Электронный водяной клапан в системе охлаждения двс. Система охлаждения двигателя автомобиля, принцип действия, неисправности

Большая часть серьёзных неисправностей автомобиля связана с перегревом двигателя. Температура газов в цилиндре достигает 2000 гр. При сгорании топлива в цилиндре образуется большое количество тепла, которое необходимо отвести и тем самым не допустить перегрева деталей двигателя.

Принципы построения систем охлаждения

Снижение эффективности работы системы охлаждения приводит к увеличению температуры поршней, уменьшению зазоров между поршнем и цилиндром. Тепловые зазоры уменьшаются до нуля. Поршень задевает за стенки цилиндра, образуются задиры, перегретое масло теряет смазочные свойства и масляная плёнка разрывается. Такой режим работы может привести к заклиниванию двигателя. Перегрев сопровождается неравномерным расширением головки блока, болтов крепления, блока двигателя и пр. В дальнейшем разрушение двигателя неизбежно: трещины в головке блока, деформация плоскостей стыка головки и самого блока цилиндров, образуются трещины сёдел клапанов и т.п. — неприятно даже перечислял, всё это, поэтому лучше до этого не доводить!

Система охлаждения двигателя и масла призвана не допустить подобного развития событий, но для того, чтобы система справилась с поставленными задачами, необходимо использовать качественную охлаждающую жидкость (ОЖ). Низкозамерзающие ОЖ называют антифризами — от английского слова «antifreeze». Ранее ОЖ приготовляли на основе водных растворов одноатомных спиртов, гликолей, глицерина и неорганических солей. В настоящее время предпочтение отдано моноэтиленгликолю — бесцветной сиропообразной жидкости с плотностью примерно 1,112 г\см2 и температурой кипения 198 гр. Задача ОЖ не только охлаждать двигатель, но и не кипеть во всём диапазоне температур работы двигателя и его компонентов, иметь высокую теплоёмкость и теплопроводность, не пениться, не оказывать вредного воздействия на патрубки и уплотнения, обладать смазывающими и антикоррозийными свойствами.

В 70 х годах выпускался антифриз на основе водного раствора моноэтиленгликоля с температурой начала кристаллизации — 40 гр. Он не требовал разбавление водой при добавлении в систему охлаждения. Этот препарат получил название ТОСОЛ — по названию лаборатории «Технология Органического Синтеза». Т.к. название не запатентовано, то ТОСОЛом называют готовый к применению продукт, а «антифризом» — концентрированный раствор (хотя ТОСОЛ тоже антифриз).

Готовые антифризы окрашивают для безопасности и выбирают броские цвета: синий, зелёный, красный. В процессе эксплуатации антифриз теряет полезные свойства — снижаются антикоррозийные свойства, возрастает склонность к пенообразованию. Срок службы отечественных ОЖ от 2 до 5 лет, импортных 5-7 лет.

На рисунке, приведённом ниже, изображена схема системы охлаждения автомобиля. Ничего особенного или сложного в системе охлаждения нет и тем не менее…

Рис. 1 — двигатель, 2 — радиатор, 3 — отопитель, 4 — термостат, 5 — расширительный бачок, 6 — пробка радиатора, 7 — верхний патрубок, 8 — нижний патрубок, 9 — вентилятор радиатора, 10 — датчик включения вентилятора, 11 — датчик температуры, 12 — помпа.

При пуске двигателя начинает вращаться помпа (водяной насос). Привод помпы может иметь свой шкивок, приводимый во вращение ремнем вспомогательного оборудования или приводиться вращением ремня ГРМ. В системе охлаждения находится крыльчатка, которая вращаясь, приводит в движение охлаждающую жидкость. Для быстрого прогрева двигателя система «закорочена», т.е. термостат закрыт и не пропускает жидкость в радиатор охлаждения. По мере роста температуры охлаждающей жидкости открывается термостат, переводя систему в другое состояние, когда охлаждающая жидкость проходит по длинному пути — через радиатор системы охлаждения (короткий путь перекрыт термостатом). Термостаты имеют различные характеристики открытия. Обычно на кромке нанесена температура открытия. Наверное не стоит объяснять устройство радиатора. В нижней части радиатора установлен датчик включения вентилятора. Если температура охлаждающей жидкости достигнет определённой величины — датчик замкнётся, а т.к. электрически он соединён на разрыв цепи питания электровентилятора, то при замыкании — должен включиться вентилятор системы охлаждения. По мере остывания охлаждающей жидкости — вентилятор выключается, а термостат перекрывает длинный путь на короткий. Всё просто, но не очень…

Такая схема является основой, но жизнь не стоит на месте и различные производители усовершенствуют системы охлаждения. На некоторых автомобилях Вы не найдёте датчика включения вентилятора системы охлаждения, т.к. вентилятор включается от ЭБУ двигателем в зависимости от показаний датчика температуры охлаждающей жидкости. Стоит обратить внимание на ситуацию, при которой при вклинении зажигания — сразу включается вентилятор системы охлаждения. Или неисправен датчик температуры, или повреждены его цепи, или неисправен сам ЭБУ двигателем — он «не видит» температуру двигателя и на всякий случай включает сразу вентилятор.

На некоторых а\м на пути к отопителю установлены специальные электроклапана, разрешающие или перекрывающие путь охлаждающей жидкости (БМВ, МЕРСЕДЕС). Такие клапана иногда «помогают» системе охлаждения выйти из строя.

Поиск и устранение неисправностей в системе охлаждения

Специалистами фирмы «АБ-Инжиниринг» под руководством Хрулева А.Э. разработала таблица причин и последствий перегрева двигателя. Сам перегрев двигателя — это температурный режим его работы, характеризуемый закипанием охлаждающей жидкости. Но не только перегрев является неисправностью. Работа двигателя при постоянно пониженной температуре тоже считаем неисправностью, т.к. при этом двигатель работает при несвойственном ему температурном режиме. Выход из строя термостата, электровентилятора или вязкостной муфты, термовыключателей и пр. приведет к нештатной работе системы охлаждения. Если водитель вовремя обнаружит признаки нарушения теплового режима работы двигателя и не допустит необратимых процессов, то ремонт системы охлаждения не будет дорогим и долгим. Поэтому настоятельно рекомендуем обратить Ваше (и Ваших клиентов) внимание на температурные режимы двигателя.

А. Первым делом необходимо проверить схему соединения патрубков системы охлаждения, если автомобиль не новый или поступил в ремонт после ремонта на другом сервисе.

Кому-то такое предложение покажется смешным, но жизнь показала обратное, примеры:

  • собранный после капремонта автомобиль имел соединение патрубка системы вентиляции картера с расширительным бачком системы охлаждения;
  • установленный нештатный вентилятор с лопастями, направляющими воздушный поток не в ту сторону;
  • лопасти электровентилятора свободно вращаются на валу выключенного двигателя;
  • разъёмы электровентилятора разболтаны или оборваны и т.п.

Осмотреть радиатор на предмет внешнего засорения. Осмотреть зоны и пути естественного охлаждения двигателя. Отрицательным примером может служить мощная защита нижней части двигателя, которая преграждает путь воздушному потоку, охлаждающему двигатель снизу. Иногда поломка бампера, нижняя часть которого имеет направляющие воздушного потока на двигатель, приводит к перегреву (VW «Пассат» Б3).

Б. После осмотра необходимо проверить уровень охлаждающей жидкости в системе, наличие и исправность клапанов крышек радиатора и расширительного бачка, целостность патрубков и шлангов. Уточнить, какой антифриз или просто вода залиты в систему, т.к. температура кипения у каждой жидкости своя.

Если первые два пункта (А или Б) выявили какие-то неисправности, их необходимо устранить или принять к сведению при вынесении «приговора». При добавлении охлаждающей жидкости необходимо помнить, что не все автомобили спроектированы по принципу «просто добавь воды». К примеру на автомобиле БМВ (М20, Е34) при добавлении охлаждающей жидкости необходимо включить зажигание и установить регуляторы температуры печки в режим «максимально тепло», чтобы включились клапана печки и открылись для движения охлаждающей жидкости по системе, к тому же необходимо поднять радиатор вверх, т.к. расширительный бачок, встроенный в радиатор «чудо-проектировщиками» Германии, расположен ниже уровня печки салона и она часто завоздушивается.

Если есть подозрение на то, что двигатель завоздушен (в системе находится воздух, который препятствует движению жидкости), необходимо выкрутить специальные заглушки системы охлаждения для выпуска воздуха. Расположены они обычно в верхней части системы охлаждения двигателя. Запустить двигатель, включить отопители салона, включит вентилятор. Наблюдать за прогревом двигателя, узлов и агрегатов. Если в системе есть расширительный бачок, то проверить циркуляцию жидкости, т.е. её движение по системе. При добавлении оборотов двигателя до 2 500 — 3 000 в бачок должна поступать мощная струя охлаждающей жидкости. Из выкрученных (не полностью!) заглушек может некоторое время выходить воздух и как только польётся жидкость — заглушки необходимо закрутить. По мере прогрева двигателя из отопителя салона должен идти прогревающийся воздух. Если двигатель прогревается, а воздух из отопителя холодный, то это является первым признаком «завоздушивания» системы охлаждения. Необходимо заглушить двигатель и принять меры по поиску и устранению этой неисправности.

При исправном термостате (температура открытия может быть разной от 80 до 95 градусов) после прогрева нижний патрубок радиатора должен иметь примерно такую же температуру, как и верхний. Если это не так, значит плохая прокачка охлаждающей жидкости через радиатор.

При исправном термостате через некоторое время после его открытия должен включиться вентилятор системы охлаждения. Если в системе установлен не электровентилятор, то необходимо проверить датчик включения цепи электромагнитной муфты или работу вязкостной муфты. При неисправности вязкостной муфты вентилятор системы охлаждения на разогретом двигателе можно остановить и удерживать рукой (при остановке соблюдать осторожность — останавливать мягким предметом, чтобы не повредить крыльчатку вентилятора или руку). Необходимо проверить напор воздуха и его температуру — горячий воздух должен быть направлен на двигатель.

Давление в системе охлаждения должно медленно возрастать по мере прогрева двигателя и медленно опускаться после выключения двигателя. Если верхний патрубок, идущий к радиатору раздувается при повышении оборотов двигателя, необходимо проверить, не попадают ли в систему охлаждения часть отработанных газов. Обычно это заметно по масляной плёнке в расширительном бачке или пузырению охлаждающей жидкости. При этом из глушителя обычно интенсивно идёт белый дым от разогретой и испаряющейся охлаждающей жидкости, попадающей в цилиндры двигателя. В таком случае необходимо проверить маслозаливную горловину двигателя и сели на ней белая эмульсия, то охлаждающая жидкость не только в цилиндрах двигателя, но и в системе смазки (необходимо прекратить движение). Приведём несколько примеров из практики различных сервисов, которые «говорят» о том, что диагностика Двигателя неотделима от диагностики всех систем автомобиля, в том числе и системы охлаждения.

А\м МАЗДА 626 — хозяин жалуется на неравномерность оборотов двигателя или повышенные обороты холостого хода. Проверка системы управления (и самодиагностика) не выявили неисправности. Обратили внимание на повышенное напряжение на температурном датчике охлаждающей жидкости.

Система управления добавляет количество топлива, т.к. реагирует на высокое напряжение на датчике (двигатель холодный). Оказалось, что в системе охлаждения мало жидкости, датчик «оголён». Просто добавлен до нормального уровень охлаждающей жидкости и обороты нормализуются.

А\м ФОРД — охлаждающая жидкость попадала в масло нетрадиционным путём — через систему охлаждения масла, расположенную вокруг масляного фильтра.

А\м ФОРД — после прогрева двигателя переставал работать один цилиндр. Замена свечи и другие работы приводили к положительному результату (к определению неисправности это не имело отношения, просто за время проведения работ двигатель остывал) — цилиндр начинал работать и клиент уезжал. На следующий день он снова у нас. Оказалось — трещина в головке блока в районе выпускного клапана неработающего цилиндра. Пока двигатель холодный — всё в норме. При прогреве — трещина увеличивалась и начинала пропускать охлаждающую жидкость в цилиндр. Смесь обеднялась и начинались перебои в работе, а затем полностью отключался цилиндр.

Таких примеров можно приводить много, они есть в практике каждого авторемонтника. Главный вывод должен сделать себе каждый, кто серьёзно занят авторемонтом — замечать и анализировать всё значительное и незначительное, т.к. эти позиции могут резко поменяться местами.

Двигатель внутреннего сгорания (ДВС) каждого транспортного средства во время работы испытывает значительные нагрузки. Для обеспечения его корректной работы и сохранности отдельных механизмов и их деталей немаловажным моментом является достаточное охлаждение мотора.

Существуют два основных вида систем охлаждения ДВС: воздушное и жидкостное. Воздушный тип в современном автомобилестроении используется только в спортивных машинах, как дополнение к жидкостному, поскольку польза от одного только потока воздуха для обеспечения нормальной рабочей температуры агрегата ничтожно мала.

Первые транспортные средства автопроизводителя ЗАЗ были снабжены исключительно воздушным охлаждением. Несмотря на различные инженерные идеи, двигателя «Запорожцев» в жаркие летние дни часто перегревались.

Общая картина системы охлаждения

Независимо от того какой тип двигателя установлен в автомобиле и какая марка машины, система охлаждения имеет в целом схожее устройство. Обеспечение нормальной рабочей температуры силового агрегата достигается путём циркуляции охлаждающей жидкости по каналам системы. Таким образом, каждый узел ДВС охлаждается в равной степени независимо от температурной нагрузки.

Гидравлическая система охлаждения также может быть нескольких разновидностей:

  • Термосифонная - циркуляция осуществляется благодаря разнице в плотности горячей и холодной жидкости. Таким образом, охлаждённый антифриз вытесняет из силового агрегата горячую жидкость, отправляя её в каналы радиатора.
  • Принудительная - циркуляция охлаждающей жидкости происходит благодаря насосу.
  • Комбинированная - отвод тепла от большей части двигателя происходит принудительным путём, а отдельные участки охлаждаются термосифонным способом.

Принудительная система, пожалуй, наиболее эффективна и используется в большинстве современных легковых автомобилей.

Основные элементы

Система охлаждения двигателя содержит следующие элементы:

  • Рубашка охлаждения или «водяная рубашка». Представляет собой систему каналов проходящих в блоке цилиндров.
  • Радиатор охлаждения - устройство для охлаждения самой жидкости. Состоит из каналов изогнутых труб и металлических рёбер для лучшей теплоотдачи. Охлаждение происходит как благодаря встречному потоку воздуха, так и внутренним вентилятором.
  • Вентилятор. Элемент системы охлаждения, предназначенный для усиления потока воздуха. На современных автомобилях он включается только при срабатывании температурного датчика, когда радиатор неспособен полноценно охладить жидкость встречным потоком воздуха. В старых моделях автомобилей вентилятор работает постоянно. Вращение на него передаётся от коленчатого вала через ременной привод.
  • Насос или помпа. Обеспечивает циркуляцию охлаждающей жидкости по каналам системы. Приводится в действие с помощью ременного или шестерёнчатого привода от коленчатого вала. Как правило, мощные двигателя с прямым впрыском топлива комплектуются дополнительным насосом.
  • Термостат. Важнейшая деталь системы охлаждения, контролирующая циркуляцию по большому кругу охлаждения. Основной задачей является обеспечение нормального температурного режима при эксплуатации транспортного средства. Обычно установлен на стыке входного патрубка и рубашки охлаждения.
  • Расширительный бачок - ёмкость необходимая для сбора избытка охлаждающей жидкости возникающего в процессе её нагревания.
  • Радиатор отопления или печка. По своему устройству похож на радиатор охлаждения в меньшем размере. Однако, используется исключительно для обогрева салона автомобиля в зимний период и непосредственной роли в охлаждении ДВС не играет.

Круги циркуляции

Система охлаждения в автомобиле имеет два круга циркуляции: большой и малый. Основным считается именно малый, поскольку при запуске агрегата по нему сразу же начинает циркулировать охлаждающая жидкость. В работе малого круга задействованы только каналы блока цилиндров, помпа, а также радиатор отопления салона. Циркуляция проходит по малому кругу до тех пор, пока ДВС не достигнет нормальной рабочей температуры, после чего срабатывает термостат и открывает большой круг. Благодаря такой системе прогрев двигателя значительно сокращается, а в зимнюю пору система не столько охлаждает агрегат, сколько поддерживает его нормальный температурный режим.

В работе большого круга задействованы вентилятор, радиатор охлаждения, впускные и выпускные каналы, термостат, расширительный бочок, а также те элементы, которые принимают участие в функционировании малого круга. Внешний круг, он же большой круг, начинает работать, когда температура охлаждающей жидкости достигает 80-90 о С, и обеспечивает её охлаждение.

Принцип работы системы

В целом работа системы довольно проста. Приведённый в действие гидравлический насос обеспечивает циркуляцию охлаждающей жидкости по рубашке блока цилиндров. Скорость циркуляции зависит от количества оборотов коленчатого вала ДВС.

Антифриз, проходящий по каналам в блоке цилиндров, отводит излишек тепла от агрегата и поступает обратно в приёмный отсек помпы, минуя термостат. Когда температура охлаждающей жидкости достигает 80-90 о С, термостат открывает большой круг циркуляции, блокируя малый. Таким образом, жидкость после блока цилиндров направляется в радиатор охлаждения, где её температура снижается благодаря встречному потоку воздуха и вентилятору. Далее, процесс повторяется.

Возможные неполадки и их устранение

Несмотря на простоту конструкции, система охлаждения силового агрегата способна дать сбой во время эксплуатации транспортного средства. В связи с этим двигатель будет работать в повышенном температурном режиме, из-за чего ресурс его деталей значительно снизится. Причины некорректной работы охлаждения могут быть совершенно разные.

Износ термостата

Наиболее часто неполадки в системе связаны именно с клапаном переключающим круги циркуляции, он же термостат. Если деталь заклинивает в одном положении или клапан перекрывает каналы кругов циркуляции неплотно, прогрев двигателя может занять значительно больше времени или наоборот, агрегат начнёт сильно перегреваться без достаточного охлаждения.

Принцип работы термостата

Как правило, поломка термостата связана с нарушением его целостности. Основой клапана является термический воск, который при нагревании расширяется и сдавливает мембрану, открывающую большой круг циркуляции. Если воск по какой-либо причине вытек из детали, то клапан перестанет функционировать и антифриз не сможет полноценно охлаждаться. Также причиной износа может стать несвоевременная замена охлаждающей жидкости или её низкое качество. Коррозия пружины термостата вызывает заклинивание детали в открытом или реже закрытом положении. В обоих случаях двигатель не сможет работать в нормальном температурном диапазоне - жидкость будет либо постоянно охлаждаться, даже когда в этом нет необходимости, либо наоборот, всё время будет горячей.

Определить износ довольно просто и это можно сделать двумя способами. Проще всего проверку произвести несъёмным методом. Для этого сразу после запуска двигателя следует потрогать входной патрубок радиатора. Если он стал тёплым почти сразу после пуска ДВС, это говорит о том, что термостат заклинило в открытом положении. И наоборот, когда патрубок остаётся холодным, даже если показатель температуры находится в пиковом положении, это свидетельствует о неспособности термостата открываться.

Более точно удостовериться в том, что причина некорректной работы системы охлаждения заключается именно в неисправности термостата можно путём его демонтажа. Снятый клапан кладётся в ёмкость с водой и подвергается нагреву. Когда температура воды достигнет 90 о С, исправный клапан обязательно должен сработать - шток термостата сместится. Если этого не происходит, можно с уверенностью считать деталь неисправной.

Вышедший из строя термостат не подлежит ремонту, а требует обязательной замены. Его стоимость для большинства автомобилей редко превышает 1000 рублей. Клапан вполне можно заменить самостоятельно, без посещения автосервиса.

Неполадки гидравлического насоса

Одной из причин перегрева силового агрегата машины может стать неисправность помпы системы охлаждения. Чаще всего проблема заключается в том, что приводной ремень гидронасоса оборвался либо его натяг слишком слабый. В таком случае помпа перестанет качать антифриз, либо будет это делать не полноценно. Проверить это довольно просто, стоит лишь завезти двигатель и пронаблюдать за поведением приводного ремня. В случае если он работает с проскоками натяг следует увеличить или вовсе заменить ремень на новый. Наиболее часто это решает проблему.

Возникают ситуации, когда неполадка кроется в самой помпе: износ крыльчатки, подшипника, иногда возможна даже трещина вала. Кроме всего прочего, стыки соединения патрубков с помпой могут быть не герметичны, и создаваемое насосом давление спровоцирует протечку охлаждающей жидкости. Диагностировать протечку довольно просто, необходимо на полу под двигателем положить листы белой бумаги на несколько часов. Если на ней будут видны даже небольшие пятна голубого или зеленоватого цвета, это свидетельствует об износе прокладок помпы.

Проверить работоспособность самого насоса можно зажав пальцами верхний шланг радиатора на несколько секунд при работающем агрегате. Исправная помпа создаст сильное давление и после отпускания шланга появится ощущение, что жидкость быстро побежала по магистрали. Также стоит помнить о том, что повышенная шумность работы ДВС и люфт шкива помпы говорят об износе подшипника. Обычно его износ связан с просачиванием жидкости через сальник, которая смывает смазку с подшипника.

Насос охлаждающей жидкости в отличие от термостата можно заменить частично, но нередко автовладельцы предпочитают полноценно менять механизм.

Замена насоса:

  1. В первую очередь необходимо отключить массу автомобиля от аккумулятора, а поршень первого цилиндра должен находиться в верхней мёртвой точке. Произвести демонтаж ролика для натяга ремня и снять шкив распредвала.
  2. Далее, следует слить охлаждающую жидкость с нижней пробки в радиаторе.
  3. Открутив крепёжные болты помпы её нужно отсоединить от блока цилиндров.
  4. Оценив визуально снятый механизм важно определить его износ. Если крыльчатка, сальник и приводная шестерня имеют повреждения помпу лучше заменить полностью.
  5. Новый механизм должен устанавливаться с новой прокладкой, поскольку прежняя может иметь даже мелкие повреждения, которые впоследствии приведут к утечке охлаждающей жидкости. Помпа устанавливается таким образом, чтобы номер, указанный на корпусе, смотрел вверх.
  6. Дальнейшая сборка проводится в обратном порядки разборки. Охлаждающую жидкость лучше залить новую, но можно использовать и ту, которая была, если её ресурс ещё не исчерпан.

Проблемы с радиатором и вентилятором

Недостаточное охлаждение двигателя может быть связано с проблемами работы радиатора и вентилятора. В первую очередь стоит помнить, что слишком сильно забитый пылью и насекомыми радиатор неспособен полноценно охлаждаться как встречным потоком воздуха, так и вентилятором. Нередко его чистка решает проблему с охлаждением.

Устройство «классического» радиатора охлаждения двигателя. Во многих современных двигателях, охлаждающая жидкость заливается не через горловину радиатора, а в расширительный бачок

И всё же, возможны и более серьёзные ситуации - трещины радиатора, которые могут возникнуть, как при ДТП, так и в результате коррозии. Радиатор в большинстве случаев можно восстановить. Латунные и медные ремонтируются с помощью пайки, а алюминиевые специальными герметиками.

Перед началом пайки места повреждения тщательно зачищаются наждачной шкуркой, до появления металлического блеска. После, трещина обрабатывается паяльным флюсом и с помощью мощного паяльника наносится равномерный слой припоя (см. видео).

Алюминиевый радиатор запаять не получиться, однако для их ремонта предлагаются специальные герметики или же можно использовать обычную «холодную сварку». Перед началом заделывания трещин важно хорошо зачистить дефектные места. Клеящая масса хорошо разминается до однородного состояния и наносится на проблемный участок. Стоит помнить о том, что эксплуатировать автомобиль можно только на следующие сутки после ремонта – эпоксидный клей высыхает довольно долго.

Что касается вентилятора охлаждения, его поломка может быть связана с обрывом электропроводки или нарушением привода от коленчатого вала, если вращение передаётся от силового агрегата.

В первом случае, стоит визуально оценить состояние проводов идущих к мотору вентилятора, при обнаружении обрыва нужно заново соединить повреждённые контакты. Если состояние проводов нормальное, а вентилятор всё равно не работает, возможно, поломался сам двигатель или датчик, отвечающий за его своевременное включение. При этом лучше обратиться в автосервис, где определят причину, по которой вентилятор не включается. При проблемах с датчиком обдув может как беспрерывно, так и не включаться вовсе.

В автомобилях, где вентилятор начинает вращаться при передаче крутящего момента от двигателя, поломка чаще всего связана с обрывом приводного ремня. Его замена довольно проста: необходимо ослабить натяг шкива и поставить новый ремень.

Более подробно об устройстве и ремонте вентилятора охлаждения .

Промывка системы охлаждения и замена жидкости

Гидравлическая система охлаждения требует своевременного промывания магистралей, в противном случае на стенках каналов может образоваться коррозия, солевые отложения, и другие загрязнения.

Причины засорения

Основной причиной загрязнения системы является использование в качестве охлаждающей жидкости обычной воды. Проточная вода из крана имеет в составе большое количество солей, создаёт накипь и ржавчину на стенках магистралей. Использование дистиллированной воды менее пагубно, но полноценное охлаждение в жаркий период она не способна обеспечить. Кроме того, зимой при минусовой темпе вода замёрзнет и расширяясь может нарушить целостность отдельных деталей и соединений.

Применение качественного антифриза или тосола более целесообразно. Специальные вещества для охлаждения имеют значительный ресурс и не замерзают даже при очень низких температурах. Однако присадки содержащиеся в составе, с течением времени начинают выпадать в осадок засоряя систему.

Процесс промывки

В первую очередь, перед промывкой сливается вся охлаждающая жидкость через выпускную пробку на радиаторе, расположенную в самом низу, и на блоке цилиндров для удаления остатков.

Важно помнить, что слив жидкости должен проводиться только на холодном двигателе!

После слива пробки заново закручиваются и в расширительный бачок заливается вода с лимонной кислотой или лучше специальная очищающая жидкость.

Далее, двигатель запускается и работает в холостом режиме на протяжении 15 минут. При этом следует проследить за тем, чтобы открылся большой круг циркуляции. Также при промывке не стоит забывать о том, что салонная печка должна работать в режиме максимального обогрева. Когда агрегат остыл жидкость можно слить, открыв пробки радиатора и блока цилиндров. Этот процесс рекомендуется повторять до тех пор, пока при сливе не будет вытекать чистая жидкость без видимых загрязнений.

Залив новой охлаждающей жидкости можно проводить сразу же после окончания промывки. Наливать тосол или антифриз в расширительный бочок следует аккуратно и медленно во избежание образования воздушных пробок в системе.

Когда бачок заполниться почти полностью его нужно закрыть и запустить ДВС на несколько минут чтобы жидкость равномерно распространилась по системе. Далее, после отключения агрегата, тосол или антифриз доливаются до уровня между отметками максимума и минимума на бочке.

В заключение стоит сказать, что принципиальной разницы в использовании тосола или антифриза нет. Однако во многих странах мира автопроизводители давно перестали использовать тосол, поскольку его эффективность несколько ниже. Современный антифриз изготавливается с применением новейших технологий и в большей степени защищает двигатель от перегрева, а магистрали системы охлаждения от загрязнения.

Система охлаждения двигателя служит для поддержания нормального теплового режима работы двигателей путем интенсивного отвода тепла от горячих деталей двигателя и передачи этого тепла окружающей среде.

Отводимое тепло состоит из части выделяющегося в цилиндрах двигателя тепла, не превращающейся в работу и не уносимой с выхлопными газами, и из тепла работы трения, возникающего при движении деталей двигателя.

Большая часть тепла отводится в окружающую среду системой охлаждения, меньшая часть – системой смазки и непосредственно от наружных поверхностей двигателя.

Принудительный отвод тепла необходим потому, что при высоких температурах газов в цилиндрах двигателя (во время процесса горения 1800–2400 °С, средняя температура газов за рабочий цикл при полной нагрузке 600–1000 °С) естественная отдача тепла в окружающую среду оказывается недостаточной.

Нарушение правильного отвода тепла вызывает ухудшение смазки трущихся поверхностей, выгорание масла и перегрев деталей двигателя. Последнее приводит к резкому падению прочности материала деталей и даже их обгоранию (например, выпускных клапанов). При сильном перегреве двигателя нормальные зазоры между его деталями нарушаются, что обычно приводит к повышенному износу, заеданию и даже поломке. Перегрев двигателя вреден и потому, что вызывает уменьшение коэффициента наполнения, а в бензиновых двигателях, кроме того, – детонационное сгорание и самовоспламенение рабочей смеси.

Чрезмерное охлаждение двигателя также нежелательно, так как оно влечет за собой конденсацию частиц топлива на стенках цилиндров, ухудшение смесеобразования и воспламеняемости рабочей смеси, уменьшение скорости ее сгорания и, как следствие, уменьшение мощности и экономичности двигателя.

Классификация систем охлаждения

В автомобильных и тракторных двигателях, в зависимости от рабочего тела, применяют системы жидкостного и воздушного охлаждения. Наибольшее распространение получило жидкостное охлаждение.

При жидкостном охлаждении циркулирующая в системе охлаждения двигателя жидкость воспринимает тепло от стенок цилиндров и камер сгорания и передает затем это тепло при помощи радиатора окружающей среде.

По принципу отвода тепла в окружающую среду системы охлаждения могут быть замкнутыми и незамкнутыми (проточными) .

Жидкостные системы охлаждения автотракторных двигателей имеют замкнутую систему охлаждения, т. е. постоянное количество жидкости циркулирует в системе. В проточной системе охлаждения нагретая жидкость после прохождения через нее выбрасывается в окружающую среду, а новая забирается для подачи в двигатель. Применение таких систем ограничивается судовыми и стационарными двигателями.

Воздушные системы охлаждения являются незамкнутыми. Охлаждающий воздух после прохождения через систему охлаждения выводится в окружающую среду.

Классификация систем охлаждения приведена на рис. 3.1.

По способу осуществления циркуляции жидкости системы охлаждения могут быть:

    принудительными, в которых циркуляция обеспечивается специальным насосом, расположенным на двигателе (или в силовой установке), или давлением, под которым жидкость подводится в силовую установку из внешней среды;

    термосифонными, в которых циркуляция жидкости происходит за счет разницы гравитационных сил, возникающих в результате различной плотности жидкости, нагретой около поверхностей деталей двигателя и охлаждаемой в охладителе;

    комбинированными , в которых наиболее нагретые детали (головки блоков цилиндров, поршни) охлаждаются принудительно, а блоки цилиндров – по термосифонному принципу.

Рис. 3.1. Классификация систем охлаждения

Системы жидкостного охлаждения могут быть открытыми и закрытыми.

Открытые системы – системы, сообщающиеся с окружающей средой при помощи пароотводной трубки.

В большинстве автомобильных и тракторных двигателей в настоящее время применяют закрытые системы охлаждения, т. е. системы, разобщенные от окружающей среды установленным в пробке радиатора паровоздушным клапаном.

Давление и соответственно допустимая температура охлаждающей жидкости (100–105 °С) в этих системах выше, чем в открытых системах (90–95 °С), вследствие чего разность между температурами жидкости и просасываемого через радиатор воздуха и теплоотдача радиатора увеличиваются. Это позволяет уменьшить размеры радиатора и затрату мощности на привод вентилятора и водяного насоса. В закрытых системах почти отсутствует испарение воды через пароотводный патрубок и закипание ее при работе двигателя в высокогорных условиях.

Жидкостная система охлаждения

На рис. 3.2 показана схема жидкостной системы охлаждения с принудительной циркуляцией охлаждающей жидкости.

Рубашка охлаждения блока цилиндров 2 и головки блока 3, радиатор и патрубки через заливную горловину заполнены охлаждающей жидкостью. Жидкость омывает стенки цилиндров и камер сгорания работающего двигателя и, нагреваясь, охлаждает их. Центробежный насос 1 нагнетает жидкость в рубашку блока цилиндров, из которой нагретая жидкость поступает в рубашку головки блока и затем по верхнему патрубку вытесняется в радиатор. Охлажденная в радиаторе жидкость по нижнему патрубку возвращается к насосу.

Рис. 3.2. Схема жидкостной системы охлаждения

Циркуляция жидкости в зависимости от теплового состояния двигателя изменяется с помощью термостата 4. При температуре охлаждающей жидкости ниже 70–75 °С основной клапан термостата закрыт. В этом случае жидкость не поступает в радиатор 5 , а циркулирует по малому контуру через патрубок 6, что способствует быстрому прогреву двигателя до оптимального теплового режима. При нагревании термочувствительного элемента термостата до 70–75 °С основной клапан термостата начинает открываться и пропускать воду в радиатор, где она охлаждается. Полностью термостат открывается при 83–90 °С. С этого момента вода циркулирует по радиаторному, т. е. большому, контуру. Температурный режим двигателя регулируется также с помощью поворотныхжалюзей, путем изменения воздушного потока, создаваемого вентилятором 7 и проходящего через радиатор.

В последние годы наиболее эффективным и рациональным способом автоматического регулирования температурного режима двигателя является изменение производительности самого вентилятора.

Элементы жидкостной системы

Термостат предназначен для обеспечения автоматического регулирования температуры охлаждающей жидкости во время работы двигателя.

Для быстрого прогрева двигателя при его пуске устанавливают термостат в выходном патрубке рубашки головки блока цилиндров. Он поддерживает желательную температуру охлажда-ющей жидкости путем изменения интенсивности ее циркуляции через радиатор.

На рис. 3.3 представлен термостат сильфонного типа. Он состоит из корпуса 2, гофрированного цилиндра (сильфона), клапана 1 и штока, соединяющего сильфон с клапаном. Сильфон изготовлен из тонкой латуни и заполнен легкоиспаряющейся жидкостью (например, эфиром или смесью этилового спирта и воды). Расположенные в корпусе термостата окна 3 в зависимости от температуры охлаждающей жидкости могут или оставаться открытыми, или быть закрытыми клапанами.

При температуре охлаждающей жидкости, омывающей сильфон, ниже 70 °С клапан 1 закрыт, а окна 3 открыты. Вследствие этого охлаждающая жидкость в радиатор не поступает, а циркулирует внутри рубашки двигателя. При повышении температуры охлаждающей жидкости выше 70 °С сильфон под давлением паров испаряющейся в нем жидкости удлиняется и начинает открывать клапан 1 и постепенно прикрывать окна клапанами 3. При температуре охлаждающей жидкости выше 80–85 °С клапан 1 полностью открывается, окна же полностью закрываются, вследствие чего вся охлаждающая жидкость циркулирует через радиатор. В настоящее время данный тип термостатов применяется очень редко.

Рис. 3.3. Термостат сильфонного типа

Сейчас в двигателях устанавливают термостаты, в которых заслонка 1 открывается при расширении твердого наполнителя – церезина (рис. 3.4). Это вещество расширяется при повышении температуры и открывает заслонку 1 , обеспечивая поступление охлаждающей жидкости в радиатор.

Рис. 3.4. Термостат с твердым наполнителем

Радиатор является теплорассеивающим устройством, предназначенным для передачи тепла охлаждающей жидкости окружающему воздуху.

Радиаторы автомобильных и тракторных двигателей состоят из верхнего и нижнего резервуаров, соединенных между собой большим количеством тонких трубок.

Для усиления передачи тепла от охлаждающей жидкости воздуху поток жидкости в радиаторе направляют через ряд обдуваемых воздухом узких трубок или каналов. Радиаторы изготовляют из материалов, хорошо проводящих и отдающих тепло (латуни и алюминия).

В зависимости от конструкции охлаждающей решетки радиаторы делят на трубчатые, пластинчатые и сотовые.

В настоящее время наибольшее распространение получили трубчатые радиаторы . Охлаждающая решетка таких радиаторов (рис. 3.5а) состоит из вертикальных трубок овального или круглого сечения, проходящих через ряд тонких горизонтальных пластин и припаянных к верхнему и нижнему резервуарам радиатора. Наличие пластин улучшает теплопередачу и повышает жесткость радиатора. Трубки овального (плоского) сечения предпочтительнее, так как при одинаковом сечении струи поверхность охлаждения их больше, чем поверхность охлаждения круглых трубок; кроме того, при замерзании воды в радиаторе плоские трубки не разрываются, а лишь изменяют форму поперечного сечения.


Рис. 3.5. Радиаторы

В пластинчатых радиаторах охлаждающая решетка (рис. 3.5б) устроена так, что охлаждающая жидкость циркулирует в пространстве, образованном каждой парой спаянных между собой по краям пластин. Верхние и нижние концы пластин, кроме того, впаяны в отверстия верхнего и нижнего резервуаров радиатора. Воздух, охлаждающий радиатор, просасывается вентилятором через проходы между спаянными пластинами. Для увеличения поверхности охлаждения пластины обычно выполняют волнистыми. Пластинчатые радиаторы имеют большую охлаждающую поверхность, чем трубчатые, но вследствие ряда недостатков (быстрое загрязнение, большое количество паяных швов, необходимость более тщательного ухода) применяются сравнительно редко.

Сотовый радиатор относится к радиаторам с воздушными трубками (рис. 3.5в). В решетке сотового радиатора воздух проходит по горизонтальным, круглого сечения трубкам, омываемым снаружи водой или охлаждающей жидкостью. Чтобы сделать возможной спайку концов трубок, края их развальцовывают так, что в сечении они имеют форму правильного шестиугольника.

Достоинством сотовых радиаторов является большая, чем в радиаторах других типов, поверхность охлаждения. Из-за ряда недостатков, большинство из которых те же, что и у пластинчатых радиаторов, сотовые радиаторы в настоящее время встречаются крайне редко.

В пробке заливной горловины радиатора установлен паровой клапан 2 и воздушный клапан 1 , которые служат для поддержания давления в заданных пределах (рис. 3.6).

Рис. 3.6. Пробка радиатора

Водяной насос обеспечивает циркуляцию охлаждающей жидкости в системе. Как правило, в системах охлаждения устанавливают малогабаритные одноступенчатые центробежные насосы низкого давления производительностью до 13 м 3 /ч, создающие давление 0.05–0.2 МПа. Такие насосы конструктивно просты, надежны и обеспечивают высокую производительность (рис. 3.7).

Корпус и крыльчатку насосов отливают из магниевых, алюминиевых сплавов, крыльчатку, кроме того, – из пластмасс. В водяных насосах автомобильных двигателей обыкновенно применяют полузакрытые крыльчатки, т. е. крыльчатки с одним диском.

Крыльчатки центробежных водяных насосов часто монтируют на одном валике с вентилятором. В этом случае насос устанавливают в верхней передней части двигателя, приводится он в движение от коленчатого вала при помощи клиноременной передачи.

Рис. 3.7. Водяной насос

Ременную передачу можно применять и при установке центробежного насоса отдельно от вентилятора. В некоторых двигателях грузовых автомобилей и тракторов привод водяного насоса осуществляется от коленчатого вала шестеренчатой передачей. Вал центробежного водяного насоса устанавливают обычно на подшипниках качения и снабжают для уплотнения рабочей поверхности простыми или саморегулирующимися сальниками.

Вентилятор в жидкостных системах охлаждения устанавливают для создания искусственного потока воздуха, проходящего через радиатор. Вентиляторы автомобильных и тракторных двигателей делят на два типа: а) со штампованными из листовой стали лопастями, прикрепленными к ступице; б) с лопастями, которые отлиты за одно целое со ступицей.

Число лопастей вентилятора изменяется в пределах четырех – шести. Увеличение числа лопастей выше шести нецелесообразно, так как производительность вентилятора при этом увеличивается крайне незначительно. Лопасти вентилятора можно выполнять плоскими и выпуклыми.


К атегория:

Автомобили и трактора

Общее устройство и работа жидкостной системы охлаждения


Система охлаждения предназначена для принудительного отвода от деталей двигателя лишнего тепла и передачи его окружающему воздуху. Благодаря этому создается определенный температурный режим, при котором двигатель не перегревается и не переохлаждается. Тепло в двигателях отводится двумя способами: жидкостью (жидкостная система охлаждения) или воздухом (воздушная система охлаждения). Эти системы поглощают 25-35% тепла, выделяющегося во время сгорания топлива. Температура охлаждающей жидкости, находящейся в головке блока цилиндров, должна быть равна 80-95 °С. Такой температурный режим наиболее выгоден, обеспечивает нормальную работу двигателя и не должен изменяться в зависимости от температуры окружающего воздуха и нагрузки двигателя. Температура в течение рабочего цикла двигателя изменяется от 80-120 °С (минимальная) в конце впуска до 2000-2200 °С (максимальная) в конце сгорания смеси.

Если двигатель не охлаждать, то газы, имеющие высокую температуру, сильно нагревают детали двигателя и они расширяются. Масло на цилиндрах и поршнях выгорает, их трение и износ возрастают, а от чрезмерного расширения деталей происходит заклинивание поршней в цилиндрах двигателя, и двигатель может выйти из строя. Чтобы избежать отрицательных явлений, вызываемых перегревом двигателя, его необходимо охлаждать.

Однако чрезмерное охлаждение двигателя вредно отражается на его работе. При переохлаждении двигателя на стенках цилиндров конденсируются пары топлива (бензина), смывая смазку, разжижают масло в картере. В этих условиях происходит интенсивный износ поршневых колец, поршней цилиндров и снижается экономичность и мощность двигателя. Нормальная работа системы охлаждения способствует получению наибольшей мощности, снижению расхода топлива и увеличению срока службы двигателя без ремонта.



-

Большинство двигателей имеет жидкостные системы охлаждения (открытые или закрытые). У открытой системы охлаждения внутреннее пространство непосредственно сообщается с окружающей атмосферой. Распространение получили закрытые системы охлаждения, у которых внутреннее пространство только периодически сообщается с окружающей средой при помощи специальных клапанов. В этих системах охлаждения повышается температура кипения охлаждающей жидкости и уменьшается ее выкипание.

Рис. 1. Схема жидкостной системы охлаждения: 1 - радиатор; 2 - верхний бачок; 3 - пробка радиатора; 4 - контрольная трубка; 5 - верхний патрубок радиатора; 6 и 19 - резиновые шланги; 7 - перепускной канал; 8 к 18 - соответственно отводящий и подводящий патрубки; 9 - термостат; 10 - отверстие; 11 - головка блока; 12 - водораспределительная трубка; 13 - датчик указателя температуры жидкости; 14 - блок цилиндров; 15 и 21 - сливные краники; 16 - водяная рубашка; 17 - крыльчатка водяного центробежного насоса; 20 - нижний патрубок радиатора: 22 - нижний бачок радиатора; 23 - ремень привода вентилятора; 24 - вентилятор

Двигатели автомобилей ГАЗ -24 «Волга», ГАЗ -бЗА, ЗИЛ -130, MA3-5335 и КамАЗ-5320 имеют закрытую жидкостную систему охлаждения с принудительной циркуляцией жидкости, создаваемой водяным центробежным насосом. Жидкостная система охлаждения автомобильного двигателя (рис. 1) состоит из водяной рубашки, радиатора, вентилятора, термостата, насоса с крыльчаткой, отводящего и подводящего патрубков, ремня привода вентилятора, датчика указателя температуры жидкости, сливных краников и других деталей. Вокруг цилиндров двигателя и головки блока имеется пространство с двойными стенками (водяная рубашка), где циркулирует охлаждающая жидкость.

Во время работы двигателя охлаждающая жидкость нагревается и водяным насосом подается в радиатор, где охлаждается, а затем снова поступает в рубашку блока цилиндров. Для надежной работы двигателя необходимо, чтобы охлаждающая жидкость постоянно циркулировала по замкнутому кругу: двигатель - радиатор-двигатель. Жидкость может циркулировать по малому кругу, минуя радиатор (непрогретый двигатель, термостат закрыт), или по большому кругу, поступая в радиатор (прогретый двигатель, термостат открыт). Направление движения охлаждающей жидкости показано на рис. 42 стрелками.

Водяная рубашка двигателя состоит из рубашки блока цилиндров и рубашки головки блока, соединенных между собой отверстиями в прокладке между головкой и блоком. Крыльчатка водяного центробежного насоса и вентилятор приводятся в действие клиновидным ремнем. При вращении крыльчатки насоса охлаждающая жидкость нагнетается в водораспределительную трубку, расположенную в головке блока. Через отверстия в трубке жидкость направляется к патрубкам выпускных клапанов, благодаря чему охлаждаются наиболее нагретые части головки блока и цилиндров. Нагретая охлаждающая жидкость проходит в верхний отводящий патрубок. Если термостат закрыт, то по перепускному каналу жидкость снова поступает к центробежному насосу. При открытом термостате охлаждающая жидкость проходит в верхний бачок радиатора, охлаждается, протекая по трубкам, и поступает в нижний бачок радиатора. Охлажденная в радиаторе жидкость по нижнему подводящему патрубку подводится к насосу.

Водяная рубашка двигателя автомобиля ЗИЛ -130 соединена с радиатором гибкими шлангами. Верхний бачок радиатора соединен с рубашкой впускного трубопровода, а нижний бачок - с подводящим патрубком водяного насоса. Левый и правый ряды цилиндров соединены с насосом двумя трубопроводами. В патрубке, по которому нагретая охлаждающая жидкость подводится к верхнему бачку радиатора, установлен термостат. Водяная рубашка компрессора гибкими шлангами постоянно соединена с системой охлаждения двигателя. Радиатор 18 ото-пителя соединен с системой охлаждения двигателя шлангами] включается отопитель в работу краном.

При пуске, прогреве и работе двигателя, пока температура воды в системе охлаждения ниже 73° С, жидкость циркулирует по водяным рубашкам блока, головок блока и компрессора, но не поступает в радиатор, так как термостат закрыт. К водяному насосу (независимо от положения клапана термостата) охлаждающая жидкость подается по перепускному шлангу из рубашки впускного трубопровода, от компрессора и из радиатора отопителя (если он включен).

Рис. 2. Система охлаждения двигателя автомобиля ЗИЛ - 303 1 - радиатор; 2 - жалюзи; 3 - вентилятор; 4 - водяной насос; 5 и 27 - соответственно верхний и нижний бачки радиатора; 6 - пробка радиатора; 7 - отводящий шланг; 8 - компрессор; 9 - подводящий шланг; 10 - перепускной шланг; 11 - термостат; 12 - патрубок; 13 - фланец для установки карбюратора; 14 - впускной трубопровод; 15 - кран отопителя; 16 и 17 - соответственно подводящая и отводящая трубки; 18 - радиатор отопителя; 19 - датчик указателя температуры жидкости; 20 - дозирующая вставка; 21 - водяная рубашка головки блока; 22 - водяная рубашка блока цилиндров; 23 - сливной кран рубашки блока цилиндров; 24 - рукоятка привода сливного крана; 25 - сливной кран патрубка радиатора; 26 = подводящий патрубок

Водяной насос нагнетает жидкость в систему, и основной ее поток проходит по водяной рубашке блока цилиндров от его передней части к задней. Омывая гильзы цилиндров со всех сторон и проходя через отверстия в привалочных поверхностях блока цилиндров и головок блока, а также в прокладке, расположенной между ними, охлаждающая жидкость поступает в рубашки головок блока. При этом значительное количество охлаждающей жидкости подается к наиболее нагретым местам - патрубкам выпускных клапанов и гнездам свечей зажигания. В головках блока охлаждающая жидкость движется в продольном направлении от заднего торца к переднему благодаря наличию отверстий соответствующего диаметра, просверленных в привалочных поверхностях блока цилиндров и головок, и дозирующих вставок, установленных в задних каналах впускного трубопровода. Отверстие во вставке ограничивает количество жидкости, поступающей в рубашку впускного трубопровода. Теплая жидкость, проходящая по рубашке впускного трубопровода, нагревает горючую смесь, поступающую из карбюратора (по внутренним каналам трубопровода), и улучшает смесеобразование.

Перед началом работы необходимо проверить уровень жидкости в радиаторе, так как при недостаточном ее количестве нарушается циркуляция жидкости и двигатель перегревается. В систему ох л а ледени я следует наливать чистую мягкую воду, не содержащую известковых солей. При использовании жесткой воды в радиаторе и водяной рубашке откладывается большое количество накипи, приводящей к перегреву двигателя и снижению его мощности. Частая смена воды в системе охлаждения вызывает усиленное образование накипи. Смягчить воду можно следующими способами: кипячением, добавлением к воде химических веществ и ее магнитной обработкой. Установлено, что, проходя через слабое магнитное силовое’поле,‘вода приобретает новые свойства: теряет способность к накипеобразованию и растворяет ранее образовавшуюся накипь, которая была в системе охлаждения двигателя.

В систему охлаждения воду наливают через горловину радиатора, закрываемую пробкой (рис. 43). Для слива воды из системы охлаждения служат краники, расположенные в самых низких точках системы охлаждения.

Система охлаждения дизеля автомобиля КамАЗ-5320 рассчитана на постоянное использование жидкостей TOCOЛ -A-40 или TOCOЛ -A-65 (замерзающих при низкой температуре). Применение воды в системе охлаждения допускается только в особых случаях и кратковременно. В систему охлаждения входят водяные рубашки блока и головок цилиндров, водяной насос, радиатор, вентилятор с гидромуфтой, жалюзи, два термостата, расширительный бачок, соединительные трубопроводы, шланги, клиноременная передача привода насоса, сливные краны или пробки, датчики температуры охлаждающей жидкости и другие детали.

Завод допускает работу двигателя при температуре охлаждающей жидкости не более 105 °С. Температурный режим работы двигателя поддерживается двумя термостатами, гидромуфтой включения вентилятора и жалюзи. Если двигатель не прогрет, то охлаждающая жидкость, подаваемая насосом, поступает в левый ряд цилиндров и по нагнетательному патрубку в правый ряд. Омывает наружные поверхности гильз цилиндров обоих рядов, затем через отверстия в верхней плоскости блока цилиндра, прокладке головки блока поступает в головки цилиндров, охлаждая наиболее нагретые места - выпускные каналы и гнезда форсунок. Нагретая жидкость проходит от головок цилиндров в правую и левую трубы, расположенные в «развале» двигателя, затем по соединительной трубе подается в водораспределительную коробку (или коробку термостатов). Клапаны термостатов закрыты, и по перепускному патрубку 6 охлаждающая жидкость снова подается к водяному насосу.

Рис. 3. Система охлаждения дизеля автомобиля КамАЭ-5320: 1 - шкив коленчатого вала; 2 - нижний бачок; 3 - жалюзи; 4 - радиатор; 5 - гидромуфта привода вентилятора; 6 - перепускной патрубок; 7 - нагнетательный патрубок; в - верхний бачок; 9 - верхний патрубок; 10 - термостат; 11 - водораспределительная коробка; 12 - соединительная труба; 13 - подводящая трубка; 14 - правая водяная труба; 15 - отводящая трубка; 16 - впускной коллектор; 17 - датчик контрольной лампы перегрева жидкости; 18 - расширительный бачок; 19 - горловина с герметизирующей пробкой; 20 - пробка с клапанами; 21 - отводящая трубка от компрессора; 22 - отводящая трубка левой водяной трубы; 23 - компрессор; 24 - левая водяная труба; 25 - крышка головки; 26 - головка цилиндра; 27 - водяной насос; 28 - сливной кран или пробка; 29 - шкив водяного насоса; 30 - вентилятор; 31 - нижний патрубок

Термостаты установлены в отдельной коробке, укрепленной на переднем торце правого ряда цилиндров. Расширительный бачок расположен на двигателе с правой стороны и соединен с верхним бачком радиатора, водораспределительной коробкой, компрессором и водяной рубашкой блока цилиндров. Расширительный бачок компенсирует изменение объема жидкости при ее нагревании, позволяет контролировать ее уровень в системе охлаждения. В бачок отводится и в нем конденсируется пар из верхних участков радиатора и системы. Собирающийся в бачке воздух улучшает работу системы охлаждения. TOCOJ1-A-40 или ТОСОЛ -А-65 в систему охлаждения наливают через горловину, имеющую герметизированную пробку на резьбе. Паровой и воздушный клапаны установлены в пробке.

В системе охлаждения дизеля применена гидромуфта привода вентилятора, которая передает крутящий момент от коленчатого вала двигателя к вентилятору. Используя гидромуфту, поддерживают наивыгоднейший температурный режим в системе охлаждения и гасят возникающие колебания при резком изменении частоты вращения коленчатого вала. Гидромуфта привода вентилятора имеет автоматическое управление.

В движение гидромуфта приводится от коленчатого вала двигателя через шлицевой ведущий вал. Вентилятор, расположенный соосно с коленчатым валом, укреплен на ступице, установленной на ведомом валу. Ведущую часть гидромуфты составляют: ведущий вал в сборе с кожухом; ведущее колесо, соединенное болтами с кожухом и валом шкива; шкив привода насоса и генератора, привернутый к валу болтами. Ведущая часть гидромуфты вращается на шарикоподшипниках. Ведомую часть гидромуфты составляют: ведомое колесо в сборе, соединенное болтами с ведомым валом. Ведомая часть гидромуфты привода вентилятора вращается на шарикоподшипниках. Уплотнение гидромуфты осуществлено двумя уплотнительными кольцами и самоподжимными сальниками.

Рис. 4. Гидромуфта привода вентилятора: 1 - передняя крышка; 2 - корпус; 3 - кожух; 4, 7, 13 и 20 - шарикоподшипники; 5 - трубка подвода масла; 6 - ведущий вал; 8 - уплотнительные кольца; 9 - ведомое колесо; 10 - ведущее колесо; 11 - шкив; 12 - вал шкива; 14 - упорная втулка; 15 - ступица вентилятора; 16 - ведомый вал; 17 и 21 т- самоподжимные сальники; 18 -прокладка; 19 и 22 - болты

Для управления гидромуфтой привода вентилятора имеется выключатель золотникового типа, установленный на нагнетательном патрубке в передней части двигателя. В зависимости от температуры жидкости в системе охлаждения выключатель гидромуфты соединяет или разъединяет ведущий вал с ведомым, изменяя количество масла, поступающего в гидромуфту из системы смазки. Масло для работы гидромуфты подается насосом в ее полость, затем по трубке подводится в каналы ведущего вала и через отверстия в ведомом колесе - в межлопастное пространство. При вращении ведущего колеса масло с его лопаток переходит на лопатки ведомого колеса, и оно начинает вращаться, передавая крутящий момент на вал и вентилятор. Гидромуфта при помощи крана Еключается в работу или отключается, а в связи с этим включается или отключается вентилятор. Кран находится в корпусе выключателя гидромуфты.

Вентилятор может работать в трех режимах:
— автоматический - температура охлаждающей жидкости в двигателе поддерживается равной 80-95 °С; кран выключателя гидромуфты установлен в положение В (метка на корпусе); при снижении температуры охлаждающей жидкости ниже 80° С вентилятор автоматически отключается;
— вентилятор отключен - кран выключателя гидромуфты установлен в положение 0; вентилятор может вращаться с небольшой частотой;
— вентилятор включен постоянно - в таком режиме допускается кратковременная работа в случае возможных неисправностей гидромуфты или ее выключателя.

Температуру жидкости в системе охлаждения контролируют дистанционным термометром, приемник которого расположен в кабине водителя на щитке приборов, а датчик в водораспределительной коробке (дизель автомобиля КамАЗ-5320), в водяном канале впускного трубопровода (двигатели автомобилей ГАЗ -53А и ЗИЛ -130), в головке блока (двигатель автомобиля ГАЗ -24 «Волга»). Если температура воды в системе охлаждения превышает определенную величину, то на щитке приборов загорается сигнальная лампа, например красная (автомобиль ГАЗ -63А) при температуре воды 105-108 °С.

Принципиальная схема принудительных систем охлаждения современных двигателей одинакова.

Двигатель ЗИЛ -130 имеет закрытую систему охлаждения с принудительной циркуляцией жидкости. Система состоит из охлаждающей рубашки блока и головки цилиндров, радиатора, соединительных патрубков, водяного центробежного насоса, вентилятора, термостата, сливных краников рубашки блока цилиндров и сливного крана радиатора. На рисунке показан включенный в систему охлаждения отопитель кабины и обогреватель ветрового стекл(а. .Подвод жидкости к отопителю производится по трубопроводу, а отвод - по трубопроводу при открытом положении крана.

При работе двигателя водяной насос создает циркуляцию жидкости через охлаждающую рубашку, патрубки и радиатор. Проходя по рубашке блока и головки, охлаждающая жидкость омывает стенки цилиндров, камеры сгорания и другие детали. Нагретая жидкость по патрубку поступает в верхнюю часть радиатора и далее по большому количеству трубок из верхней части радиатора в нижнюю, отдавая при этЪм тепло потоку воздуха. Охлажденная жидкость из нижнего бачка (резервуара) радиатора вновь поступает в рубашку двигателя. Систему рассчитывают так, чтобы при прохождении через радиатор температура жидкости снизилась на 6-10 °С. Термостат, установленный в верхнем водяном патрубке, автоматически меняет интенсивность циркуляции жидкости через радиатор, поддерживая наивыгоднейшую ее температуру. Поступление воздуха к радиатору можно регулировать с помощью жалюзи - шторок перед радиатором, открываемых в зависимости от теплового режима двигателя вручную или автоматически.

На двигателях грузовых автомобилей ЗИЛ , МАЗ , КамАЗ установлен компрессор тормозной системы, цилиндры которого имеют жидкостное охлаждение, подключенное параллельно системе охлаждения двигателя.

Контроль за работой системы охлаждения заключается в проверке уровня жидкости и в наблюдениях за показаниями термометра, состоящего из датчика и приемника, установленного на щитке приборов.

Двигатель СМД -14 гусеничного трактора ДТ-75М имеет закрытую систему охлаждения с принудительной циркуляцией охлаждающей жидкости. В систему охлаждения входят: водяной насос центробежного типа с вентилятором, приводимые во вращение клиновым ремнем охлаждающие рубашки блока и головки блока; отводящая труба; радиатор, состоящий из верхнего и нижнего литых бачков, между которыми впаяна сердцевина; датчик указателя температуры жидкости; соединительные трубопроводы и шланги. Для удаления воздуха из системы служит отверстие в корпусе водяного насоса, закрытое пробкой. В систему охлаждения двигателя включена рубашка охлаждения пускового двигателя. Заполняют систему жидкостью через горловину радиатора, а сливают через краны. Интенсивность охлаждения жидкости в радиаторе регулируют вручную подъемом шторок, расположенных перед радиатором на большую или меньшую высоту.

Рис. 5. Система охлаждения двигателя ЗИЛ -130

Циркуляция охлаждающей жидкости в системе осуществляется водяным насосом, который засасывает жидкость из нижнего бачка радиатора через патрубок и подает ее в водораспределительный канал блок-картера. Через боковые отверстия в водораспределительном канале жидкость подается одновременно ко всем цилиндрам. Из рубашки охлаждения блок-картера жидкость поступает в водяную рубашку головки блока и затем по трем отверстиям в верхней стенке головки в водоотводящую трубу и далее в верхний бачок радиатора. Часть жидкости из блок-картера по соединительному патрубку поступает в рубашку цилиндра пускового двигателя, а оттуда через головку его цилиндра в отводящую трубу.

Вместимость системы охлаждения автотракторных двигателей определяется типом двигателя и находится в пределах 7,5-50 л.

Работа двигателя внутреннего сгорания (ДВС) приводит к чрезмерному нагреванию всех его деталей и без их охлаждения функционирование главного агрегата транспортного средства невозможно. Эту роль выполняет система охлаждения двигателя, которая также отвечает за обогревание салона авто. В турбированных двигателях с ее помощью снижается температура воздуха, нагоняемого в цилиндры, а в АКПП эта система охлаждает жидкость, которая применяется для ее работы. Отдельные модели машин оснащают масляным радиатором, который принимает участие в терморегуляции масла, использующегося для смазки двигателя.

Система охлаждения ДВС бывает воздушная и жидкостная

Обе эти системы не идеальны и имеют как достоинства, так и недостатки.

Преимущества воздушной системы охлаждения:

  • небольшой вес двигателя;
  • простота устройства и его обслуживания;
  • невысокая требовательность к температурным изменениям.

Недостатки воздушной системы охлаждения:

  • большой шум от работы двигателя;
  • перегрев отдельных деталей мотора;
  • невозможность выстроить цилиндры блоками;
  • затруднительность в использовании выделяемого тепла для обогревания салона авто.

В современных условиях автопроизводители предпочитают оснащать свои машины преимущественно двигателями с системами жидкостного охлаждения. Воздушные конструкции, охлаждающие узлы мотора, встречаются очень редко.

Преимущества жидкостной системы охлаждения:

  • не такой шумный двигатель по сравнению с воздушной системой;
  • высокая скорость начала работы при запуске мотора;
  • равномерное охлаждение всех деталей силового механизма;
  • меньшая предрасположенность к детонации.

Недостатки жидкостной системы охлаждения:

  • дорогое техническое обслуживание и ремонт;
  • возможное вытекание жидкости;
  • частые переохлаждения мотора;
  • замерзание системы в периоды морозов.

Структура жидкостной системы охлаждения двигателя

К основным составляющим жидкостной системы охлаждения ДВС относятся следующие детали:

  • «водяная рубашка» двигателя
  • вентилятор;
  • радиатор;
  • помпа (центробежный насос);
  • термостат;
  • бачок расширительный;
  • теплообменник отопителя;
  • составляющие элементы управления.

Водяная рубашка двигателя – это плоскость между стенками агрегата в тех местах, которым требуется охлаждение.

Радиатор системы охлаждения – это механизм, который предназначен для отдачи созданного работой двигателя тепла. Узел представляет собой конструкцию из многих изогнутых алюминиевых трубой, которые также имеют дополнительные ребра, способствующие большей теплоотдаче.

Вентилятор используется для ускорения циркуляции воздуха, обволакивающего радиатор. Вентилятор включается при граничном нагревании охлаждающей жидкости.

Центробежный насос (другими словами – помпа) обеспечивает беспрерывное движение жидкости во время работы двигателя. Привод для помпы может быть разным: ременной, например, или шестеренный. На авто с турбированными двигателями часто устанавливают добавочные насосы, которые способствуют циркуляции жидкости и запускаются из блока управления.

Термостат – это устройство в виде биметаллического (или электронного) клапана, расположенного между входным отверстием радиатора и «рубашкой охлаждения». Этот прибор обеспечивает нужную температуру жидкости, служащей для охлаждения ДВС. Когда мотор остывший, термостат закрыт, поэтому принудительная циркуляция остужающей жидкости проходит внутри двигателя, не затрагивая радиатор. В момент нагревания жидкости до граничной температуры клапан открывается. В этот момент система начинает функционировать во всю свою мощь.

Расширительный бачок используется для заливания охлаждающей жидкости. Этот узел компенсирует также изменение количества жидкости в системе во время изменения температуры.

Радиатор отопителя – механизм, предназначенный для подогрева воздуха в салоне транспортного средства. Его рабочая жидкость набирается непосредственно возле входа в «рубашку» мотора.

Главным элементом координации системы охлаждения ДВС есть датчик (температурный), электронный блок управления, а также исполнительные устройства.

Особенность работы системы охлаждения двигателя

Система охлаждения работает под контролем системы управления силовым агрегатом. Насос запускает циркуляцию жидкости в «рубашке охлаждения» двигателя. Учитывая степень нагрева, жидкость перемещается либо по малому, либо по большому кругу.


Чтобы двигатель быстрее прогрелся после запуска, жидкость циркулирует по кругу малому. После ее нагревания термостат открывается, предоставляя жидкости возможность циркулировать через радиатор, на выходе с которого на жидкость воздействует поток воздуха (встречного или от работающего вентилятора), который ее охлаждает.

В моторах с турбонаддувом может использоваться двухконтурная система охлаждения. Особенностью ее работы есть то, что один контур контролирует охлаждение нагнетаемого воздуха, а второй – охлаждение двигателя.