Схема для восстановления автомобильного аккумулятора. Зарядное устройство аккумулятора автомобиля от сульфатации пластин Зарядное устройство с десульфатацией

Зарядно-десульфатирующий автомат для автомобильных аккумуляторов используется для десульфатации устройства и предотвращения разрушения его внутренних компонентов. Как известно, АКБ является одним из основных приборов в любом автомобиле, поскольку без нее запуск двигателя будет невозможным. Подробнее о том, к чему может привести сульфатация и как от нее избавиться, читайте в этой статье.

[ Скрыть ]

Понятие сульфатации: ее причины и возможные последствия

Решетчатые пластины считаются одним из основных конструктивных элементов в любой свинцово-кислотной батарее. Одни из этих пластин могут быть произведены из чистого свинца, другие — из оксида этого металла. Свободное место между этими пластинами конструкции заполняется электролитом — специальным раствором на основе серной кислоты. При работе аккумуляторной батареи внутри прибора осуществляется химическая реакция, которая приводит к появлению воды, а также сульфата свинца. Последний, в свою очередь, оседает на решетках, — именно этот процесс и зовется сульфатацией.

Собственно, именно сульфатация является одной из основных причин, по которым АКБ изнашивается и выходит из строя. При зарядке прибора реакция происходит в обратном направлении, но следует учитывать, что в данном случае она никогда не может быть полной. То есть частицы износа, не вступившие в реакцию, медленно, но уверенно, будут покрывать электроды аккумулятора, таким образом приводя его в негодность (автор видео — канал Evseenko Technology).

Соответственно, в первое время образование сульфата никак не повлияет на функциональность АКБ. Однако через какое-то время молекулы сульфата будут способствовать появлению кристаллов, размеры которых регулярно будут увеличиваться. Уже спустя 2-4 года интенсивного использования решетки будут забиты до такого уровня, что электролитический раствор не сможет нормально циркулировать внутри конструкции.

В конечном итоге сульфатация станет причиной таких ситуаций:

  • рабочая поверхность решеток будет меньшей;
  • уровень электрического сопротивления станет более высоким;
  • емкость батареи в целом снизится.

Нужно учитывать, что полностью избежать сульфатации не удастся, однако надо помнить, что происходит она значительно быстрее, если аккумулятор не заряжается.

Что представляет собой процесс десульфатации?

Десульфатация АКБ представляет собой процесс очистки пластин АКБ от продуктов износа с использованием цикла зарядки и разрядки. Если вы хотите, чтобы этот процесс был наиболее эффективным, то перед тем, как приступить к восстановлению батареи, необходимо произвести ее диагностику.

Проверьте следующее:

  • есть ли повреждения на корпусе аккумулятора или трещины;
  • при проследите за тем, быстро ли она заряжается, а при ее эксплуатации — быстро ли происходит разряд;
  • закипает ли электролит внутри конструкции;
  • греется ли батарея;
  • есть ли на пластинах налет светлого цвета;
  • какая емкость батареи.

Способы, как свести сульфатацию к минимуму

Процедура десульфатации может быть произведена в домашних условиях. Учтите, что такой процесс не терпит ошибок, поэтому если вы решили заняться им в домашних условиях, то обязательно следует всем действиям, описанным в инструкции. Есть несколько способов, они подробно описаны ниже.

С помощью зарядных устройств

Для этого применяется специальное десульфатирующее зарядное устройство. Этот процесс не должен вызвать трудностей, для его реализации вам нужно подключить АКБ к зарядному прибору и запустить процедуру десульфатации. Сразу же следует отметить, что занять она может не одни сутки. Сама суть заключается в подаче напряжения на батарею и ее разряде через определенное время.

Как правило, соотношение тока берется 10 к 1. То есть если уровень зарядного тока составляет 2 ампера, то для разряда используется ток 0.2 А. При таких настройках прибор может функционировать достаточно долгое время, зарядный девайс должен сам сообщить, насколько удается и сколько времени для этого потребуется (автор видео — Андрей Ващенко).

Своими руками

Вариантов восстановить работоспособность АКБ довольно много, но мы остановимся на одном из них, самом эффективном. Учтите, что процедура десульфатации должна осуществляться в проветриваемом гараже или квартире, в частности, если речь идет об обслуживаемых приборах.

Процедура осуществляется следующим образом:

  1. Сначала произведите замер уровня электролита в банках. Если слишком мало, то емкость нужно восполнить путем добавления дистиллята, который можно купить в любом автомагазине. При этом учтите, что дистиллят должен полностью покрыть пластины. Добавление чистого электролита либо концентрата не допускается.
  2. Далее, вам потребуется обычное ЗУ, необходимо, чтобы на нем были установки Вольт и Ампер. Универсальные приборы в данном случае не подходят.
  3. Выставьте на ЗУ параметр напряжения 14-14.3 вольта. Что касается тока, то это параметр должен варьироваться в районе 0.8-1 ампера, не выше. Выставив эти значения, аккумулятор должен заряжаться не меньше восьми часов.
  4. По прошествии восьми часов уровень плотности не должен изменяться, но параметр напряжения должен увеличиться до 10 вольт. При таких параметрах АКБ должна заряжаться около 24 часов.
  5. Далее, процедуру заряда нужно повторить, только теперь батарея должна простоять 8 часов. При этом ток зарядки должен составлять 2-2.5 А.
  6. В итоге уровень напряжения должен составить около 12.7-12.8 вольт, также будет увеличиться и плотность. Ее значение должно составить около 1.11-1.12 кг/см3.
  7. Далее, чтобы приступить непосредственно к процессу десульфатации, вам необходимо будет немного разрядить батарею. Оптимальным вариантом для этого будет использование лампочки дальнего освещения авто или любого идентичного устройства. Когда АКБ начнет разряжаться, должно пройти не менее 6-8 часов, при отключении прибора убедитесь в том, что напряжение на его выводах снизилось до 9 вольт. При необходимости воспользуйтесь тестером для диагностики. Даже когда напряжение будет 9 вольт, плотность электролита не должна упасть.
  8. После этого алгоритм десульфатации необходимо повторить. Итак, батарея заряжается еще одну ночь при токе 0.8-1 ампер, потом она стоит 24 часа, а затем ее опять надо подключить к ЗУ, но в данном случае ток должен быть выставлен на 3 ампера. Убедитесь в том, что показатель напряжения после заряда составит не выше 12.8 вольт, а затем произведите диагностику плотности. После второго цикла плотность должна составить 1.15-1.17.

Этот цикл должен повторяться до тех пор, пока устройство полностью не восстановит свою плотность — значение в данном случае должно быть около 1.27 кг/см3. Это позволит максимально восстановить работоспособность прибора и вернуть его характеристики к номинальным.

Фотогалерея «Процесс десульфатации АКБ»

Как снизить сульфатацию?

Как мы уже сообщили в начале статьи, полностью предотвратить сульфатацию не удастся — это естественный процесс, который происходит в каждом аккумуляторе.

  1. Всегда помните о том, что АКБ не должна храниться в разряженном состоянии.
  2. Время от времени необходимо проверять уровень электролита в банках прибора. Если вы заметили, что пластины АКБ не заполнены жидкостью, то сначала добавьте в устройство дистиллят и только после этого его можно будет полноценно эксплуатировать.
  3. Проследите за тем, чтобы АКБ не использовалась при температуре более пятидесяти градусов, это разрушительно влияет на ее характеристики.
  4. Время от времени проводите диагностику плотности жидкости и обязательно проверяйте это значение после заряда АКБ. Если вы используете прибор не обслуживаемого типа, то узнать плотность не выйдет.
  5. Необходимо, чтобы транспортное средство не простаивало длительное время. Если же избежать этого не удается и вы заранее знаете, что машина простоит на стоянке или в гараже не одну неделю, то лучше демонтируйте аккумулятор и занесите его домой, чтобы он хранился в тепле.
  6. Периодически следует осуществлять контрольно-тренировочный цикл АКБ.

Видео «Наглядная инструкция по десульфатации в домашних условиях»

На видео ниже вы можете ознакомиться с подробной и наглядной инструкцией по проведению процесса десульфатации в домашних условиях (автор ролика — misha343).

Насколько бы внимательно автовладелец не следил за аккумуляторной батареей, сульфатация пластин все равно неизбежна. Помимо этого, редко получается следить за уровнем заряда АКБ, из-за чего последняя периодически перезаряжается либо заряжается не до конца. К счастью, есть методы, позволяющие увеличить ресурс батареи, а при выходе ее из строя даже восстановить до рабочего состояния. Одним из них является использование зарядно десульфатирующих автоматов для автомобильных аккумуляторов.

Сульфатация - процесс разрядки отрицательных пластин батареи. По мере выработки тока процесс сопровождается отложением сульфата свинца на отрицательном электроде. Подобное чаще касается водителей, ездящих преимущественно в городской черте; при этом генератор не успевает восполнять заряд на АКБ. Из-за этого толщина слоя свинца на клемме растет, и батарея не успевает выработать необходимое количество тока.

Принцип действия устройств прост: восстановление работоспособности происходит посредством зарядки ассиметричным током, то есть импульс периодически меняется с разрядного на зарядный. Этим достигается десульфатация пластин батареи, увеличение объема (емкости) АКБ и повышение срока службы.

Полезные функции и свойства десульфатирующих автоматов

  • среди функций, которые обеспечивает рассматриваемое устройство, выделяют:достаточно высокий КПД для подобных приборов (от 70%);
  • подзарядку любых аккумуляторных батарей (не только автомобильных);
  • экономия средств (некоторые десульфатирующие приборы стоят меньше простых пуско-зарядных устройств);
  • постоянный ток зарядки, отклоняющийся не более, чем на 10% (также автономный от напряжения сети, температурного режима или текущей емкости);
  • ступенчатая регулировка напряжения.

Схема зарядно десульфатирующих автоматов

Ниже приведены два вида простейших схем:

Схема десульфатирующих автоматов лишена тяжелых и дорогостоящих элементов, поэтому устройства пользуются спросом среди автовладельцев. Однако при поиске нужного оборудования для АКБ есть вероятность натолкнуться на десятки разных моделей, запутаться в их параметрах и приобрести неподходящий девайс. Чтобы этого не случилось, стоит знать виды десульфатизаторов.

Правила выбора зарядно десульфатирующего устройства для авто аккумулятора

Начинающему автомобилисту трудно разобраться в классификации, поэтому далее приведены ключевые советы, руководствуясь которыми он сможет выбрать наиболее оптимальную модель ДЗУ.

  1. Если будет осуществляться десульфатация только одного аккумулятора, нет смысла брать многоканальное устройство. Кстати, в этом случае потребитель неплохо сэкономит.
  2. Важно не перепутать ДЗУ для автомобильных батарей с приборами для других сфер.
  3. Выбор стоит делать в пользу устройств с ручной регулировкой зарядного тока.
  4. С целью эксплуатационной безопасности надо обратить внимание на дополнительные функции - защита, условия блокировки ДЗУ, предохранители, допустимые температуры использования.
  5. Перед походом в магазин желательно выписать емкость аккумулятора, зарядный ток, напряжение зарядки, чтобы точно не ошибиться с выбором.
  6. Оценить габариты приспособления для десульфатации с точки зрения удобства транспортировки на машине либо руками.

Вкратце о правилах выбора все. Теперь стоит ознакомиться с особенностями использования оборудования.

Классификация устройств

Первостепенно надо знать, что сульфатация наблюдается не только среди легковых либо грузовых автомобилей. Она имеет место в авиационной, корабельной, железнодорожной,электрической промышленности - словом, везде, где используются аккумуляторы. Например, к батарее легкового автомобиля не подойдет зарядно десульфатирующее устройство для танка или небольшого самолета, поскольку оно будет иметь внушительные величины зарядного/разрядного тока, напряжения и мощности.

Помимо совместимости с определенными видами транспорта, десульфатизаторы делятся по следующим критериям:

  1. Величина регулируемого тока зарядки (может варьироваться от 0 до 100 А, от 0 до 200 и более) и разрядки (у автомобильных распространен диапазон от 0 до 18 А).
  2. Число каналов (делятся на одно- и многоканальные; критерий отражает возможность одновременной зарядки и десульфатизации нескольких устройств. Есть ДЗУ для 4 батарей, встречаются и на несколько десятков).
  3. Регулируемое напряжение (от 0 до 36 В - самый распространенный диапазон, подходящий для автомобильного транспорта).
  4. Способы десульфатации, которых различают три:
  • щадящий (малый ток при постоянном напряжении);
  • интенсивный (циклический импульсный заряд ассиметричного тока);
  • циклическим зарядом при снижении величины зарядного напряжения.
  1. Габаритные размеры и вес (классическая модель по сумме трех измерений редко превосходит 1-1,2 м, но есть более громоздкие модели).
  2. Наличие дополнительных функций (встроенная блокировка работы при коротком замыкании, тепловая защита от перегрузок сети, наличие предохранителей и т. д.).
  3. Совместимость с батареей определенной емкости (различают устройства для АКБ от 30 до 50 А*ч, 50-90, 90-180 и более).
  4. Стоимость (на цену больше остальных влияет предыдущий критерий классификации; так, на устройство для аккумуляторов емкостью 30-50 А*ч цена редко составляет 800-1500 рублей, емкостью 50-90 - до 5000 рублей, самых объемных батарей - от 5000 т. р. и больше).

Правила эксплуатации ДЗУ

Зарядка с помощью десульфатного автомата осуществляется аналогично классическому способу () и включает следущие этапы:

  • положительная и отрицательная клеммы присоединяются к полюсам батареи;
  • фиксируются нужные настройки (напряжение и ток);
  • включение устройства в сеть;
  • зарядка АКБ и десульфатация клеммы «-»;
  • выключение из сети после полной зарядки, снятие клемм.

Длительность заряда зависит от степени сульфатации пластин, емкости батареи, разряженности. Примерную величину можно вычислить, поделив емкость аккумулятора на средний зарядный ток. Наиболее распространена зарядка длительностью от 15 до 36 часов.

Десульфатация - разрушительный процесс, справиться с которым под силу только специальному оборудованию. Учитывая ранее представленную информацию, потребитель сможет сделать правильный выбор, когда дело дойдет до возвращения аккумулятору работоспособности.

Эти статьи Вам могут быть интересны:

  1. Автовладельцам знакома ситуация, когда в самый неподходящий момент садится аккумулятор, а машина отказывается ехать. Порой это усугубляется тем, что под...
  2. Наиболее распространенной и несвоевременной проблемой, относящейся к аккумулятору автомобиля, является его разрядка. Особенно часто это проявляется в холодное время и... Прежде чем разобрать какой аккумулятор лучше обслуживаемый или необслуживаемый, погрузимся немного в теорию. Аккумулятор – устройство, способное аккумулировать полученный заряд...

Давно уже известен тот факт, что заряд электрохимических источников питания асимметричным током, при соотношении I зар: I разр = 10:1, в частности кислотных аккумуляторов, приводит к устранению сульфатации пластин в батарее, т.е. к восстановлению их емкости, что, в свою очередь, продлевает срок службы батареи.

Не всегда есть возможность находиться возле и все время контролировать процесс зарядки, поэтому зачастую либо систематически недозаряжают батареи, либо перезаряжают их, что, конечно же, не продлевает срок их службы.

Из химии известно, что разность потенциалов между отрицательной и положительной пластинами в аккумуляторной батарее составляет 2,1 В, что при 6 банках дает 2,1 х 6 = 12,6 В. При зарядном токе, равном 0,1 от емкости батареи, в конце заряда напряжение повышается до 2,4 В на одну банку или 2,4 х 6 = 14,4 В.

Повышение зарядного тока ведет к повышению напряжения на аккумуляторе и повышенному разогреву и кипению электролита. Заряд же током ниже 0,1 от емкости не позволяет доводить напряжение до 14,4 В, однако длительный (до трех недель) заряд малым током способствует растворению кристаллов сульфата свинца.

Особенно опасны дендриты сульфата свинца, "проросшие" в сепараторах. Они и вызывают быстрый саморазряд батареи (с вечера зарядил аккумулятор, а утром не смог запустить двигатель).

Вымыть же дендриты из сепараторов можно только растворением их в азотной кислоте, что практически нереально.

Путем длительных наблюдений и экспериментов была создана электрическая схема, которая, по мнению автора, позволяет довериться автоматике. Опытная эксплуатация в течение 10 лет показала эффективную работу устройства.

Принцип работы заключается в следующем:

  • 1. Заряд производится на положительной полуволне вторичного напряжения.
  • 2. На отрицательной полуволне происходит частичный разряд батареи за счет протекания тока через нагрузочный резистор.
  • 3. Автоматическое включение при падении напряжения за счет саморазряда до 12,5 В и автоматическое отключение от сети 220 В при достижении напряжения на батарее 14,4 В.

Отключение — бесконтактное, посредством симистора и схемы контроля напряжения на батарее. Важное достоинство метода заключается в том, что пока не подключена батарея (автоматический режим), блок не может включиться, что исключает короткое замыкание при замыкании проводов, подводящих зарядный ток к аккумуляторной батарее.

При сильно разряженной батарее включение блока возможно посредством переключателя "АВТОМАТ-ПОСТОЯННО".

Еще одно очень важное достоинство — отсутствие сильного "кипения", что в совокупности с автоматическими отключением и включением позволяет оставлять включенное устройство без присмотра на длительное время. Автор про-экспериментировал с двухнедельным режимом постоянного включения в режиме "АВТОМАТ". В целях пожарной безопасности необходимо, чтобы зарядное устройство было в металлическом корпусе, сечение подводящих проводников к батарее — не менее 2,5 мм². Обязателен также надежный контакт на клеммах батареи.

Напряжение сети 220 В подается через предохранитель FU1 и симистор VD1 на первичную обмотку силового трансформатора. Со вторичной обмотки переменное напряжение U2=21В выпрямляется диодом VD3 и через балластный резистор R8 сопротивлением 1,5 Ом поступает на клемму "+" батареи, к которой подключены вольтметр РА1 на 15 В, тумблер SA2 "ВКЛ. ДЕСУЛЬФАТАЦИЯ" и схема контроля и управления, представляющая собой триггер Шмитта с гистерезистором около 1,8 В, определяемым падением напряжения на диодах VD5, VD6 и переходе база-эмиттер транзистора VT2.

Транзистор VT1 при напряжении на аккумуляторе 12,6 В включается, и через оптрон VD4 включает симистор VD1, что приводит к включению трансформатора Т1 и подаче напряжения на заряжаемый аккумулятор.

Подключение тумблером SA2 резистора R5 обеспечивает асимметричность формы зарядного тока. Светодиоды VD8 и VD7 индицируют включение блока в режимы "ДЕСУЛЬФАТАЦИЯ" и "ВКЛ." соответственно. Резистором R7 устанавливается момент отключения блока при напряжении на вольтметре 15 В (=0,5 В падает на подводящих проводах).

Мостик VD2 обеспечивает включение симистора на обеих полуволнах сетевого напряжения и нормальную работу трансформатора. Тумблер SA1 служит для включения режима "ПОСТОЯННО".

Детали

Силовой трансформатор — Р=160 Вт, Uii=21 В, провод — ПЭВ-2-2,0. R8 — проволочный (нихром) диаметром 0,6 мм. R5 — ПЭВР на 10...15 Вт. Диод VD3 — любой из Д242...Д248 с любым буквенным индексом на радиаторе площадью S=200 см2.

Остальные резисторы типа — МЛТ, СП; симистор — КУ208Н, без радиатора. S1 — любой, например МТ1. S2 — ТВ1-1. HL1 — любая лампа на 12 В. РА1 — измерительная головка на 15 В.


Есть несколько распространенных ошибок у автомобилистов, связанных с обслуживанием аккумуляторной батареи, особенно у начинающих. Во-первых , считают, что если автомобиль новый, то зачем что-то смотреть – ведь машина заводится?

Во-вторых , если аккумулятор был приобретен только в прошлом году – он же новый и на гарантии? В-третьих , производитель аккумуляторов должен был все предусмотреть. Это типичные ошибки в суждениях, которые могут стоить ровно столько, сколько стоит новый аккумулятор.

Сульфатация пластин аккумулятора что это такое

При разряде аккумулятора происходит естественный процесс сульфатации активной массы аккумуляторных пластин. При этом образуется сульфат свинца тонкокристаллической структуры, которая растворяется при заряде аккумулятора.

Но если режим работы аккумулятора таков, как описано ниже, то возникает иного вида сульфатация. Возникающие крупные кристаллы сульфата свинца изолируют активную массу.

Чем больше образовалось этих кристаллов, тем меньше рабочей поверхности активной массы, следовательно, и емкости аккумулятора . Внешне их видно как белый налет на свинцовых пластинах.

Какие же есть опасности для нормального функционирования аккумуляторной батареи? Давайте разберемся сразу. Вы ездите, и никаких проблем в отношении аккумулятора не было?

О причинах сульфатации аккумуляторных батарей, видео.

Основные причины сульфатации

  • Как минимум осенью и весной снимаете аккумулятор, производите его зарядку и следите за плотностью электролита по сезону, если нет это первая причина.
  • Ездите каждый день, машина на стоянке по полмесяца не стоит, и двигатель с момента как его завели, до момента как его заглушили, работает на средних оборотах минимум полчаса, если нет, это вторая причина.
  • А в пробки не попадаете, и двигатель не перегревается, если нет, это третья причина.
  • При остановке автомобиля свет всегда отключаете, если нет это четвертая причина.

Это названы основные причины, которые могут привести к такому печальному явлению, как сульфатация аккумулятора.

Если же аккумулятор сульфатирован, нет необходимости сразу идти выбирать новый. Попытайтесь его восстановить. Эта процедура занимает довольно много времени, но не сложная, как кажется на первый взгляд. Для этого потребуется ареометр, зарядное устройство и измерительный прибор, позволяющий измерять напряжение и силу тока.

Десульфатация аккумулятора зарядным устройством

Решение вопроса по восстановлению аккумулятора бесперебойного питания.

Снимите аккумулятор с машины. Откройте пробки. Доведите до нужного уровня электролит, если надо, при помощи дистиллированной воды.

У частник форума электромобилистов, Курманенко Геннадий Викторович из Днепропетровской области обобщив информацию форума, разработал схему приставки для пульсирующего заряда аккумуляторной батареи. Устройство может не только заряжать аккумулятор импульсами тока, но и контролировать напряжение на аккумуляторе, а при достижении установленного уровня включить пульсирующую добивку с возможностью десульфатации.

Обратите внимание, приставка включается между зарядным устройством и аккумулятором. При этом провода от приставки к аккумулятору должны быть не тоньше проводов от зарядного устройства к приставке и желательно короче. Иначе пульсации зарядного устройства будут вмешиваться в нормальную работу приставки.

Рис.2 Плата печатная

Сразу следует предупредить: Зарядное устройство к которому эта приставка будет подключаться должно выдерживать импульсный режим нагрузки. Возможно какие-то электронные зарядные устройства впадут в депрессию от такого поведения нагрузки, они же расчитывали иметь спокойный и предсказуемый аккумулятор. А тут, аккумулятор то он есть, то его нет.

Геннадий Викторович являясь оператором дефектоскопической установки для проверки рельсов использует приставку для качественного заряда аккумуляторов и востановления потерявших работоспособность. Ранее для заряда аккумуляторов использовались самые простые зарядные устройства прозванные в народе "кипятильниками".

Приступаем к описанию работы схемы устройства.
От провода обозначенного знаком "+" через диод VD1 питание поступает на параметрический (линейный) стабилизатор питания состоящий из резистора R1, конденсатора С2, стабилитрона VD3 (например КС191).
Почему через диод? Нагрузка имеет импульсный характер, диод выполняет функции развязки неспокойного аккумулятора от схемы управления.

Из точки после диода VD1 берем напряжение на анализатор (компаратор) заряженности аккумулятора.
Компаратор состоит из следующих элементов:резисторы R1-R3,R5-R7, конденсатора, интегрального стабилизатора TL431, транзистора VT1.
На базе транзистора VT1 стабилизатор VD2 поддерживает фиксированное напряжение, на эмиттере этого транзистора напряжение меняется пропорционально изменению напряжения на аккумуляторе. При повышении напряжения на аккумуляторе сверх установленного резистором R1, транзистор VT1 закрывается и разблокирует до того заторможенный блокинг-генератор на микросхеме NE555.

Несколько слов о блокинг-генераторе: В начале заряда он блокирован анализатором напряжения, а именно открытым транзистором VT1 закорочен конденсатор C4 и работа генератора невозможна, а выход (3) находится в высоком состоянии.

А теперь о работе той части схемы управления, что называется пульсатором.
На основе микросхемы NE555 реализован генератор с частотой задаваемой в основном конденсатором C4,а также резисторами R8-R10, конденсатора VD4.
Переключатель S1 может переключать вывод 7 микросхемы либо на резистор R8 или диод VD4, что меняет скважность работы генератора. Иными словами, меняет время зарядного импульса и разрядной паузы (или паузы рассасывания).
Автором выбрана частота генератора 0.7 Гц. На мой взгляд этого мало. Надо как минимум в 10 раз меньше. Для этого конденсатор С4 следует увеличить до 100 мкф.
С выхода 3 микросхемы сигнал положительной полярности поступает на базу транзистора VT4, открывает его и аккумулятор подключается к минусовому проводу зарядного устройства, начинается заряд батареи. По истечению установленного времени управляющий импульс снимается, транзистор VT4 закрывается. Но при этом закрывается и транзистор VT2, при этом открывается транзистор VT3, подключающий разрядный резистор Rn. Начинается процесс разряда аккумулятора через этот резистор. Светодиод HL1 индицирует факт разряда.
Резистор R16 служит для обеспечения протекания открывающего тока для транзистора VT3, иначе он не включится.
Таким образом можно констатировать, что положительный импульс микросхемы NE555 (КР1006ВИ1) обеспечивает временной промежуток для заряда аккумулятора, а отрицательный (пауза) импульс обеспечивает временной промежуток для разряда аккумулятора.

Т еперь немного об устройстве микросхемы.
В состав таймера входят два прецизионных компаратора высокого (DA1) и низкого (DA2) уровней, асинхронный RS-триггер DD1, мощный выходной каскад на транзисторах VT1 и VT2, разрядный транзистор VT3, прецизионный делитель напряжения R1R2R3. Сопротивления резисторов R1-R3 равны между собой.

Таймер содержит два основных входа: вход запуска (вывод 2) и пороговый вход (вывод 6). На этих входах происходит сравнение внешних напряжений с эталонными значениями, составляющими для указанных входов соответственно l/3Uпит и 2/3Uпит. Если на входе Unop (6) действует напряжение меньше 2/3Uпит, то уменьшение напряжения на входе Uзап (2) до значения, меньшего 1/3Uпит, приведет к установке таймера в состояние, когда на выходе (вывод 3) имеется напряжение высокого уровня. При этом последующее повышение напряжения на входе Uзап (2) до значения 1/3Uпит и выше не изменит состояния таймера. Если затем повысить напряжение на выходе Uпop (6)до значения больше 2/3 Uпит, то сработает триггер DD1 и на выходе таймера (3) установится напряжение низкого уровня, которое будет сохраняться при любых последующих изменениях напряжения на входе Uпop (6). Этот режим работы таймера обычно используют при построении реле времени, ждущих мультивибраторов. При этом вход Unop (6) подключают к одной из обкладок конденсатора времязадающей цепи, а по входу Uзап (2) производят запуск таймера подачей короткого импульса отрицательной полярности. Если необходимо создать автоколебательный мультивибратор, то оба входа объединяют. Транзистор VT3 (7) служит для разрядки времязадающего конденсатора. При появлении напряжения высокого уровня на выводе 3 таймера этот транзистор открывается и соединяет обкладку конденсатора с общим проводом.
Если на запускающем входе напряжение не превышает l/3Uпит, то повышение напряжения на входе Unop выше 2/ЗUпит приведет к появлению низкого напряжения на выходе таймера, а понижение напряжения на этом входе ниже 2/ЗUпит установит высокое напряжение на выходе. Таким образом, в данном случае таймер работает как обычный компаратор и может быть использован в устройствах регулирования температуры, автоматического включения освещения и др.
Если на входе Unop напряжение превышает 2/3Uпит, то на выходе таймера будет низкое напряжение независимо от значения напряжения на входе Uзап. В заключение следует отметить, что напряжение питания таймера может находиться в пределах 5...15 В.
Максимальный выходной ток таймера равен 100 мА. Это позволяет использовать в качестве нагрузки электромагнитное реле. Вывод 5 служит для контроля значения образцового напряжения, а также для возможного изменения его значения путем подключения внешних резисторов. Для уменьшения возможного действия помех этот вход обычно соединяют с общим проводом через конденсатор емкостью 0,01...0,1 мкФ. Вход Uc6p (вывод 4) позволяет устанавливать на выходе низкое напряжение независимо от сигналов на остальных входах. Для этого на вывод 4 следует подать напряжение низкого уровня. Последующее повышение напряжения на этом входе до напряжения высокого уровня приводит к установлению на выходе таймера состояния, которое было до подачи низкого напряжения на вход 4 (имеется в виду, что времязадающая цепь не подключена). Если этот вход не используется, его следует соединить с выводом 8. В схемах реле времени вход Uсбр часто используют для установки таймера в исходное состояние, соответствующее закрытому транзистору VT3.