненасыщенна и поток Ф пропорционален току якоря I a . Тогда можно записать

Решая совместно уравнения, получаем

т.е. механическая характеристика двигателя последовательного возбуждения, также как и скоростная, имеет гиперболический характер (рис. 4).

Рис. 4 — Механические характеристики двигателя последовательного возбуждения

Характеристика КПД двигателя последовательного возбуждения имеет обычный для электродвигателей вид ().

В этом двигателе обмотка возбуждения включена последова­тельно в цепь якоря (рис. 29.9, а ), поэтому магнитный поток Ф в нем зависит от тока нагрузки I = I a = I в . При небольших нагрузках магнитная система машины не насыщена и зависимость магнитно­го потока от тока нагрузки прямо пропорциональна, т. е. Ф = k ф I a (k ф — коэффициент пропорциональности). В этом случае найдем электромагнитный момент:

Формула частоты вращения примет вид

На рис. 29.9, б представлены рабочие характеристики M = F(I) и n= (I) двигателя последовательного возбуждения. При больших нагрузках наступает насыщение магнитной системы двигателя. В этом случае магнитный поток при возрастании нагрузки практически не изменяется и характеристики двигате­ля приобретают почти прямолинейный характер. Характери­стика частоты вращения двигателя последовательного возбуж­дения показывает, что частота вращения двигателя значительно меняется при изменениях нагрузки. Такую характеристику принято называть мягкой.

Рис. 29.9. Двигатель последовательного возбуждения:

а - принципиальная схема; б - рабочие характеристики; в - механические характеристики; 1 - естественная характеристика; 2 - искусственная характе­ристика

При уменьшении нагрузки двигателя последовательного воз­буждения частота вращения резко увеличивается и при нагрузке меньше 25% от номинальной может достигнуть опасных для дви­гателя значений («разнос»). Поэтому работа двигателя последова­тельного возбуждения или его пуск при нагрузке на валу меньше 25% от номинальной недопустима.

Для более надежной работы вал двигателя последовательного возбуждения должен быть жестко соединен с рабочим механиз­мом посредством муфты и зубчатой передачи. Применение ремен­ной передачи недопустимо, так как при обрыве или сбросе ремня может произойти «разнос» двигателя. Учитывая возможность ра­боты двигателя на повышенных частотах вращения, двигатели по­следовательного возбуждения, согласно ГОСТу, подвергают ис­пытанию в течение 2 мин на превышение частоты вращения на 20% сверх максимальной, указанной на заводском щите, но не меньше чем на 50% сверх номинальной.

Механические характеристики двигателя последовательного возбуждения n=f(M) представлены на рис. 29.9, в. Резко падающие кривые механических характеристик (естественная 1 и искус­ственная 2 ) обеспечивают двигателю последовательного возбуж­дения устойчивую работу при любой механической нагрузке. Свойство этих двигателей развивать большой вращающий момент, пропорциональный квадрату тока нагрузки, имеет важное значе­ние, особенно в тяжелых условиях пуска и при перегрузках, так как с постепенным увеличением нагрузки двигателя мощность на его входе растет медленнее, чем вращающий момент. Эта особенность двигателей последовательного возбуждения является одной из причин их широкого применения в качестве тяговых двигателей на транспорте, а также в качестве крановых двигателей в подъем­ных установках, т. е. во всех случаях электропривода с тяжелыми условиями пуска и сочетания значительных нагрузок на вал двига­теля с малой частотой вращения.

Номинальное изменение частоты вращения двигателя после­довательного возбуждения

где n - частота вращения при нагрузке двигателя, составляю­щей 25% от номинальной.

Частоту вращения двигателей последовательного возбуждения можно регулировать изменением либо напряжения U, либо маг­нитного потока обмотки возбуждения. В первом случае в цепь якоря последовательно включают регулировочный реостат R рг (рис. 29.10, а ). С увеличением сопротивления этого реостата уменьшаются напряжение на входе двигателя и частота его вра­щения. Этот метод регулирования применяют главным образом в двигателях небольшой мощности. В случае значительной мощно­сти двигателя этот способ неэкономичен из-за больших потерь энергии в R рг . Кроме того, реостат R рг , рассчитываемый на рабочий ток двигателя, получается громоздким и дорогостоящим.

При совместной работе нескольких однотипных двигателей частоту вращения регулируют изменением схемы их включения относительно друг друга (рис. 29.10, б ). Так, при параллельном включении двигателей каждый из них оказывается под полным напряжением сети, а при последовательном включении двух дви­гателей на каждый двигатель приходится половина напряжения сети. При одновременной работе большего числа двигателей воз­можно большее количество вариантов включения. Этот способ регулирования частоты вращения применяют в электровозах, где установлено несколько одинаковых тяговых двигателей.

Изменение подводимого к двигателю напряжения возможно при питании двигателя от источника постоянного тока с регулируемым напряжением (например, по схеме, аналогичной рис. 29.6, а ). При уменьшении подводимого к двигателю напряжения его механические характеристики смещаются вниз, практически не меняя своей кривизны (рис. 29.11).

Рис. 29.11. Механические характеристики двигателя последовательного возбуждения при изменении подводимого напряжения

Регулировать частоту вращения двигателя изменением маг­нитного потока можно тремя способами: шунтированием обмотки возбуждения реостатом r рг , секционированием обмотки возбужде­ния и шунтированием обмотки якоря реостатом r ш . Включение реостата r рг , шунтирующего обмотку возбуждения (рис. 29.10, в ), а также уменьшение сопротивления этого реостата ведет к сниже­нию тока возбуждения I в = I a — I рг , а следовательно, к росту частоты вращения. Этот способ экономичнее предыдущего (см. рис. 29.10, а ), применяется чаще и оценива­ется коэффициентом регули­рования

Обычно сопротивление рео­стата r рг принимается таким, чтобы k рг >= 50% .

При секционировании об­мотки возбуждения (рис. 29.10, г ) отключение части витков об­мотки сопровождается ростом частоты вращения. При шунти­ровании обмотки якоря реоста­том r ш (см. рис. 29.10, в ) увели­чивается ток возбуждения I в = I a +I рг , что вызывает уменьшение частоты вращения. Этот способ регулирования, хотя и обеспечивает глубокую регулировку, неэкономичен и применяется очень редко.

Рис. 29.10. Регулирование частоты вращения двигателей последователь­ного возбуждения.