Новое в двс. Гениальное – просто: в России придумали, как улучшить ДВС

Электрическая розетка стала символом прогресса. Стенды большинства автокомпаний на прошедшем в январе Детройтском автосалоне буквально били током, а любое упоминание о старом добром ДВС звучало дурным тоном. Так что же — двигатель внутреннего сгорания с треском накрылся капотом? Не спешите с соболезнованиями. По‑крайней мере там же, в Детройте, представитель Toyota Коеи Сага на вопрос репортеров о том, когда ДВС, наконец, выйдет из игры, простодушно ответил: «Никогда! Когда кончится нефть, человечество будет заправлять его водородом».

Аналитики американского Департамента энергетики DOE считают, что ДВС может попыхтеть еще несколько десятилетий. Причем прирост эффективности бензиновых и дизельных двигателей к 2020 году может составить 30%, а к 2030-му — 50%. Технологии, которые помогут добиться этих результатов, тестируются уже сегодня.

Вездесущее пламя

В далеком 1978 году группа ученых японского института Clean Engine Research, пытавшихся оптимизировать процесс сгорания топлива в двухтактных мотоциклетных моторах, случайно зафиксировала необычный феномен, названный HCCI (Homogeneous charge compression ignition). При достижении определенного давления в камере бензинового двухтактника возгорание топливовоздушного заряда происходило без искры свечи зажигания. Но самое интересное — вместо привычного зажигания смеси около свечи и последующего распространения пламени на периферию в камере одновременно возникало огромное количество микроочагов возгорания. Как следствие, смесь сгорала при более низкой, чем обычно, температуре, очень быстро и практически полностью. Имеющийся в то время математический аппарат и уровень развития термодинамики не позволили понять причины возникновения феномена HCCI, и его посчитали курьезом. Через 20 лет в арсенале инженеров появились мощные средства компьютерного моделирования, которые помогли приоткрыть завесу тайны над HCCI. Работы в этой области в конце 1990-х годов начались в Германии (Mercedes-Benz, Volkswagen), Японии (Nissan) и Америке (General Motors).

Американский инженер Джон Заяц предложил собственную концепцию ДВС, близкую к двигателю с раздельным циклом Scuderi. Изобретатель утверждает, что его двигатель на 15% экономичнее дизеля и на 30% - бензинового аналога по мощности. В двигателе Заяца воздух из цилиндра сжатия попадает в камеру, в которой создается повышенное давление топливной смеси, на 40% больше обычного уровня для бензиновых моторов. Камера, её форма, принцип работы, дизайн и материалы для изготовления защищены 19 патентами. Воздух в ней смешивается с топливом и возгорается. Процесс сгорания смеси по времени намного продолжительней, чем в обычном ДВС. Внутри камеры создается особая среда — «горячая стена», которая является фактически аккумулятором энергии — неизменная температура и давление в ней сохраняются в 10−100 раз дольше, чем в камере сгорания обычного мотора. Затем раскаленные газы через специальный клапан попадают в рабочий цилиндр. Простота, минимимальное количество деталей и эффективность разработки Zajac Motors привлекли пристальное внимание автогигантов. В 2009 году у Заяца появились серьезные партнеры — General Motors и канадская Magna.

Для образования однородного топливовоздушного облака с предельно низкой плотностью в состав смеси вводятся горячие отработанные газы. Они быстро разогревают этот коктейль, облегчая его перемешивание внутри камеры. Если в условиях классического прямого впрыска топливо распыляется в виде аэрозоля, то в HCCI смесь представляет собой мельчайший туман. Когда поршень сжимает смесь до определенного объема, температура подскакивает до точки самовоспламенения. Сгорание HCCI характерно отсутствием открытого пламени и более низкой, чем у дизельных двигателей, температурой. В результате доля сгоревшего топлива вырастает до 95−97% в сравнении с 75% в циклах Отто и Дизеля. Причем на богатых смесях HCCI не работает — ему нужны почти гомеопатические доли топлива, на 30 и более процентов беднее, чем у лучших современных ДВС.

Тем не менее отработанная технология HCCI — пока еще дело будущего. Термодинамика процесса чрезвычайно сложна и требует от ученых решения массы проблем. Главные из них — неустойчивая работа на холостых и максимальных оборотах, неконтролируемая детонация остатков смеси и неравномерность распределения топливовоздушного облака в камере. Правда, в последние месяцы хорошие новости появляются ободряюще регулярно. Специалисты General Motors сообщают, что сумели обуздать стихию на малых оборотах, а британские инженеры из Lotus заявляют, что построили работающий прототип супердвигателя Omnivore, «снизу доверху» поддерживающий процесс HCCI. По мнению вице-президента компании Bosch Хеннинга Шнайдера, автомобили с расходом топлива в пределах 3 л на 100 км, оснащенные ДВС с технологией HCCI, станут серийными уже в 2015 году. У Volkswagen подход более осторожный — компания разрабатывает новый двигатель, работающий с использованием свечей зажигания при полной нагрузке и на холостом ходу, а в среднем диапазоне оборотов — в режиме HCCI. Инженеры Nissan также не стоят на месте — недавно они объявили о создании мощного софта, позволяющего создать компьютерную модель феномена HCCI, и уже начали работать над собственным супердвигателем.


Разделение труда

В пасхальное утро 2001 года инженер Кармело Скудери собрал в своем доме все семейство и торжественно сообщил, что разработал ДВС нового типа, который перевернет мир. Детальное описание технологии поместилось в нескольких рукописных блокнотах — старик не жаловал компьютер и все свои расчеты делал на логарифмической линейке. В 2002 году Кармело, только начав консультации с учеными Университета Саутвест, умер от инфаркта. Дело отца взяли в свои руки дети Скудери, и спустя всего восемь лет действующий прототип двигателя с разделенным циклом (Split-Cycle Combustion SCC) был представлен на Всемирном конгрессе Общества автомобильных инженеров SAE в Детройте. Надо сказать, что концепция разделенного цикла не нова. Еще в 1891 году американская компания Backus Water Motor Company выпускала малыми сериями такие моторы, но они не получили распространения, и идея сто лет пролежала на полке.

В двигателе Отто каждый поршень последовательно совершает такты всасывания, сжатия, рабочего хода и выпуска. В разработке Скудери обязанности по‑братски делятся между парными цилиндрами: один предназначен для впуска и сжатия, другой — для рабочего такта и выпуска отработанных газов. Цилиндры соединяются между собой каналами с клапанным механизмом, по которым сжатая топливовоздушная смесь поступает в рабочий цилиндр. Двигатель Скудери состоит из двух таких пар.

В цикле Отто рабочий ход происходит на каждом втором обороте коленчатого вала, в двигателе Скудери — на каждом. Разделение функций цилиндров позволяет более эффективно использовать каждый из них, например, увеличить ход рабочего поршня и длительность сгорания топлива, не превышая допустимой степени сжатия топлива. Зажигание смеси происходит после того, как рабочий поршень начинает двигаться вниз, в отличие от обычного двигателя с опережением зажигания. Расчеты показывают, что разделение цикла дает гораздо более высокую степень сжатия смеси и быстрое и полное ее сгорание.


В камере сгорания двигателя с системой HCCI (Homogeneous charge compression ignition) одновременно возникает огромное количество микроочагов возгорания. Экологические характеристики HCCI впечатляют. Если процесс сгорания солярки в дизельных двигателях вызывает повышенное образование сажи и окисей азота, то более «холодному» HCCI эти болячки неведомы. По словам Херманна Миддендорфа, руководителя проекта по разработке суперкомпактных бензиновых моторов EA111 компании Volkswagen, агрегаты типа HCCI смогут обойтись без дорогостоящего катализатора.

Сыновья Кармело усовершенствовали конструкцию мотора, добавив к ней баллон со сжатым воздухом. Воздух поступает в рабочий цилиндр, улучшая процесс сгорания смеси. При этом отработанные газы мотора Скудери содержат на 80% меньше углекислого газа и окисей азота, чем у традиционных четырехтактников. КПД мотора Скудери на 5−10% выше, чем у самых продвинутых современных дизельных турбоагрегатов. Добавление наддува увеличивает разрыв по КПД до 25−50%.

В 2008 году двигатель SCC привлек внимание нескольких крупных автопроизводителей, включая PSA Peugeot Сitroёn и Honda, которые подписали со Scuderi Group соглашения о доступе к изучению патентованной технологии. Немецкий Daimler и итальянский Fiat также публично подтвердили высокий интерес к мотору Скудери. Компания Robert Bosch заключила контракт со Scuderi Group на разработку компонентов к SCC в надежде, что однажды эта технология станет серийной. А выдающийся специалист по термодинамике из Массачусетского технологического института профессор Джон Хейвуд назвал разделенный цикл сгорания реальной альтернативой HCCI. Наладить сборку таких ДВС в промышленных масштабах на существующих заводах несложно — никаких экзотических материалов и нестандартных технологических операций для этого не требуется.

Всеядный двухтактник

Многие специалисты по ДВС сегодня делают ставку на механизм изменяемой степени сжатия VCR (Variable Compression Rate). Еще в марте 2000-го инженеры Saab представили прототип автомобиля с экспериментальным бензиновым двигателем 1,6 л с технологией SVC (Saab Variable Compression). Этот мотор выдавал 228 л.с. и 305 Н м крутящего момента, потребляя при этом на 30% меньше топлива, чем обычные аналоги по мощности.


За прошедшие десять лет технология VCR сделала огромный шаг вперед. Французская компания MCE объявила недавно о создании двигателя MCE-5VCR. Степень сжатия в нем изменяется в пределах от 7:1 до 20:1, а расход топлива 1,5-литрового мотора на 30% ниже, чем у аналогов. Американская Envera разрабатывает 4-цилиндровый бензиновый VCR объемом 1,85 л со степенью сжатия от 8,5:1 до 18:1. Работа финансируется Департаментом энергетики США. Целевая мощность мотора составляет 300 л.с.- почти 162 л.с. на 1л объема. Расчетный максимальный крутящий момент превышает 400 Н м при 4000 оборотах вала. Ключевой элемент конструкции — гидравлический актуатор, который поворачивает эксцентрик, связанный с коленвалом двигателя. Качание эксцентрика поднимает и опускает вал относительно головки блока цилиндров, изменяя степень сжатия от 8,5 до 18:1.

Дальше всех в разработке технологии VCR продвинулась знаменитая Lotus Engineering. На Женевском автосалоне в марте 2009 года британцы представили свой концептуальный ДВС Omnivore («Всеядный»). Двухтактный бензиновый мотор с прямым впрыском топлива и изменяемой степенью сжатия от 10:1 до 40:1, по заявлению инженеров Lotus, способен переваривать любое жидкое топливо и при этом экономичен и экологически чист.

Пять тактов, три циллиндра

На выставке Engine EXPO 2009 британская компания Ilmor Engineering представила концептуальный пятитактный ДВС. Идея автора концепции Герхарда Шмитца заключается в использовании четырех- и двухтактной схемы в одном агрегате. Три цилиндра пятитактного ДВС имеют разный внутренний диаметр. Маленькие первый и третий работают по обычному четырехтактному циклу. Средний, низкого давления, — на остаточном расширении отработанных газов в двухтактном режиме. Во время первых трех тактов смесь, как обычно, всасывается, сжимается и совершает рабочий ход в малых цилиндрах. Во время четвертого такта отработавшие газы перемещаются из малых цилиндров в большой и сжимаются. Остаточное расширение выхлопа в большом цилиндре обусловливает пятый, рабочий такт.

Omnivore — это моноблок с цельнолитыми блоком и головкой. Рабочий объем мотора — всего 0,5 л. Одно из главных преимуществ моноблока — отсутствие выработки диаметра цилиндра. В обычных ДВС износ происходит из-за микронных движений болтов в местах крепления головки к блоку. Инновационный улавливающий клапан CTV (Charge Trapping Valve) в выпускном тракте позволяет варьировать время открытия выпускного клапана в широком диапазоне. Система впрыска FlexDI с давлением 6,5 атм для Omnivore создана австралийской компанией Orbital. Она позволяет готовить сбалансированную смесь внутри цилиндра независимо от вида топлива. Такая смесь является базовой для режима HCCI, а система управления впрыском — основой для управления параметрами HCCI.

Механизм изменения степени сжатия Omnivore представляет собой подвижную шайбу в верхней части цилиндра, движущуюся за счет вращения пары эксцентриков. В нижней позиции шайбы степень сжатия достигает 40:1. В шайбу интегрирован один из инжекторов FlexDI, а второй, неподвижный, встроен в корпус цилиндра. Испытания продемонстрировали надежную работу Omnivore в режиме HCCI во всем диапазоне оборотов, при этом он с солидным зазором уложился в рамки нормативов Евро-6.

Почему британцы взялись за двухтактную конфигурацию? «Lotus Engineering, как и многие другие автокомпании, долго придерживалась четырехтактных концепций. Это следствие исторического доминирования таких агрегатов. Проблема таких ДВС — неэффективное сжигание топлива на частичных и экстремальных нагрузках. Двухтактники не страдают этим недугом и потому крайне интересны для автоиндустрии. Кроме того, они не требуют компактизации», — поясняет Джейми Тернер, главный инженер Lotus Engineering. По оценкам Lotus, коммерциализация Omnivore займет еще полтора-два года.

В основу концепции двигателя, придуманного Кармело Скудери, американским автомехаником-самоучкой, положен принцип разделения цилиндров на рабочие и вспомогательные. В отличие от схемы Отто, в двигателе с разделенным циклом SCC (Split-Cycle Combustion) на каждый оборот вала приходится один рабочий такт. Вспомогательные цилиндры, в которых поршень сжимает воздух, соединяются с основными через перепускные каналы. В каждом из каналов находится по два клапана — компрессионный и расширительный. В пространстве между ними воздух достигает максимального уровня сжатия. Впрыск топлива в камеру сгорания рабочего цилиндра происходит одновременно с открытием расширительного клапана, а зажигание — после прохождения поршнем верхней мертвой точки. Волна газов как бы догоняет его, исключая детонацию смеси. В ходе виртуальных испытаний рядного прототипа двигателя Скудери было выявлено, что он очень стабилен. Коэффициент отклонения параметров рабочих тактов от средней величины в наиболее «проблемной» зоне оборотов — от холостых до полутора тысяч — у SCC почти вдвое ниже, чем у ДВС Отто: 1,4% против 2,5. На первый взгляд это немного, но для профессионалов разница огромна. Данный показатель говорит об очень высоком качестве смеси и точнейшей ее дозировке. Безнаддувный четырехцилиндровый рядный двигатель Скудери на 25% экономичнее обычных аналогов по мощности, а его оригинальная гибридизированная версия Scuderi Air-Hybrid — на 30−36%. В Air-Hybrid предварительное сжатие воздуха в пневматическом аккумуляторе-ресивере происходит во время торможения автомобиля. Затем воздух подается в перепускной канал, снижая нагрузку на поршень вспомогательного цилиндра.

Двигатель Скундери. Производство двигателей системы Кармело Скудери можно легко организовать на любом моторостроительном предприятии с использованием традиционных узлов. Но нужно ли это производителям?..

В 2011 году компанией будет представлен двигатель второго поколения с V-образной архитектурой, в котором перепускные каналы будут сделаны в виде отдельных модулей. В первой версии — с цельнолитой головкой — они находились в стенке между парами цилиндров. V-образная схема позволяет улучшить доступ к ним со стороны ресивера и обеспечить более эффективное охлаждение узла. По прогнозам ученых научно-исследовательского института Саутвест, которые вплотную занимаются доводкой виртуальной модели рядного двигателя, разница в КПД между такой «четверкой» и равносильным мотором Отто достигнет 50%. Небольшой вес, отличная удельная мощность (135 л.с. на литр объема) и технологическая простота SCC делают его весьма перспективным для внедрения в жизнь. Известно, что пристальный интерес к нему проявляют сразу несколько игроков высшей лиги мирового автопрома, а также производители комплектующих. В частности, знаменитая компания Robert Bosch. Президент Scuderi Group Сэл Скудери уверен, что уже через три года детище его отца пойдет в серию.


Вряд ли Lotus Omnivore когда-либо станет основным силовым агрегатом для автомобиля. Но в качестве вспомогательного — например, генератора — он вполне подходит.

Lotus Omnivore

Кто сказал, что два такта остались в прошлом? Инженеры Lotus Engineering считают, что потенциал двухтактных движков серьезно недооценен автопроизводителями, а   прожорливость — всего лишь миф. Они прогнозируют их триумфальное возвращение в 2013 году под капоты серийных автомобилей. В 2009 году в Женеве компания представила концептуальный 500-кубовый двигатель Omnivore, работающий на любом виде жидкого топлива. Моторчик блещет сразу несколькими инновационными технологиями, главная из которых  - изменяемая степень сжатия при помощи подвижной верхней стенки камеры сгорания. В зависимости от вида топлива и нагрузки сжатие в Omnivore может изменяться в диапазоне от 10 до 40 к одному. Приготовление сбалансированной топливовоздушной смеси обеспечивает система прямого впрыска Orbital FlexDI с двумя инжекторами, а   параметрами отвода отработанных газов управляет патентованный улавливающий клапан CTV (Charge Trapping Valve). Похоже, британцам удалось то, к чему стремятся все разработчики инновационных ДВС: в цикле стендовых испытаний Omnivore уверенно поддерживал режим сгорания HCCI даже на оборотах холостого хода и в «красной зоне». Конструкция Omnivore замечательна еще и тем, что его блок и головка отлиты в одной цельной детали.


Ecomotors OPOC. Одним из основных преимуществ конструкции профессора Хоффбауэра является возможность «надевать» на коленвал всё новые и новые пары цилиндров, получая нечто вроде модульного двигателя.

Согласно спецификации, концепт на 10% экономичнее атмосферных бензиновых двигателей равной мощности, а по чистоте выхлопа легко дотягивает до нормативов Евро-6. Если Lotus сможет заинтересовать автопроизводителей, то потомки концептуального Omnivore станут первыми кандидатами на роль бортовых генераторов для электрогибридов. Для этого у них есть всё: неприхотливость, предельная компактность и высокая энергоемкость.

Ecomotors OPOC

Среди компаний, пытающихся отправить классический ДВС на свалку, американская Ecomotors стоит особняком не только из-за экстравагантности своих идей. Работу над сверхмощным оппозитным двигателем OPOC благословили титан венчурного бизнеса Винод Хосла и миллиардер Билл Гейтс. В совет директоров крохотной компании входит несколько персон, имена которых служат пропуском в закрытый клуб автопроизводителей, а стенды Ecomotors стали привычными на самых элитных мировых автосалонах.


Оппозитный двухтактный двухцилиндровый модульный ДВС под названием OPOC был придуман еще в конце 1990-х годов профессором Петером Хоффбауэром, долгое время работавшим главным мотористом в компании Volkswagen. Суперкомпактный дизель Хоффбауэра демонстрирует беспрецедентно высокую удельную мощность порядка 3 л.с. на килограмм массы. Например, стокилограммовая «труба» выдает 325 л.с. и 900 Нм крутящего момента. При этом КПД OPOC вплотную приближается к 60%, вдвое выигрывая у современных дизельных моторов со сложным наддувом. Одна из главных «фишек» этого оппозитника — возможность составлять из отдельных модулей, каждый из которых является полноценным двигателем, силовые установки рядной 4-, 6- и 8-цилиндровой конфигурации. Парадоксально, но при всей своей заряженности OPOC работает на довольно скромных степенях сжатия в пределах 15−16 к одному и не требует специальной подготовки топлива.

В принципе OPOC — это труба с двумя парами поршней, совершающими одновременные разнонаправленные движения. Пространство между парой — камера сгорания. Шатуны с необычно длинной ножкой соединяют поршни с центральным коленчатым валом. В центре камеры установлена форсунка системы впрыска, а впускные и выпускные порты расположены в области нижней мертвой точки центральных поршней. Порты заменяют сложный клапанный механизм и распредвал. Важный элемент конструкции — электрический турбонагнетатель с предварительным подогревом воздуха, заменяющий, в частности, привычные калильные свечи. В момент запуска турбина подает в камеру сгорания заряд сжатого воздуха, нагретого до 100 °C.


IRIS. Основной «фишкой» конструкции двигателя Iris является высокая полезная площадь «поршней"-лепестков. Неподвижные стенки занимают всего 30% от общей площади камеры сгорания, что позволяет заметно повысить КПД двигателя.

По словам президента компании Дональда Ранкла, бывшего вице-президента General Motors, в настоящее время в собственном техцентре Ecomotors проводятся стендовые испытания шестого поколения двигателя, которые завершатся в начале 2012 года. И это будет уже не очередной рабочий прототип, а агрегат, предназначенный для конвейера. Впрочем, интерес к разработке имеется не только у автомобилистов, но и у военных, производителей авиатехники, строителей и горняков. Запланировано производство сразу четырех типов модулей OPOC с диаметрами поршня 30, 65, 75 и 100 мм.

IRIS

Для многих людей наблюдение за причудливо движущимися, вращающимися и пульсирующими механизмами успешно заменяет таблетки от стресса.

Завораживающее глаз детище ученого, изобретателя и предпринимателя из Денвера Тимбера Дика, трагически погибшего в автокатастрофе в 2008 году, можно отнести к гомеопатическим средствам этой категории. Но двигатель внутреннего сгорания IRIS (Internally Radiating Impulse Structure), несмотря на всю свою оригинальность, вовсе не пустышка. Защищенный со всех сторон патентами, он был отмечен премиями за инновации от NASA, нефтяной корпорации ConocoPhillips и химического гиганта Dow Chemical. Двухтактный ДВС с изменяемой геометрией и площадью поршня, согласно расчетам, имеет КПД 45%, компактные размеры и малый вес. Кроме того, в случае принятия его на вооружение автопроизводителями покупателю не придется переплачивать — цена агрегата будет не выше, чем у обычных бензиновых моторов.


РЛДВС. Отличием роторно-лопастного двигателя от всех остальных, упомянутых в материале, является то, что он находится в считанных миллиметрах от серийного производства. На 2011 год намечены испытания российского «ё-мобиля» с подобным двигателем, а с 2012 года — и серия.

Как считал Дик, в стандартной паре «камера сгорания — рабочая поверхность поршня» самым слабым местом является постоянная площадь контакта. На головку приходится всего 25%  общей площади камеры. В концепции IRIS шесть поршней, представляющих собой стальные, изогнутые волной лепестки, имеют полезную площадь почти в три раза больше - неподвижные стенки камеры занимают лишь 30% площади.

Воздух поступает в камеру сгорания через впускные клапаны, когда лепестки находятся на максимальном удалении от центра. Одновременно через открытые выпускные клапаны удаляется отработанный газ. Затем лепестки, колеблющиеся на валах, смыкаются к середине камеры, сжимая воздух. В момент максимального сближения при полностью закрытых клапанах происходит впрыск топлива и зажигание. Расширяясь, раскаленные газы раздвигают лепестки-поршни, что, в свою очередь, приводит к повороту валов. В верхней мертвой точке открываются выпускные клапаны. Затем все повторяется снова и снова. Довольно простой редуктор превращает колебание шести валов во вращение главного вала.


Российский роторно-лопастной

Роторно-лопастной двигатель (РЛДВС) — это вовсе не разработка XXI века. Его конструкцию придумали еще в 1930-х, и с тех пор не проходило и десятилетия без появления очередного патента на новый РЛД. Самым известным был, пожалуй, двигатель Вигриянова, созданный в 1973  году. Но попадать в серию РЛД никак не хотели. Основной проблемой была сложность синхронизации валов роторов и тем более снятия с них момента — во времена слабого развития электроники синхронизатор занимал чуть ли не целую комнату; РЛД мог использоваться разве что в качестве стационарной силовой установки. Это сводило на нет одно из его главнейших преимуществ — компактность и небольшой вес.

РЛД — это цилиндр, внутри которого на одной оси установлены два ротора, с парой лопастей каждый. Лопасти делят пространство цилиндра на рабочие камеры; в каждой совершается четыре рабочих такта за один оборот вала. Сложность синхронизации обусловлена в первую очередь неравномерным движением роторов друг относительно друга, их «пульсацией».

Но как только на свет появился компактный и удобный механизм синхронизации, РЛД сразу обрел серьезную серийную перспективу. Самое интересное и приятное, что разработали такой механизм в России, в рамках нашумевшего проекта «ё-мобиль». Энергоустановка «ё-мобиля» весит всего 55 кг (35 — двигатель с синхронизатором, 20 — электрогенератор), а мощность может выдавать порядка 100 кВт, хотя для серийных моделей ее ограничат 45 кВт (60 л.с.). Помимо компактности, РЛД характеризуется возможностью масштабирования. Его можно спокойно увеличивать в размерах вплоть до малого судового двигателя мощностью 1000 кВт. Энерговооруженность силовой установки «ё-мобиля» аналогична двухлитровому 150-сильному ДВС традиционной компоновки.

История развития бесшатунных поршневых двигателей предложенных С.Баландиным, берет начало в тридцатых-сороковых годах прошлого века, когда в конструкторском бюро, где работал автор, были разработаны и построены несколько типов авиационных двигателей с необычным, отличным от кривошипно-шатунного, силовым механизмом.

Рис. 1

Рис. 2

Базой для начала проектирования двигателя послужила известная кинематическая схема обращенного эллипсографа (рис.1), траектория движения точек которого описывается уравнением эллипса:

Где r - радиус начальной окружности, а d - координата произвольной точки m .

Все точки, лежащие на прямой А В, описывают эллипсы, точка С - окружность (как частный случай эллипса), точки же А и В, как лежащие на поверхности Д, совершают возвратно-поступательное движение в пределах 4r. Дуга окружности Д без скольжения обкатывается по дуге Е вдвое большего диаметра. Привязав к точкам, лежащим произвольно на поверхности Д (например к точкам А и В), крейцкопфы со штоками и поршнями, а к точке С - выходной вал, получаем бесшатунный механизм, имеющий одну избыточную кинематическую связь. Т.е. для обеспечения прямолинейности траекторий точек А и В, соединенных между собой и с точкой С кривошипа ОС жестким звеном АСВ, достаточно иметь направляющие только у одной точки А или В (рис.2). Но такая схема неприемлема по условиям распределения действующих в механизме сил. Если установить направляющую только в точке А, то по мере приближения угла φ к 90° и 270° составляющие, приложенные к точке А силы P - боковая сила N= P·tg φ и направленная вдоль оси АС сила S=P/cos φ - неограниченно возрастают, стремясь к бесконечности. Поэтому введение в кинематическую схему второй направляющей отвечает условиям работоспособности механизма.
Высказанное выше обоснование принадлежит самому С. Баландину, оно в конечном итоге и определило всю эволюцию развития бесшатунных двигателей первого поколения. Все построенные образцы (в том числе и автором) основывались на схеме с одной избыточной кинематической связью.

Предложенный С.Баландиным силовой механизм бесшатунного двигателя казалось, быстро потеснит двигатели классической компоновки, и машиностроительные предприятия, используя наработки авиационной промышленности, смогут запустить его в серийное производство без особых проблем. К тому времени авиация прочно освоила газовые турбины, и поршневые двигатели ее перестали интересовать.

Вот тут и выяснилось, что для общего машиностроения слишком дорогой ценой обеспечиваются те технологии, которые доступны авиационной промышленности. Встал вопрос об изменении конструкции двигателя под существующие возможности действующих предприятий. При кажущейся простоте механизм содержал неотработанные кинематические связи, а в применении к тепловым машинам они были слабо изучены и поэтому их возможности плохо прогнозировались. Всего одна избыточная кинематическая связь в таком сложном механизме как ДВС ставила под сомнение всю его дальнейшую работоспособность. Тем более не было понимания того, как от этой связи избавиться, синхронизирующий механизм о котором идет речь, являлся неотъемлемой частью самого двигателя. Сегодня, спустя шестьдесят лет с момента появления первого бесшатунного двигателя можно уверенно сказать (лучше поздно,чем никогда), что эта проблема полностью решена.

Рис. 3

1,2,3,4 -поршни; 5,6 - штоковые подшипники; 7,8-консольный вал; 9,10,11,12 - шестерни синхронизирующего механизма; 13-коленчатый вал; А,В,С,Д- подвижные опоры.

На рис.3 изображена типовая кинематическая схема бесшатунного двигателя С.Баландина. Хорошо видно, что всего один планетарно вращающийся вал заменяет в силовом механизме все шатуны. Вал установлен между двумя консольными вращающимися опорами, которые в свою очередь соединены между собой шестеренчатым механизмом. Это и есть универсальный механизм связи поршней, предложенный С.Баландиным и обеспечивший в построенных образцах: малые габариты и вес, высокую оборотность, рациональный двухсторонний рабочий процесс в цилиндрах, эффективную систему охлаждения поршней и наконец, высокий механический КПД, величина которого на некоторых режимах работы двигателя достигала 94 % (в обычных ДВС около 85%).

С выходом в свет книги С.Баландина "Бесшатунные ДВС" 1968 и 1972 г. изданий многочисленными коллективами инженеров и рядом заводов (таких как "Дагдизель", СКБ "Серп и Молот" и т.д.) начали предприниматься попытки построить двигатель, скопировав его в первоначальном, или даже в усовершенствованном вариантах. Процесс проектирования и изготовления проводился, как правило, на основе расчетов и методик, предложенных автором. Вопреки ожиданиям, у большинства построенных образцов при первых оборотах вала происходило заклинивание силового механизма в корпусе двигателя в результате задира поршней о зеркало цилиндров. Те, кто сумел спроектировать и построить работоспособный двигатель, обнаруживали в нем интенсивный износ и выкрашивание крейцкопфных направляющих (питтинг). Все попытки бороться с этим явлением не приносили успеха. Живучесть силового механизма определялась несколькими часами работы.

Постоянные неудачи сформировали в научной и конструкторской среде негативное отношение к самой идее создания бесшатунного двигателя этого типа. Выяснилось, что никто кроме самого С.Баландина так и не смог построить работоспособную конструкцию. По признанию же самого автора, каждый четвертый двигатель, вышедший в свое время из стен его КБ, выходил из строя из-за указанных выше неполадок.

Оглядываясь на классический кривошипно-шатунный механизм обычного (тронкового) двигателя, замечаем, что при всех своих недостатках он обладает высокой надежностью. Его длительная работоспособность определяется тем, что каждая, отдельно взятая деталь этого двигателя испытывает симметричное нагружение. Этому способствует и жесткое крепление коленчатого вала в подшипниковых опорах, стоящих по обе стороны от шатунов. Чего не скажешь о двигателе С.Баландина (рис.3), в котором каждый поршень (1-4) через штоковую (шатунную) шейку (5,6) опирается одной стороной на скользящий крейцкопф (А,В или С,Д), а другой стороной на подверженный изгибу консольный вал (7,8). Соответственно 50% нагрузки от газовых сил приходится на крейцкопфную опору (под ней находится остов двигателя), а остальные 50%, воспринимаются "упругим элементом" - какая уж тут надежность.

В сверхмощных двигателях С.Баландина эта проблема была частично решена путем размещения концевых шеек планетарного вала внутри подшипников большого диаметра, при этом окружные скорости сопрягаемых наружных поверхностей подшипников увеличивались втрое.

Следующей нерешенной проблемой оставалась система подачи масла к трущимся поверхностям подшипников бесшатунного двигателя. Так, если концевые подшипники консольных опор А и Д работают в условиях гидродинамической жидкостной смазки, то создать аналогичные условий работы крейцкопфам В и С которые за один оборот вала дважды останавливаются невозможно, такие подшипники могут работать только как гидростатические опоры т.е. на них распространяется совсем другая теория смазки, она не создает гидродинамического масляного клина между сопрягаемыми плоскостями и ей необходимо отслеживать непрерывно изменяются условия поддержания крейцкопфа над опорными поверхностями. Сказанное лишь разъясняет, что для смазки одной детали- вала, используются принципиально разные системы смазки. Что не есть хорошо. И если это препятствие и не удастся обойти, то необходимо подшипники, принадлежащие общему валу и выполняющие одни и те же функции сделать хотя бы однотипными.

Основная же причина того, что применение рассматриваемой кинематической схемы не получило практической реализации, состоит в том, что она сложнее обычного кривошипно-шатунного механизма. В силовом механизме, помимо основных элементов, используются дополнительные синхронизирующие валы, связанные с основным валом шестернями. Большое количество сопрягаемых элементов требует высокого технологического уровня их изготовления. Соединенные последовательно, шестерни синхронизирующего механизма (9-12) образуют длинную размерную цепь. Значение ее суммарного допуска должно быть меньше величины диаметрального зазора одного из крайних подшипников планетарного вала, иначе невозможно обеспечить его правой и левой половине синхронного вращения. Уложиться же в этот допуск технологически сложно (об этом и шла речь в начале статьи).

Следующий раздел посвящен силовым механизмам нового поколения, где на смену «синхронизирующему механизму» приходят «синхронизирующие шейки», позволяющие в бесшатунном двигателе отказаться от избыточной кинематической связи, поставившей фактически крест на этом направлении.

Рис. 4

Р - сила давления газов; N - боковая сила; S - сила направленная вдоль оси АСВ; 1,2,3,4 - поршень; 5,6 - рабочий крейцкопф; 7,8 - синхронизирующий крейцкопф; I, II - синхронизирующая шейка; α - расстояние между центрами соседних шеек коленчатого вала; А,В,А",В"- опоры.

Как видно из рис. 4 в схеме уже отсутствует ставший привычным механизм синхронизации, вместо него у планетарно вращающегося коленчатого вала появились собственные планетарные опоры способные выполнять те же функции, что и обычные подшипники для вращающихся валов. Расположенные по краям вала они способны обеспечить всем его точкам синхронное орбитальное вращение по заданной траектории. Для этого к рассмотренному планетарному валу конструкции С.Баландина надо добавить две дополнительные шейки (I и II, см. рис.4) с одновременным отказом от избыточной кинематической связи в точке С (точки, ранее жестко связанной с выходным валом) и исключением, а не выбрасыванием, ее из силовой схемы бесшатунного механизма. Под дополнительные шейки вала устанавливаются две новые, зеркально расположенные к А и В крейцкопфные направляющие А" и В". Теперь каждый рабочий поршень получает по две идентичные подвижные опоры, расположенные от него на равном расстоянии справа и слева. Одна из опор (А, В) может нести на себе смежный рабочий поршень, другая (А", В") предотвращает перекосы планетарного вала и обеспечивает его синхронизацию. Такая компоновка позволяет отказаться от механизма синхронизации, состоящего из соединительного вала и набора шестерен т. к. полная синхронизация вала обеспечивается его собственной конструкцией.

Во вновь скомпонованном бесшатунном двигателе планетарно вращающийся вал, объединяющий поршни, как и прежде, содержит рабочие шейки, связанные со штоками поршней, которые всегда движутся прямолинейно. На теле такого вала остаются оси, перемещающиеся по круговой орбите (в первом приближении это окружности) поэтому их легче всего связать с валом отбора мощности, например поводковым механизмом. Если к такому валу, содержащему рабочие шейки и шейки отбора мощности добавить дополнительно две шейки (I, II) назовем их "синхронизирующими", то каждая рабочая шейка в паре с синхронизирующей образует одну планетарную опору, а две пары опор - полноопорный вал (9) с двумя степенями свободы, вращением вокруг собственной оси и, одновременно, планетарным вращением. Тогда характер нагружения вала становится всегда симметричным, а сам коленчатый вал получает возможность самоустанавливаться в опорах. При этом каждая планетарная опора выполнена с возможностью придания смежным опорным шейкам возвратно-поступательного движения в пересекающихся направлениях. Это и обеспечивает устойчивость планетарного вала в любой точке его орбитального обращения.
В качестве примера на рис.4 также изображена схема силового воздействия газов (Р) на поршни двигателя и характер нагружения подшипниковых опор. Поршни со штоками 1 и 3 в качестве опоры используют крейцкопф 6 от поршней 2 и 4, и синхронизирующий крейцкопф 7. Поршни 2 и 4 для опоры используют крейцкопфы 5 и 8, из них крейцкопф 8 является синхронизирующим. В результате, в момент воспламенения горючей смеси в любом из четырех цилиндров двигателя равноотстоящие от рабочего поршня крейцкопфы 6 и 7 или 5 и 8 нагружаются равными долями. При такой компоновке концевые шейки планетарного вала полностью выводятся из зоны действия газовых сил и передают валу отбора мощности, не входящему в силовую схему механизма, только крутящий момент.

Приведем еще несколько примеров, поясняющих принципы симметрии, в приложении к рассматриваемым бесшатунным силовым механизмам.

Рис. 5
Схема оппозитного бесшатунного двигателя:
1,2,3,4- поршни; 5- коленчатый вал; 6,7- противовесы; 8,9- вал(ы) отбора мощности; 10,11- рабочие крейцкопфы; 12,13,14- синхронизирующие крейцкопфы; I, II, III - синхронизирующие шейки.

Лучший образец - кинематическая схема оппозитного бесшатунного двигателя (рис.5). В отличие от крестообразно скомпонованных четырехцилиндровых двигателей (рис.4) чередование между рабочими тактами здесь происходит равномерно, через 180° по углу поворота коленчатого вала. Конструкция силового механизма включает:четыре рабочих поршня со штоками (1-4), два рабочих крейцкопфа (10,11), три синхронизирующих крейцкопфа (12.13,14). Названные элементы объединены общим коленчатым валом (5) и располагаются на его пяти шейках. Шестая и седьмая шейки вала (5) предназначены для установки противовесов (6,7) и передачи крутящего момента валу отбора мощности (8 или 9). Из рис.5 видно, что у каждого рабочего поршня, по обе стороны и на равных расстояниях, располагаются синхронизирующие крейцкопфы (12,13,14). В оппозитном двигателе они выполняют следующие функции:

  • Совместно с рабочими крейцкопфами обеспечивают синхронизацию коленчатого вала.
  • Воспринимают на себя основную нагрузку от газовых сил, отделяя крейцкопфы рабочих цилиндров от "ударного" нагружения в момент воспламенения горючих газов в соседних цилиндрах.
  • Выполняют функции противовесов для уравновешивания всех масс.

Рассмотренный механизм обладает широкими кинематическими возможностями, он прекрасно уравновешивается. И это единственный тип бесшатунного двигателя, в котором ползуны синхронизирующих крейцкопфов могут быть заменены альтернативными им шатунными группами (рис.6).

Рис. 6

1,2,3,4-поршни; 5,6- рабочие крейцкопфы; 7,8,9- шатун; 10- коленчатый вал; I, II, III -синхронизирующие шейки.

В этом случае достаточным условием для обеспечения синхронизации вала (10) будет полное совмещение дублирующих друг друга кинематических пар при их проецировании на плоскость ХОУ. Здесь, как и в предыдущем примере, рабочие крейцкопфы (5,6), принадлежащие поршням (1-4), движутся прямолинейно. Шатуны же (7,8,9) синхронизирующих шеек (I, II, III) имеют общую ось качания. Доводочные работы по реализации разобранной кинематической схемы могут быть существенно сокращены, в основном за счет максимальной ее унификации с элементной базой тронковых ДВС. В общем же случае, все кинематические схемы подчиняются одному правилу: к любому, наперед заданному количеству рабочих шеек надо добавлять по концам вала, как минимум, две синхронизирующие. В этом правиле есть одно исключение - кинематическая схема, в которой все рабочие шейки одновременно являются и синхронизирующими (рис.7).

Рис. 7

1,2,3,4- поршни; 5- коленчатый вал; 6,7- противовесы; 8,9- вал(ы) отбора мощности; 10,11,12- рабочие синхронизирующие крейцкопфы, 13,14- спарники.

Коленчатый вал (10) составляется всего из пяти шеек. Две крайние шейки вала предназначены для передачи крутящего момента и установки на них противовесов (6,7). Остальные шейки заполнены крейцкопфами (10,11,12). Крейцкопфы 11 и 12 замкнуты между собой спарниками (13,14), на них устанавливаются поршни 1 и 2. Центральная шейка вала с крейцкопфом 10 связана штоками с другой парой поршней (3,4). Траектории комплектов поршней 1,2 и 3,4 пересекаются. На период рабочего хода поршень 3 (или 4) в связке с крейцкопфом 10 опирается на крейцкопфы 11 и 12 которые на этот момент выполняют функции синхронизирующих. При совершении рабочего хода 1 (или 2) поршнем совместно с теперь уже рабочими крейцкопфами 11 и 12 опорный крейцкопф 10 становится синхронизирующим. И так по кругу до бесконечности. Плоскость действия газовых сил в таком механизме будет всегда замыкаться тремя центральными шейками вала.

Такое конструктивное решение позволяет располагать четыре рабочих цилиндра в одной плоскости при минимальной длине и максимальной жесткости коленчатого вала. Общее количество пар трения в двигателе по сравнению с тронковым ДВС снижается в два - три раза!!! Здесь, как и в предыдущих переработанных схемах, коленчатый вал отвечает всем необходимым условиям симметричного нагружения (подробнее см. в отраслевом журнале "Двигателестроение" №3 за 1998г. и №1 за 2000г.).

Изложенное описание претендует лишь на звание краткого путеводителя тому, кто интересуется бесшатунными двигателями, и хотел бы попробовать свои силы в этом направлении. И хотя в нем отсутствуют "различные подробности", без которых построить работающую машину практически невозможно, приведенный выше анализ поможет избежать явных ошибок, потерянного времени и средств.

И в заключении перечислим основные преимущества, которыми располагают бесшатунные ДВС:

  • Компоновка бесшатунного двигателя позволяет значительно сократить объем моторного отсека за счет рационального расположения узлов и деталей двигателя.
  • Взаимное сочетание газовых сил и сил инерции приводит к значительному уменьшению результирующих сил, нагружающих кинематические звенья, что позволяет увеличить механический КПД двигателя.
  • Двигатель частично или полностью освобождается от вращающегося маховика, т.к. движущиеся массы поршней с крейцкопфами представляют собой единый поступательно движущийся маховик.
  • В бесшатунном двигателе, чем больше масса поршней со штоками и крейцкопфами, тем и чем выше обороты двигателя (в известных пределах), тем меньше нагрузка на подшипники, в тронковом двигателе - наоборот.
  • Количество функций, возложенных на рабочие поршни уменьшается, (поршни перестают быть парами трения), соответственно надежность их работы увеличивается.
  • Допускается возможность организации рабочего процесса в двигателе по обе стороны рабочего поршня или использования подпоршневого пространства для компрессорного наддува.
  • Появляется возможность улучшения системы охлаждения поршней - прокачиванием масла через поршневые штоки и поршни для их эффективного охлаждения.
  • Становится возможным для прямолинейно движущихся поршней применить лабиринтный вид уплотнений с полным или частичным отказом от поршневых колец.

К сказанному следует добавить что, как и любая поршневая машина, бесшатунный двигатель обладает целым рядом ограничений, препятствующих росту в нем числа оборотов. Это и газораспределение, с возникающими в нем значительными силами инерции от возвратно - поступательного движения клапанов; и большое сопротивление газовоздушного тракта, ограничивающего наполнение рабочих объемов двигателя горючей смесью; и теплонапряженность, постоянно грозящая двигателю перегревом, а в дизельной комплектации существуют еще и ограничения связанные с топливоподводящей аппаратурой.

Двигатели - механизмы, приводящие в движение транспорт или машину. Двигатели работают на топливе (например, двигатели внутреннего сгорания), на ядерной энергии (РИТЭГ), на электричестве (двигатели электромобилей), на водороде, на газу, на дизельном топливе и на многом другом. Тип топлива двигателя определяет его экологичность и другие качества. Двигатели прошли довольно длинную историю, но она еще далеко не окончена. Ученые и инженеры постоянно думают над новым топливом и новыми двигателями, стремясь уместить больше энергии в меньшее количество расходов.

Прямо сейчас на орбите Земли работает тысяча искусственных спутников, практически каждый из которых передвигается при помощи дорогостоящих ионных двигателей со сроком службы не более трех лет. Если эти двигатели такие дорогие и недолговечные, почему бы ученым не разработать более дешевый и надежный вариант управления спутниками? Многих это удивит, но он уже создан и применен в - он движется вокруг планеты за счет солнечных частиц, которые толкают прикрепленный к спутнику парус. Огромное и блестящее полотно было развернуто 23 июля, и его вполне можно разглядеть с Земли.

В конце 2018 года, в ходе очередной переписки в твиттере, основатель SpaceX упомянул российский ракетный двигатель РД-180. Он признал его конструкцию «блестящей» и намекнул, что компаниям Boeing и Lockheed должно быть стыдно за его использование в ракете Atlas. Он пообещал, что его двигатель Raptor опередит российскую разработку, и сдержал слово - стало известно, что ракетный двигатель для космического корабля Starship опередил РД-180 по уровню давления в камере сгорания.

Двигатель внутреннего сгорания без преувеличения раскрутил мотор научно-технического прогресса. Автомобильный транспорт является важнейшим средством перевозки пассажиров и грузов. В США сегодня на 1000 человек приходится почти 800 автомобилей, а к 2020 году в России этот показатель составит около 350 машин на тысячу населения.

Подавляющее большинство из более миллиарда автомобилей на планете все еще используют двигатель внутреннего сгорания (ДВС), изобретенный в XIX веке. Несмотря на все технологические ухищрения и «умную» электронику, коэффициент полезного действия современных бензиновых двигателей все еще "топчется" вокруг отметки в 30%. Самые экономичные дизельные ДВС имеют КПД в 50%, то есть даже они половину топлива выбрасывают в виде вредных веществ в атмосферу.

Естественно, говорить об экономичности ДВС не приходится, особенно если учесть, что современные автомобили сжигают по 10-20 литров горючего на 100 км пути. Не удивительно, что ученые по всему миру пытаются создать доступные электрические и водородные авто. Однако и концепция двигателя внутреннего сгорания не исчерпала потенциал модернизации. Благодаря последним достижениям в области электроники и материалов, появилась возможность создать по-настоящему эффективный ДВС.

Экомотор

Инженеры компании EcoMotors International творчески переработали конструкцию традиционного ДВС. Он сохранил поршни, шатуны, коленвал и маховик, однако новый двигатель на 15-20% эффективнее, кроме того намного легче и дешевле в производстве. При этом двигатель может работать на нескольких видах топлива, включая бензин, дизель и этанол.

В целом двигатель EcoMotors имеет элегантную простую конструкцию, в которой на 50% меньше деталей, чем в обычном моторе

Добиться этого удалось с помощью использования оппозитной конструкции двигателя, в которой камеру сгорания образуют два поршня, двигающихся навстречу друг другу. При этом двигатель двухтактный и состоит из двух модулей по 4 поршня в каждом, соединенных специальной муфтой с электронным управлением. Двигателем полностью управляет электроника, благодаря чему удалось добиться высокого КПД и минимального расхода топлива. Например, в пробке и других случаях, когда полная мощность двигателя не нужна, работает только один модуль из двух, что уменьшает расход топлива и шум.

Хафиятуллин Ринат:

Также мотор оснащен управляемым электроникой турбокомпрессором, который утилизирует энергию выхлопных газов и вырабатывает электроэнергию. В целом двигатель EcoMotors имеет элегантную простую конструкцию, в которой на 50% меньше деталей, чем в обычном моторе. У него нет блока головки цилиндров, он сделан из обычных материалов и издает меньше шума и вибраций. При этом двигатель получился очень легким: на 1 кг веса он выдает мощность больше 1 л.с (на практике он приблизительно в 2 раза легче традиционного двигателя такой же мощности). Более того, изделие EcoMotors легко масштабируется: достаточно добавить несколько модулей и двигатель малолитражки превращается в мотор мощного грузовика.

Опытный двигатель EcoMotors EM100 при размерах 57,9х 104,9х47 см весит 134 кг и выдает мощность 325 л.с. при 3,500 оборотах в минуту (на дизтопливе), диаметр цилиндров - 100 мм. Расход топлива у пятиместного автомобиля с мотором EcoMotors планируется чрезвычайно низкий – на уровне 3-4 л на 100 км.

Экономия во всем

Компания Achates Power поставила себе цель разработать ДВС с расходом топлива 3-4,5 л на 100 км для автомобиля размером с Ford Fiesta. Пока их экспериментальный дизельный двигатель демонстрирует гораздо больший аппетит, но разработчики надеются уменьшить расход. Однако главное в данном моторе – исключительно простая конструкция и низкая себестоимость. Согласимся, что экономия на топливе мало чего стоит, если она обошлась ценой многократного удорожания мотора.


Двигатель Achates Power имеет предельно простую конструкцию

Двигатель Achates Power имеет предельно простую конструкцию. Это двухтактный оппозитный дизельный мотор, в котором два поршня движутся навстречу друг другу, образуя камеру сгорания. Таким образом отпадает необходимость в головке блока цилиндров и сложном газораспределительном механизме. Большинство деталей мотора изготавливаются с помощью несложных производственных процессов и не требуют дорогих материалов. В целом, двигатель содержит намного меньше деталей и металла, чем обычный.

В настоящее время на испытаниях мотор Achates Power демонстрирует экономичность на 21% большую, чем лучшие "традиционные" дизельные двигатели. Более того, он имеет модульную конструкцию, большую удельную мощность (соотношение вес/л.с.). Также благодаря особой форме верхней части поршня создается вихревой поток особой формы, обеспечивающий отличное перемешивание топливовоздушной смеси, эффективный теплоотвод и уменьшающий время сгорания. В результате двигатель не только соответствует военным спецификациям армии США, но и превосходит по характеристикам двигатели, которые сегодня устанавливаются на боевую технику.

Простой способ

Американская компания Transonic Combustion решила не создавать новый двигатель, а добиться внушительной (25-30%) экономии топлива с помощью новой системы впрыска.

Высокотехнологичная система впрыска TSCiTM не требует радикальных переделок двигатели и, по сути, представляет собой набор инжекторов и специальный топливный насос.


Процесс сгорания TSCiTM использует непосредственный впрыск бензина в виде сверхкритической жидкости и специальную систему зажигания

Процесс сгорания TSCiTM использует непосредственный впрыск бензина в виде сверхкритической жидкости и специальную систему зажигания.

Сверхкритическая жидкость – это состояние вещества при определенной температуре и давлении, когда оно не является ни твердым телом, ни жидкостью, ни газом. В таком состоянии вещество приобретает интересные свойства, например, не имеет поверхностного натяжения, и образует мелкодисперсные частицы в процессе фазового перехода. Кроме того сверхкритическая жидкость обладает способностью быстрого переноса массы. Все эти свойства крайне полезны в двигателе внутреннего сгорания, в частности, сверхкритическое топливо быстро смешивается, не имеет крупных капель, быстро сгорает с оптимальным тепловыделением и высокой эффективностью цикла.

Электронный клапан

Компания Grail Engine Technologies разработала уникальный двухтактный двигатель с очень заманчивыми характеристиками. Так, при потреблении 3-4 литров на "сотню", двигатель выдает 200 л.с. Мотор с мощностью 100 л.с. весит менее 20 кг, а мощностью 5 л.с. – всего 11 кг! При этом Grail Engine, в отличие от обычных двухтактных моторов, не загрязняет топливо маслом из картера, а значит, соответствует самым жестким экологическим стандартам.

Сам двигатель состоит из простых деталей, в основном изготавливаемых способом отливки. Секрет выдающихся характеристик кроется в схеме работы Grail Engine. Во время движения поршня вверх, внизу создается отрицательное давления воздуха и через специальный углепластиковый клапан воздух проникает в камеру сгорания. В определенной точке движения поршня начинает подаваться топливо, затем в верхней мертвой точке с помощью трех обычных электросвечей происходит зажигание топливно-воздушной смеси, клапан в поршне закрывается. Поршень идет вниз, цилиндр заполняется выхлопными газами. По достижении нижней мертвой точки поршень опять начинает движение вверх, поток воздуха вентилирует камеру сгорания, выталкивая выхлопные газы, цикл работы повторяется.


Секрет выдающихся характеристик кроется в схеме работы Grail Engine

Компактный и мощный Grail Engine идеально подходит для гибридных автомобилей, где бензиновый мотор вырабатывает электроэнергию, а электромоторы крутят колеса. В такой машине Grail Engine будет работать в оптимальном режиме без резких скачков мощности, что существенно повысит его долговечность, снизит шум и расход топлива. При этом модульная конструкция позволяет присоединять к общему коленвалу два и более одноцилиндровых Grail Engine, что дает возможность создания рядных двигателей различной мощности.

Новые модели авто появляются каждый год – но по каким-то причинам на них не стоят вышеописанные экономичные и простые двигатели. Действительно, двигателями новой конструкции интересуются все: от вездесущего инвестора Билла Гейтса до Пентагона. Однако автопроизводители не спешат устанавливать новинки на свои машины. Видимо, все дело в том, что крупные автоконцерны сами производят двигатели и, естественно, не желают делиться прибылью со сторонними разработчиками. Но в любом случае жесткие экологические стандарты и электромобили заставят автопроизводителей внедрять новые технологии, гораздо более важные для здоровья людей и всей планеты, чем мультимедийные системы и дизайнерские изыски.

Михаил Левкевич