«Надежные японские двигатели». Заметки автомобильного Диагноста

Первая цифра в современной кодировке тойотовских моторов показывает порядковый номер модификации, т.е. первый (базовый) мотор имеет маркировку 1 A , а первая по счету модификация этого мотора - 2A , следующая модификация носит название 3A и, наконец, 4 A (под "модификацией" понимается выпуск мотора другого объёма на базе уже существующего мотора).

Семейство А возникло в 1978 году, мотор имел объем 1.5 L (диаметр поршня 77.5мм., ход 77.0мм), основные цели создания были: компактность, низкий уровень шума, экологическая чистота, хорошие моментные характеристики и отсутствие потребности в обслуживании.

Различные вариации двигателей выпускались с 1982 по 2002 , в модельном ряду Тойоты этот двигатель занял место "почтенного старичка" (с головкой Hemi кстати) , а его самого в последствии сменил гораздо менее удачный . Всю яркость инженерной мысли за последние 40 лет я отразил в табличке:

2T-C 4A-C 3ZZ-FE
Объем 1588 см3 1587 cm3 1598 см3
Диаметр цилиндра \ ход поршня 85мм \ 70мм 81mm \ 77mm 79мм \ 85.1мм
Степень сжатия 8.5:1 9.0:1 10:1
Макс. мощность (об.\минут)

Макс. момент (об.\минут)

88 л.с (6000)

91 Н*м (3800)

90 л.с (4800)

115 (2800)

109 л.с (6000)

150 (3800)

Распредвал \ гидрокомпенсаторы OHV \ нет SOHC \ нет DOHC \ нет
Привод ГРМ Цепь Ремень Цепь
Расчетный срок службы 450 т.км. 300 т.км. 210 т.км
Годы выпуска (всего семейства) 1970-1985 1982 -2002 2000 - 2006

Как видим, инженеры умеют поднимать степень сжатия, снижать долговечность и постепенно сделали из короткоходного движка более "компактный" длинноходный двигатель...

Был у меня лично в эксплуатации и ремонте (карбюраторный с 8-ю клапанами и с 17 трубочками к карбюратору и разными пневмоклапанами, которые нигде не купишь) про него я ничего хорошего сказать не могу - в головке сломалась направляющая клапанов, отдельно её не купишь, значит, замена головки (только, где ж найти 8-ми клапанную головку?) . Коленвал лучше менять, чем точить - у меня он проходил всего 30 тыс. после расточки до первого ремонтного размера. Маслоприёмник совсем не удачный (сетка закрыта кожухом, в котором одно отверстие снизу, размеров с копеечную монету) - забился какой-то ерундой из-за чего двигатель стуканул...


Ещё интереснее сделан маслонасос: конструкция практически из 3 деталей и клапана, монтируется в передней крышке двигателя, которая одевается на коленвал (кстати, передний сальник коленвала трудно менять). Собственно, переднем концом коленвала маслонасос и приводится в действие. Я специально посмотрел тойотовские двигатели тех лет серий R ,T и K , ну или следующие серии S и G - нигде такое решение (привод масленого насоса передним концом коленвала напрямую или через зубчатую передачу) никогда не применялось! Я ещё из институтских времен помню русскую книжку по проектированию двигателей, в которой говорилось, почему так нельзя делать (надеюсь, умные сами знают, а дуракам скажу только за деньги) .

Ладно, давайте в маркировке движков разбираться: буква С после черточки означала наличие системы управления эмиссией (C не используется, если двигатель был первоначально оборудован для управления эмиссией, связано C с California, тогда только там были строгие стандарты эмиссии),

Буква Е после черточки означала распределённый впрыск топлива (Electronic fuel injection - EFI), представляете, инжектор на 8-миклапанном тойотовском двигателе! Надеюсь, вы никогда этого уже не увидите! (Ставился на AE82 , если кому интересно).

/ . Буква L после черточки означала, что двигатель устанавливается на автомобиле поперек, а буква U (от Unleaded fuel), что система контроля эмиссии рассчитана под бензин, доступный в те годы только в Японии.

К счастью, 8-ми клапанные двигатели серии А вы уже не найдёте, так что давайте поговорим о 16-ти и 20-ти клапанных двигателях. Их отличительной особенностью является наличие в названии двигателя после черточки буквы F (двигатель стандартного мощностного ряда с четырьмя клапанами на цилиндр, или как придумали маркетологи - High Efficiency Twincam Engine), у таких двигателей привод от ремня или цепи ГРМ имеет только один распределительный вал, второй же приводится в движение от первого через шестерню (двигатели с так называемой узкой головкой блока цилиндров), например, 4A-F. Или буквы G - это двигатель, каждый из распределительных валов которого имеет собственный привод от ремня (цепи) ГРМ. Маркетологи Toyota называет эти двигатели High Performance Engine, и распределительные валы у них приводятся через собственные зубчатые колеса (с широкой головкой блока цилиндров).

Буква Т означала наличие турбонаддува (Turbocharged), а буква Z (Supercharged) - механический нагнетатель (компрессор).

- хороший выбор для покупки, только если он не оборудован системой LEAN BURN:


При обрыве ремня клапаны в двигателе гнутся!
Двигатель 4A-FE LEAN BURN (LB) отличается от обычного 4A-FE конструкцией головки блока цилиндров, где в четырех из восьми впускных каналов имеется выступ для формирования завихрений на входе в цилиндр. Топливные форсунки устанавливаются непосредственно в головку блока цилиндров и впрыскивают топливо в район впускного клапана. Впрыск осуществляется поочередно каждой форсункой (по секвентальной схеме).
На большинстве двигателей LB второй половины 90-ых применяется система зажигания типа DIS-2 (Direct Ignition System), с 2-мя катушками зажигания и специальные свечи с платиновым напылением электродов.
В схеме LB европейских моделей применен новый тип кислородных датчиков (Lean Mixture Sensor), которые существенно дороже по сравнению с обычными, и при этом не имеющих недорогих аналогов. В схеме для японского рынка применяется обычный лямбда-зонд.
Между впускным коллектором и головкой блока цилиндров установлена система заслонок с пневматическим управлением.
Заслонки клапана приводятся разрежением, подаваемым к общему пневмоприводу с помощью электропневмоклапана по сигналу электронного блока управления (ЭБУ) в зависимости от степени открытия дроссельной заслонки и частоты вращения.

В итоге отличия 4A-FE LB от 4A-FE простого:

1. Катушка зажигания вынесена из трамблёра (распределителя зажигания) на стенку моторного отсека.
2. Отсутствует датчик детонации.
3. Форсунки расположены не на впускном коллекторе, а на головке и впрыскивают топливную смесь практически сразу перед впускным клапаном.
4. На стыке впускного коллектора и головки блока стоят дополнительные управляемые заслонки.
5. Форсунки работают поочерёдно все четыре, а не попарно.
6. Свечи должны быть только платиновые.

- устанавливался только на некоторые модификации CARINA E-AT171, SPRINTER CARIB E-AE95G, SPRINTER CARIB E-AE95G <4WD> - двигателей полно на разборках, лучше сразу берите контрактный, а не пытайтесь чинить старый!

Количество цилиндров, компоновка, тип ГРМ, число клапанов: R4; DOHC, 16 Valve;
Объем двигателя, см3 (Displacement (cc)): 1587;
Мощность двигателя, л.с/оборотов-мин: 115/6000;
Крутящий момент, н-м/об.мин: 101/4400;
Степень сжатия (Compression Ratio): 9.50;
Диаметр (Bore)/Ход поршня(Stroke), мм: 81.0/77.0

Оригиналам не ищущим легких путей вполне может приглянуться компрессорный вариант этого движка, он ставился на:


COROLLA LEVIN -CERES E-AE101, COROLLA LEVIN -CERES E-AE92, MR-2 E-AW11, MR-2 E-AW11, SPRINTER TRUENO-MARINO E-AE101, SPRINTER TRUENO-MARINO E-AE92

Модель двигателя: 4A-GZE,
Количество цилиндров, компоновка, тип ГРМ, число клапанов: R4; DOHC, 16 Valve;
Объем двигателя, см3: 1587;
Мощность двигателя, л.с/оборотов-мин: 145/6400;
Крутящий момент, н-м/об.мин: 140/4000;
Степень сжатия: 8.00;
Диаметр /Ход поршня, мм: 81.0/77.0

Двигатель без проблем найдете на разборках, единственная проблема: у MR2 свой двигатель, не взаимозаменяемый с остальными.

Ладно, об этих двигателях можно долго разговаривать, но нужен какой-то итог: я рад, что мне удалось познакомится с конструкцией этого движка, он на много обогнал своё время, а его конструкция во многом лучше более поздних тойотовских движков, хотя даже его успела немного испортить экологическая тема и конструкцию масляного насоса и маслоприёмника я не считаю удачной. Но, ведь, инженеры не обязаны были создавать двигатель, который переживет кузов... Я бы не стал рекомендовать вам покупку Тойоты с этим движком, просто, потому что машина в целом окажется помойкой (хотя ауди, мерседесы и даже мазды тех же лет, возможно ещё бодренько будут ездить) - ничего не поделаешь, видимо, реальный лозунг Тойоты -"не нужно большего, главное, забор должен быть ровным!"

Ну, и последние, полная история серии А:

"Самый простой Японский двигатель"

Двигатели 5А,4А,7А-FE
Самым распространённым и на сегодняшний день самым широко ремонтируемым из японских двигателей является двигатели серии (4,5,7)A- FE. Даже начинающий механик, диагност знают о возможных проблемах двигателей этой серии. Я постараюсь осветить (собрать в единое целое) проблемы данных двигателей. Их немного, но они доставляют немало хлопот своим владельцам.

Дата со сканера:

На сканере можно увидеть короткую, но ёмкую дату, состоящую из 16 параметров, по которым можно реально оценить работу основных датчиков двигателя.

Датчики
Датчик кислорода - Лямбда зонд

Многие владельцы обращаются на диагностику по причине повышенного расхода топлива. Одной из причин является банальный обрыв подогревателя в датчике кислорода. Ошибка фиксируется блоком управления кодом номер 21. Проверку подогревателя можно осуществить обычным тестером на контактах датчика(R- 14 Ом)

Расход топлива увеличивается за счет отсутствия коррекции при прогреве. Восстановить подогреватель вам не удастся – поможет только замена. Стоимость нового датчика велика, а б\у устанавливать не имеет смысла (велик ресурс их наработки, поэтому это лотерея). В такой ситуации как альтернативу можно устанавливать менее надежные универсальные датчики NTK . Срок их работы невелик, а качество оставляет желать лучшего, поэтому такая замена временная мера, и производить её следует с осторожностью.

При уменьшении чувствительности датчика происходит увеличение расхода топлива (на 1-3л). Работоспособность датчика проверяется осциллографом на колодке диагностического разъёма, либо непосредственно на фишке датчика (число переключений).

Датчик температуры.
При неправильной работе датчика владельца ждет масса проблем. При обрыве измерительного элемента датчика блок управления подменяет показания датчика и фиксирует его значение 80ю градусами и фиксирует ошибку 22. Двигатель, при такой неисправности, будет работать в обычном режиме, но только пока двигатель нагрет. Как только двигатель остынет, запустить его будет проблематично без допинга, из-за малого времени открытия инжекторов. Нередки случаи, когда сопротивление датчика хаотично изменяется при работе двигателя на Х.Х. – обороты при этом будут плавать.

Этот дефект легко фиксировать на сканере, наблюдая за показанием температуры. На прогретом двигателе оно должно быть стабильным и не менять хаотично значения от 20 до100 градусов.


При таком дефекте датчика возможен «черный выхлоп», нестабильная работа на Х.Х. и, как следствие, повышенный расход, а также невозможность запуска «на горячую». Только после 10 минутного отстоя. Если нет полной уверенности в правильной работе датчика, его показания можно подменить, включив в его цепь переменный резистор 1ком, либо постоянный 300ом, для дальнейшей проверки. Изменяя показания датчика, легко контролируется изменение оборотов при различной температуре.

Датчик положения дроссельной заслонки


Немало автомобилей проходит процедуру сборки разборки. Это так называемые «конструкторы». При снятии двигателя в полевых условиях и последующей сборке страдают датчики, на которые часто прислоняют двигателя. При разломе датчика TPS двигатель перестаёт нормально дросселировать. Двигатель при наборе оборотов захлебывается. Автомат переключается неправильно. Блоком управления фиксируется ошибка 41. При замене новый датчик необходимо настроить, чтобы блок управления правильно видел признак Х.Х., при полностью отпущенной педали газа (закрытой дроссельной заслонке). При отсутствии признака холостого хода не будет осуществляться адекватного регулирования Х.Х. и будет отсутствовать режим принудительного холостого хода при торможении двигателем, что опять же повлечет за собой повышенный расход топлива. На двигателях 4А,7А датчик не требует регулировки, он установлен без возможности вращения.
THROTTLE POSITION……0%
IDLE SIGNAL……………….ON

Датчик абсолютного давления MAP

Этот датчик является самым надежным, из всех устанавливаемых на японские автомобили. Безотказность его просто поражает. Но и на его долю приходится немало проблем, в основном по причине неправильной сборки. Ему либо ломают приемный «сосок», а затем герметизируют клеем любое прохождение воздуха, либо нарушают герметичность подводящей трубки.

При таком разрыве увеличивается расход топлива, резко возрастает уровень СО в выхлопе до3%.Очень легко наблюдать работу датчика по сканеру. Строчка INTAKE MANIFOLD показывает разряжение во впускном коллекторе, которое измеряется датчиком МАР. При обрыве проводки ЭБУ регистрирует ошибку 31. При этом резко увеличивается время открытия инжекторов до 3,5-5мс.При перегазовках появляется черный выхлоп, свечи засаживаются, появляется тряска на Х.Х. и остановка двигателя.

Датчик детонации

Датчик установлен для регистрации детонационных стуков (взрывов) и косвенно служит «корректором» угла опережения зажигания. Регистрирующим элементом датчика является пъезопластина. При неисправности датчика, или обрыве проводки, на перегазовках свыше 3,5-4 т. Оборотов ЭБУ фиксирует ошибку 52.Наблюдается вялость при разгоне. Проверить работоспособность можно осциллографом, или, замерив, сопротивление между выводом датчика и корпусом (при наличии сопротивления датчик требует замены).

Датчик коленвала
На двигателях серии 7А установлен датчик коленвала. Обычный индуктивный датчик, аналогичен датчику АВС, и практически безотказен в работе. Но случаются и конфузы. При межвитковом замыкании внутри обмотки происходит срыв генерации импульсов на определенных оборотах. Это проявляется как ограничение оборотов двигателя в диапазоне 3,5-4 т. оборотов. Своеобразная отсечка, только на низких оборотах. Обнаружить межвитковое замыкание довольно сложно. Осциллограф не показывает уменьшение амплитуды импульсов или изменение частоты (при акселерации), а тестером заметить изменения долей Ома довольно сложно. При возникновении симптомов ограничения оборотов на 3-4 тысячах, просто замените датчик на заведомо исправный. Кроме того, немало неприятностей доставляет повреждения задающего венца, который повреждают нерадивые механики, производя работы по замене переднего сальника коленвала или ремня ГРМ. Сломав зубья венца, и восстановив их сваркой, добиваются только видимого отсутствия повреждений. Датчик положения коленвала при этом перестает адекватно считывать информацию, угол опережения зажигания начинает хаотично изменяться, что приводит к потере мощности, нестабильной работе двигателя и увеличению расхода топлива

Инжекторы (форсунки)

При многолетней эксплуатации сопла и иглы инжекторов покрываются смолами и бензиновой пылью. Все это естественно нарушает правильный распыл и уменьшает производительность форсунки. При сильном загрязнении наблюдается ощутимая тряска двигателя, увеличивается расход топлива. Определить забитость реально, проведя газоанализ, по показаниям кислорода в выхлопе можно судить о правильности налива. Показание свыше одного процента укажут на необходимость промывки инжекторов (при правильной установке ГРМ и нормального давления топлива). Либо установив инжекторы на стенд, и проверив производительность в тестах. Форсунки легко моются Лавром, Винсом, как на установках для безразборной промывки, так и в ультразвуке.

Клапан холостого хода, IACV

Клапан отвечает за обороты двигателя на всех режимах (прогрев, холостой ход, нагрузка). Во время эксплуатации лепесток клапана загрязняется и происходит подклинивание штока. Обороты зависают на прогреве либо на Х.Х.(из-за клина). Тестов на изменение оборотов в сканерах при диагностике по данному мотору не предусмотрено. Оценить работоспособность клапана можно, изменив показания датчика температуры. Ввести двигатель в «холодный» режим. Или, сняв обмотку с клапана, руками покрутить за магнит клапана. Заедание и клин будут ощутимы сразу. При невозможности легко демонтировать обмотку клапана (например, на серии GE)проверить его работоспособность можно подключившись к одному из управляющих выводов и измерив скважность импульсов одновременно контролируя обороты Х.Х. и изменяя нагрузку на двигатель. На полностью прогретом двигателе скважность равна приблизительно 40%,меняя нагрузку (включая электрические потребители) можно оценить адекватное увеличение оборотов в ответ на изменение скважности. При механическом заклинивании клапана, происходит плавное увеличение скважности, не влекущее за собой изменение оборотов Х.Х. Восстановить работу можно очистив нагар и грязь очистителем карбюратора при снятой обмотке.

Дальнейшая настройка клапана заключается в установке оборотов Х.Х. На полностью прогретом двигателе, вращением обмотки на болтах крепления, добиваются табличных оборотов для данного типа автомобиля (по бирке на капоте). Предварительно установив перемычку E1-TE1 в диагностическую колодку. На более «молодых» моторах 4А,7А клапан был изменён. Вместо привычных двух обмоток в тело обмотки клапана установили микросхему. Изменили питание клапана и цвет пластика обмотки (черный). На нем уже бессмысленно измерять сопротивление обмоток на выводах. К клапану подводится питание и управляющий сигнал прямоугольной формы переменной скважности.

Для невозможности снятия обмотки установили нестандартный крепёж. Но проблема клина осталась. Теперь если чистить обычным очистителем - вымывается смазка из подшипников (дальнейший результат предсказуем, такой же клин, но уже из-за подшипника). Следует полностью демонтировать клапан с блока дроссельной заслонки и после аккуратно промывать шток с лепестком.

Система зажигания. Свечи.

Очень большой процент автомобилей приходит в сервис с проблемами в системе зажигания. При эксплуатации на некачественном бензине в первую очередь страдают свечи зажигания. Они покрываются красным налетом (ферроз). Качественного искрообразования с такими свечами уже не будет. Двигатель будет работать с перебоями, с пропусками, увеличивается расход топлива, поднимается уровень СО в выхлопе. Пескоструй не в силах очистить такие свечи. Поможет только химия (силит на пару часов) или замена. Другая проблема увеличение зазора (простой износ). Высыхание резиновых наконечников высоковольтных проводов, вода, попавшая при мойке мотора, которые все это провоцируют образование токопроводящей дорожки на резиновых наконечниках.

Из-за них искрообразование будет не внутри цилиндра, а вне его.
При плавном дросселировании двигатель работает стабильно, а при резком – «дробит».

При таком положении необходима замена одновременно и свечей и проводов. Но иногда (в полевых условиях) при невозможности замены можно решить проблему обычным ножом и куском наждачного камня (мелкой фракции). Ножом срезаем токопроводящую дорожку в проводе, а камнем снимаем полоску с керамики свечи. Следует отметить, что снимать резинку с провода нельзя, это приведет к полной неработоспособности цилиндра.

Еще одна проблема связана с неправильной процедурой замены свечей. Провода с силой выдергивают из колодцев, отрывая металлический наконечник повода.

С таким проводом наблюдаются пропуски зажигания и плавающие обороты. При диагностировании системы зажигания следует всегда проверять на производительность катушку зажигания на высоковольтном разряднике. Самая простая проверка – на работающем двигателе просмотреть искру на разряднике.

Если искра пропадает или становится нитевидной - это указывает на межвитковое замыкание в катушке или на проблему в высоковольтных проводах. Обрыв проводов проверяют тестером по сопротивлению. Малый провод 2-3ком,дальше на увеличение длинный 10-12ком.

Сопротивление замкнутой катушки также можно проверить тестером. Сопротивление вторичной обмотки битой катушки будет меньше 12ком.
Катушки следующего поколения такими недугами не страдают(4А.7А), их отказ минимален. Правильное охлаждение и толщина провода исключили эту проблему.
Еще одна проблема текущий сальник в распределителе. Масло, попадая на датчики, разъедает изоляцию. А при воздействии высокого напряжения окисляется бегунок (покрывается зеленым налетом). Уголек закисает. Все этот приводит к срыву искрообразования. В движении наблюдаются хаотичные прострелы (во впускной коллектор, в глушитель) и дробление.

" Тонкие" неисправности
На современных двигателях 4А,7А японцы изменили прошивку блока управления (видимо для более быстрого прогрева двигателя). Изменение заключается в том, что двигатель достигает оборотов Х.Х.только при температуре 85 градусов. Также была изменена конструкция системы охлаждения двигателя. Теперь малый круг охлаждения интенсивно проходит через головку блока (не через патрубок за двигателем, как было раньше). Конечно, охлаждение головки стало эффективней, эффективней стал охлаждаться и двигатель в целом. Но зимой при таком охлаждении при движении температура двигателя достигает температуры 75-80 градусов. И как результат постоянные прогревные обороты(1100-1300),повышенный расход топлива и нервоз владельцев. Бороться с этой проблемой можно, либо сильнее утеплив двигатель, либо изменив сопротивление датчика температуры (обманув ЭБУ).
Масло
Владельцы наливают в двигатель масло без особого разбора, не задумываясь о последствиях. Мало кто понимает, что различные типы масел не совместимы и при смешивании образуют нерастворимую кашу (кокс), который приводит к полному разрушению двигателя.

Весь этот пластилин невозможно смыть химией, он вычищается только механическим способом. Следует понимать, если неизвестно какого типа старое масло, то следует воспользоваться промывкой перед сменой. И еще совет владельцам. Обратите внимание на цвет ручки масляного щупа. Он желтого цвета. Если цвет масла в вашем двигателе темнее цвета ручки – пора делать замену, а не ждать виртуального пробега, рекомендованного изготовителем моторного масла.

Воздушный фильтр
Самый недорогой и легкодоступный элемент - воздушный фильтр. Владельцы очень часто забывают про его замену, не задумываясь о вероятном увеличении расхода топлива. Нередко из-за забитого фильтра камера сгорания очень сильно загрязняется масляными сгоревшими отложениями, сильно загрязняются клапана, свечи. При диагностике можно ошибочно предположить, что всему виной износ маслосъёмных колпачков, но первопричина – забитый воздушный фильтр, увеличивающий при загрязнении разряжение во впускном коллекторе. Конечно же, в таком случае колпачки тоже придется сменить.

Некоторые владельцы даже не замечают о проживании в корпусе воздушного фильтра гаражных грызунов. Что говорит об их полнейшем наплевательстве к автомобилю.

Топливный фильтр также заслуживает внимания. Если его вовремя не заменить(15-20 тысяч пробега) насос начинает работать с перегрузкой, давление падает, и как следствие возникает необходимость замены насоса. Пластиковые детали насоса крыльчатка и обратный клапан преждевременно изнашиваются.

Падает давление. Следует отметить, что работа мотора возможна на давлении до 1,5 кг (при стандартном 2,4-2,7кг). При пониженном давлении наблюдаются постоянные прострелы во впускной коллектор запуск проблемный (вдогонку). Заметно снижается тяга.Проверку давления правильно производить манометром. (доступ к фильтру не затруднён). В полевых условиях можно воспользоваться «тестом налива из обратки». Если при работе двигателя за 30 секунд из шланга обратки бензина вытекает меньше одного литра, можно судить о пониженном давлении. Можно для косвенного определения работоспособности насоса воспользоваться амперметром. Если ток, потребляемый насосом меньше 4ампер - то давление просажено. Измерить ток можно на диагностической колодке.

При использовании современного инструмента процесс замены фильтра занимает не более получаса. Ранее на это уходило очень много времени. Механики всегда надеялись на случай,что им повезет и нижний штуцер не приржавел. Но зачастую так и происходило. Приходилось подолгу ломать голову каким газовым ключом зацепить закатанную гайку нижнего штуцера. А иногда процесс замены фильтра превращался в «киносеанс» со снятием подводящей к фильтру трубки.

Сегодня эту замену никто не боится делать.

Блок Управления
До 1998 года выпуска, блоки управления не имели достаточно серьезных проблем при эксплуатации.

Ремонтировать блоки приходилось лишь по причине " жесткой переполюсовки" . Важно отметить, что все выводы блока управления подписаны. Легко отыскать на плате необходимый вывод датчика для проверки, либо прозвонки провода. Детали надежны и стабильны в работе при низких температурах.
В заключении хотелось бы немного остановиться на газораспределении. Многие владельцы «с руками» процедуру замены ремня выполняют самостоятельно (хотя это и не правильно, они не могут правильно затянуть шкив коленвала). Механики производят качественную замену в течение двух часов(максимум) При обрыве ремня клапаны не встречаются с поршнем и фатального разрушения двигателя не происходит. Все рассчитано до мелочей.

Мы постарались рассказать о наиболее часто возникающих проблемах на двигателях данной серии. Двигатель очень прост и надежен и при условии очень жесткой эксплуатации на «водных -железных бензинах» и пыльных дорогах нашей великой и могучей Родины и «авосьным» менталитетом владельцев. Перенеся все издевательства, он по сей день продолжает радовать своей надежной и стабильной работой, завоевав статус самого лучшего японского двигателя.

Всем удачных ремонтов.

Владимир Бекренёв
г.Хабаровск

Андрей Федоров
г. Новосибирск

Краткие характеристики двигателей 4 A Ge

Страница посвещенная модификации 4A - GE

В этой статье я расказываю о различных доработках которые понадобятся, для

того чтобы поднять мощьность двигателя 4A - GE (от Тойота объемом 1600

кубиков) с низких 115 л.с. до 240 л.с. постепенно с приростом в 10л.с. на

каждом этапе, а может быть и с большим приростом!

Начнем с того, что существует четыре типа двигателей 4A - GE -

Большой канал (с большим проходным отверстием клапана) с TVIS

Маленький канал без TVIS

20-ти клапанная версия

Версия с мех. нагнетателем (суперчаржером)

Сказать, что писать страницу как эта, сложно, это ничего не сказать!

Численость отклонений в мощности у всех 4А-ЖЕ в мире, это численность

115 л.с. - 134 л.с.

Это разница лошадинных сил у стандартных 4А-ЖЕ в мире. Thе Air Flow Meter

(считалка поступаемого воздуха, в дальнейшем AFM) на версии TVIS выдает

115 л.с. обычные для США и других стран. Датчик давления воздуха во

впускном колекторе (The manifold Air Pressure Sensor = MAP) с версией TVIS,

который еще более распространен, выдет 127 л.с. Такие чаще всего

встречаются в Японии, Австралии и Новой Зеландии. Оба типа этих комплектаций

ставят на АЕ-82. АЕ-86 и других Короллах, и имеют большой размер впускных

окон. 4А-ЖЕ Короллы АЕ-92не имеет TVIS, А следовательно маленькие впускные

150 л.с - 160 л.с.

Cинхронизация стандартного распред.вала продолжается 240 градусов, с места

на место, и это типично для современного пути двух вального двигателя. Пара

распредвалов на 256 градусов и вышеупомянутые доделки дадут ва от 140 л.с.

150 л.с. этот параграф даст вам приблизительно 150 л.с. если все

правильно, но если вам нужно больше, то конечно понадобятся распредвалы с

отметкой 264 градуса. Это максимальный размер распред.валов, которые вы

можете использовать с заводским компьютером, так как для правильной работы

прийдется нералезировать значения вакума во вп. колекторе. Версия с датчиком

AFM может немножко богаче, но у меня нет информации по этому поводу.

Вы не сможете получить 160 л.с. со стандартным компьютером, и вам так же

прийдется потратить несколько долларов на дополнительные системы.Я бы

посоветовал взять програмируемую систему, чем чипы или еще какие-либо

добавки к стандартному комп-ру. потомучто если вы захотите дополнительных

лошадок позже то вы не будете ограничены в ваших возможнастях, в отличии от

150 л.с. -160 л.с. это такая отметка, в которой будет необходима некотарая

работа с головкой. К счастью, не так уж много надо закончить и если у

Вас головка снята, то можно дельно потратить немного больше времени и

сделать дороботки, которые позволят вытянуть из вашего двигателя до 180-190

Существуюет 4 области у головок 4A - GE, которым необходимо уделить внимание

Область над седлами клапанов, камера сгорания, и сами проходные окна

клапанов и сами клапана седла.

Область над седлами чуть слишком параллельна, и нуждается в маленьком

заужении что бы немного создать эффект Вентури.

Камера сгорания имеет многочисленные острые края, которые необходимо

сгладить, чтобы исключить раннее воспламенения топлива и.т.д.

Впускные и выпускные окна (отверстия) вполне нормальные в стандарте, но

они не много большие в головке с большими проходными окнами и немного

160 л.с. - 170 л.с.

Теперь начнем снимать серьезную мощь. Вы можете забыть о здаче каких-

либо нормах на выброс газов, которые могут быть в вашей стране J .

Вам понадобятся распред валы как минимум на 288 градуса, и вам можно уже

начать задумываться над изменении нижней мертвой точки (НМТ в дальнейшем).

Также начинанается приближениее к пределу впускного колектора, и это уже

отметка, от которой вещи становятся дорогими.

Вся работа с головкой, описываемая в передъидущем пораграфе, будет входить

в сумму мощьности для этого парграффа, так, чтобы усовершенствовать 150

л.с -160 л.с. вам надо будет повысить компресию в двигателе (цилиндрах

двигателя). Существует два варианта _ шлифовка головки блока или покупка

новых поршней. Стандартные поршня вполне нормальные для 160 -ти л.с. без

сомнений, но после этого я рекоммендую использовать хорошие нестандартные

комплекты, такие как Wisco. Вам нужна будет компрессия 10.5:1. а с

использованием бензина с октановым числом 96 возможно поднятие компрессии

до 11:1 особо не беспокоясь о детонации!

Использовать стандартные пальцы (поршневой палец) можно до 170 л.с. но

после вам следует поменять их на лучшее, что вы сможете достать, например

ARP или маленький блок Chevy. (Я иммею ввиду, если вы собираетесь поменять

их это будет тоже полезная работа.

Вы также должны быть готовы раскрусивать двигатель до 8000 об/мин. А может и

8500 об/мин.

Впускной колектор небольшая проблема, но если вы достаточно хитры, то

можно сделать двойной (разделенный колектор) по дроселю на каждый в стиле

Вебера, что будет гораздо дешевле (к примеру вся работа с материалами

обойдется 150 австралийских долларов, но если проделать ту же работу с

покупкой фирменых запчастей это легко выльется в 1200 ав. долларов!) А я

сделал вот что. кувил литую пластину толщиной примерно 8 мм. и

толстостенную трубу диаметром 52 мм. Затем я вырезал фланец для базы

Вебера и под цилиндры на головке. Потом я отрезал четыри трубы равной длины

и частично смял их так, чтобы онибыли похожи на впускные окна. И еще

потратил дня два на шлифовку и подточку, чтобы все детали подходили, а уже

потом сварил это все. Потратил два часа на сглаживания швов от сварки.

Затем я запустил специальный станок чтобы проверить пропускную способность

прямого угла между головкой и дроселями.

190 л.с. - 200 л.с.

Уперлись в предельно допустимый размер распред валов - 304 град. И вам

понадобится компресия 11:1 ; 200 л.с. примерный придел для головки с малыми

После 200 л.с. 4А-Же становится все более серьезным двигателем, и поэтому

требует обращать все больше внимания на детали. С этой отметки мы начинаем

тратить все больше денег за меньшие результаты. Но, если вы все-таки

хотите дополнительных лошадок вам прийдется тратить доллары:

Причина, по которой я скакнул с 200л.с. до 220 л.с. это то что я знаю

не так много людей, которые сделали что-нибудь подобное из 4А-ЖЕ, поэтому

у меня не так много информации о них. Я нахожу, что после отметки в 180

л.с. это настоящие рэйсеры, которые делают все возможное что бы достичь

больше чем 200л.с. хотя это и небольшой скачек. Причина, по которой я

пропустил значения 170 л.с.-180 л.с. -190 л.с. - 200 л.с. это одна и таже

отличия между этими отметками. Вы делаете немного здесь, там с компрессией

и.т.д. И вправду не так уж много работы нужно сделать чтобы скакнуть со 170

л.с. до 200 л.с.

Итак нам нужны валы с разметкой в 310 град. и поднятием 0,360 / 9.1 мм.

Вы так же должны начать думать где можно достать подкладки под стаканы,

у которых есть регулировочные шайбы не менее 13 мм. это будет

предпочтительней, чем 25-ти мм. шайбы, которые сидят на самом стакане.

Т.к. распредвалы больше чем в 300 град. и подъемом клапана 8 мм (примерно)

края шайб, которые устанавливаются над стаканом редко будут соприкасаться

с выступом распредвала, при этом кулачек отбросит в сторону, что

моментально приведет к разрушению стакана и что более правдиво - кусок самой

головки за считаные миллисекунды! Наборы подстаканных шайб (прокладок)

можно купить, как от ТРД, так и в других спортивных магазинах, но это

будет стоить огромных денег!

Клапана с большим седлом, так же дороги, но опять я знаю путь как снизить

цену. Я узнал что клапана от 7М-ЖТЕ (Тойота Супра) похожи на набор больших

Предпочтительней ипользовать маленький коленвал до 220 л.с. нежели

большой, т.к. большие вкладыши создают большее трение, в тоже время

большой диаметр (42 мм. против 40 мм.) имеет лучшую радиальную скорость на

Я был бы счастлив использовать стандартные шатуны (с вышеупомянутыми болтами

от) до 220 л.с. но после этого лучше бы установить вроде Carillo»s,

Cunningham, или шатуны от Crower. Они должны быть сделаны так, чтобы их

вес был на 10% меньше стандартных для снижения возвратно поступательной

Поршни от тоже прошли свой предел, и так лучше взять высоко -

качественные (и конечно дорогостоящие) поршни например. Mahle

Используя стандартный масляный насос мы рискуем переливания смазки в пяти

областях, и решение этой проблемы может быть, или покупка дорогого

агрегата от ТРД, или же просто подогнать насос 1GG. Они стоят достаточно

Если бы у меня был мешок денег и много свободного времени, то я смог бы

получить 260 л.с от 4А-ЖЕ. Лучше больше. Я бы сделал ход поршня короче, и

расточил гильзы чтобы поставить поршня как можно больше, постараясь

сохронить объем около 1600 кубиков. Далие я бы установил титановые шатуны

усовершенствовал или купил пневматические пружины клапанов, так чтобы

раскручивать двигло до 15 000 об/мин, или больше, если возможно.

Или, просто взял бы штатный 4А-ЖЕ, снизил компресию до 7.5:1 и поставил

турбину:.

Получив даже больше лошадок за меньшую стоймость.

Ладно, теперь серьезно, лучший способ получить сопящий турбо двигатель

(4А-ЖТЕ) будет, просто купиь 4А-ЖЗЕ, продать суперчаджер и колектора,

потом на полученые деньги подшипниковую турбину и RWD колектора от AE-86 .

Купить гнутые трубы в каком-нибудь магазине выхлопных систем, сделать

выхлопной колектор для турбины, и даже можно попробовать оставить

стандартный компьютер от 4А-ЖЗЕ или, сохранив много времени и избежав

проблем, купить програмируемый усовершенствованый компьютер.

Используя мою компьтерную дино программу, я высчитал, что с достаточно

малым давлением 16 psi даст вам около 300 л.с. Вам так же понадобится

интеркулер, они вполне рапространены в наши дни. Я так же поставил

распредвалы побольше стандартных - 260 градусов.

300 л.с. - 400 л.с. (может больше?)

Чтобы получить больше чем 300 л.с. потребует немного больше работы,

что-то похожее на дороботки 4А-ЖЕ для 220 л.с. (смотри выше). Тот же самый

кованый коленвал, не серийные шатуны, поршня пониженой компрессии (где-то

7:1), большие клапана и шайбы под стаканы клапанов. Плюс еще турбина и

колектора. (Я сомневаюсь, что заводские колектора будут достаточно хороши

так что вышеперечисленный прийдется делать своими руками. Это нестолько

трудно, сколько займет некоторое время)

И опять на дино тест. Итак с давлением в 20 psi двигатель выдает 400 л.с.

Если вы сможете сделать двигатель способный выдержать давление турбины 30

psi вы сможете перепрыгнуть через отметку в 500 л.с.

Сделать больше этого возможно, как я считаю, потому что турбированные

двигателя Формулы 1. конца 80-х годов, с объемом 1500 кубиков выдавали

больше 1000 л.с. Я не думаю, что это возможно при вышеперечисленных

переделках на базе 4А-ЖЕ, но. J

4А-ЖЕ 20-ти клапанные двигателя

Я никогда не работал с 20-ти клапанниками, но по большому счету двигатель

есть двигатель. Единственное отличие это, то что этот двигатель имеет три

впускных клапана, поэтому некоторые обычные правила не работают. Тойота

афиширует их как 162 л.с. (165 л.с.) для первой версии и 167 л.с. для второй

(последней) версии. FWIW, у первой версит серебрянная клапанная крышка и

AFM датчик, а на второй черная и датчик MAP .

Тойота возможно лгут, когда говорят, что 20 - ти клапанник выдает столько

лошадей - судя по замерам, которые мне приходилось, когда-либо слышать

они выдают 145л.с. - 150 л.с. Так что я думаю, что лучший способ поднять

мощность стандартного 4А-ЖЕ (16 клапанная версия) со 115 л.с. -134 л.с. до

150 л.с. - это просто воткнуть двигатель с 20 клапанной версией.Исключением

будут лишь задне-приводные автомобили как AE-86. только нужно будет сделать

отверстие в огнеупорной перегородке (между моторным отсеком и салоном) для

трамблера (прерывателя-распределителя) или.

Насколько я вижу не тык уж много нужно сделать, кроме шлифовки впускных

окон и много-угольной работы с посадочными местами клапанов (седлами)

большую отдачу, и опять же все это до 200 л.с. дальше прейдется менять

внутрености на более прочные и легкие узлы. Получается таже самая

комбинация по увеличению мощности, но главно при увеличении оборотов

145 л.с. -165 л.с.

Самый ранний 4А-ЖЗЕ оснащен 145 л.с. и существует 3 варианта (на мой

взгляд) получить побольше лошадок в табун - просто установить более

позднюю версию, у которой уже 165 л.с. или поставить большую шестерню

коленвала (ето позволит вращать нагнетатель быстрей, на меньших оборотах,

и следовательно получать большее кол-во воздуха) что-нибудь от HKS или

Cusco. И третий вариант - тоже самое, что бы вы делали с обычным

165 л.с - 185 л.с.

Опять же, наиболее легкий путь перейти со 165 л.с. до 185 л.с. - это просто

поставит распредвалы побольше, и может быть небольшие работы по шлифовки

(зачистки) сужений во впускном и выпускном колекторах. По окончанию этой

шкалы мощности, я считаю, что впускной колектор слишом заужен, т.к.

нагнетатель дует в одно дуло, которое затем разделяет его на четыри

канала, по каналу на каждый цилиндр. Проблема в том, что три из этих

канала входят в головку под углом далеком от прямой и поэтому острый угол

будет создавать нежелательную турбулентность (FWIW, канал для первого

цилиндра подходит под смешным углом.) Если Вы потратите немного времени и

приложите достаточно усилий, чтобы сделать качественный калектор (или

возможно просто поставить колектор типа как от заднеприводной AE-86),

который легко даст вам дополнительный 20 л.с.

Большие распредвалы на 264 град. сделают свой большой вклад, но как и с

Лучший 4А-ЖЗЕ, о котором мне приходилось когда-либо слышать насчитывал

что-то около 200 л.с. я считаю, что без вопрсов на нем были сделаны

вышеперечисленные модификации. Я думаю, что лучшим способом получить

больше мощи на выходе - это установить нагнтатель от 1ЖЖЗЕ, который при

тех же оборотах накачивает на 17 процентов больше воздуха нежели стандартный

это также означает, что он должен вращаться медленнее чтобы получить

одинаковое кол-во (как на стандартном) воздуха при одних оборотах. Это

значит, что двигатель будет страдать потерей мощности (провалом), нежели

это было бы с меньшим нагнетателем. Провал о котором я говорю, это

мощность, которой не хватает, когда стрелка тахометра заходит за красную

линию. Затем мощность резко возрастает, в соответствии с оборотами







"A" (R4, ремень)
Двигатели серии A по распространенности и надежности делят, пожалуй, первенство с серией S. Что касается механической части, то вообще трудно найти более грамотно сконструированные моторы. При этом они имеют хорошую ремонтопригодность и не создают проблем с запасными частями.
Устанавливались на автомобили классов "C" и "D" (семейства Corolla/Sprinter, Corona/Carina/Caldina).

4A-FE - самый распространенный двигатель серии, без существенных изменений
выпускался с 1988 года, не имеет выраженных конструктивных дефектов
5A-FE - вариант с уменьшенным рабочим объемом, который до сих пор производится на китайских заводах Toyota для внутренних нужд
7A-FE - более свежая модификация с увеличенным объемом

В оптимальном серийном варианте 4A-FE и 7A-FE шли на семейство Corolla. Однако, будучи установлены на автомобили линейки Corona/Carina/Caldina, они со временем получили систему питания типа LeanBurn, предназначенную для сгорания обедненных смесей и помогающую экономить японское топливо при спокойной езде и в пробках (подробнее про конструктивные особенности - см. в этом материале , на какие именно модели устанавливался LB - ).Необходимо отметить, что тут японцы изрядно "подгадили" нашему рядовому потребителю - многие обладатели этих движков сталкиваются с
так называемой "проблемой LB", проявляющейся в виде характерных провалов на средних оборотах, причину которой толком установить и излечить не удается - то ли виновато низкое качество местного бензина, то ли проблемы в системах питания и зажигания (к состоянию свечей и высоковольтных проводов эти движки особенно чувствительны), то ли все вместе - но иногда обедненная смесь просто не поджигается.

Небольшие дополнительные минусы - склонность к повышенному износу постелей распредвалов и формальные сложности с регулировкой зазоров во впускных клапанах, хотя в целом работать с этими двигателями удобно.

"Двигатель 7A-FE LeanBurn низкооборотный, и он даже тяговитее 3S-FE за счет максимума момента при 2800 оборотах"

Выдающаяся тяговитость на низких оборотах мотора 7A-FE именно в версии LeanBurn - одно из распространенных заблуждений. У всех гражданских движков серии A "двугорбая" кривая крутящего момента - с первым пиком на2500-3000 и вторым на 4500-4800 об/мин. Высота этих пиков почти одинакова (разница укладывается едва ли не в 5 Нм), но у STD двигателей получается чуть выше второй пик, а у LB - первый. Причем абсолютный максимум момента у STD все равно оказывается больше (157 против 155). Теперь сравним с 3S-FE. Максимальные моменты 7A-FE LB и 3S-FE тип"96 составляют 155/2800 и 186/4400 Нм соответственно. Но если взять характеристику в целом, то 3S-FE при тех самых 2800 выходит на момент 168-170 Нм, а 155 Нм - выдает уже в районе 1700-1900 оборотов.

4A-GE 20V - форсированный монстр для малых GT заменил в 1991 году предыдущий базовый двигатель всей серии A (4A-GE 16V). Чтобы обеспечить мощность в 160 л.с., японцы использовали головку блока с 5-ю клапанами на цилиндр, систему VVT (впервые применив изменяемые фазы газораспределения на тойотах), редлайн тахометра на 8 тысячах. Минус - такой двигатель будет неизбежно сильнее "ушатан" по сравнению со среднимсерийным 4A-FE того же года, поскольку и в Японии изначально покупался не для экономичной и щадящей езды. Более серьезны требования к бензину (высокая степень сжатия) и к маслам (привод VVT), так что предназначен он в первую очередь тому, кто знает и понимает его особенности.

За исключением 4A-GE, двигатели успешно питаются бензином с октановым числом 92 (в том числе и LB, для которого требования по ОЧ даже мягче). Система зажигания - с распределителем ("трамблерная") у серийных вариантов и DIS-2 у поздних LB (Direct Ignition System, по одной катушке зажигания для каждой пары цилиндров).

Двигатель 5A-FE 4A-FE 4A-FE LB 7A-FE 7A-FE LB 4A-GE 20V
V (см 3) 1498 1587 1587 1762 1762 1587
N (л.с. / при об/мин) 102/5600 110/6000 105/5600 118/5400 110/5800 165/7800
M (Нм / при об/мин) 143/4400 145/4800 139/4400 157/4400 150/2800 162/5600
Степень сжатия 9,8 9,5 9,5 9,5 9,5 11,0
Бензин (рекоменд.) 92 92 92 92 92 95
Система зажигания трамбл. трамбл. DIS-2 трамбл. DIS-2 трамбл.
Гнут клапана нет нет нет нет нет да**

Двигатели 4A-F, 4A-FE, 5A-FE, 7A-FE и 4A-GE (AE92, AW11, AT170 и AT160) 4-х цилиндровые, рядные, с четырьмя клапанами на каждый цилиндр (два — впускных, два — выпускных), с двумя распределительными валами верхнего расположения. Двигатели 4A-GE отличаются установкой пяти клапанов на каждый цилиндр (три впускных два выпускных).

Двигатели 4A-F, 5A-F карбюраторные. все остальные двигатели имеют систему распределенного впрыска топлива с электронным управлением.

Двигатели 4A-FE выполнялись в трех вариантах, которые отличались друг от друга в основном конструкцией впускной и выпускной систем.

Двигатель 5A-FE аналогичен двигателю 4A-FE, но отличается от него размерами цилиндро-поршневой группы. Двигатель 7A-FE имеет небольшие конструктивные отличия от 4A-FE. Двигатели омеют нумерацию цилиндров, начинающуюся со стороны, противоположной отбору мощности. Коленчатый вал — полноопорный с 5-ю коренными подшипниками.

Вкладыши подшипников выполнены на основе сплава алюминия и установлены в расточках картера двигателя и крышек коренных подшипников. Сверления, выполенные в коленчатом валу, служат для подачи масла к шатунным подшипникам, стержням шатунов, поршням и другим деталям.

Порядок работы цилиндров: 1-3-4-2.

Головка блока цилиндров, отлитая из алюминиевого сплава, имеет поперечные и расположенные с противоположных сторон впускные и выпускные патрубки, скомпонованные с шатровыми камерами сгорания.

Свечи зажигания расположены в центре камер сгорания. В двигателе 4A-f используется традиционная конструкция впускного коллектора с 4-мя отдельными патрубками, которые объединяются в один канал под фланцем крепления карбюратора. Впускной коллектор имеет жидкостный подогрев, который улучшает приемистость двигателя, особенно при его прогреве. Впускной коллектор двигателей 4A-FE, 5A-FE имеет 4 независимых патрубка одинаковой длины, которые с одной стороны объединяются общей впускной воздушной камерой (резонатором), а с другой — стыкуются с впускными каналами головки блока цилиндров.

Впускной коллектор двигателя 4A-GE имеет 8 таких патрубков, каждый из которых подходит к своему впускному клапану. Сочетание длины впускных патрубков с фазами газораспределения двигателя позволяет использовать явление инерционного наддува для повышения крутящего момента на низких и средних частотах вращения двигателя. Выпускные и впускные клапаны сопрягаются с пружинами, имеющими неравномерный шаг навивки.

Распределительный вал, выпускных клапанов двигателей 4A-F, 4A-FE, 5A-FE, 7A-FE приводится во вращение от коленчатого вала с помощью плоскозубого ремня, а распределительный вал впускных клапанов приводится во вращение от распределительного вала выпускных клапанов с помощью шестереной передачи. В двигателе 4A-GE оба вала приводятся во вращение от плоскозубого ремня.

Распределительные валы имеют 5 опор, расположенных между толкателями клапанов каждого цилиндра; одна из этих опор расположена на переднем конце головки длока цилиндров. Смазка опор и кулачков распределительных валов, а так же приводных шестерен (для двигателей 4A-F, 4A-FE, 5A-FE), осуществляется потоком масла, поступающим по масляному каналу, просверленному в центре распределительного вала. Регулировка зазора в клапанах осуществляется с помощью регулировочных шайб, расположенных между кулачками и толкателями клапанов (у двадцатиклапанных двигателей 4A-GE регулировочные проставки расположены между толкателем и стержнем клапана).

Блок цилиндров отлит из чугуна. он имеет 4 цилиндра. Верхняя часть блока цилиндров накрывается головкой цилиндров, а нижняя часть блока образует картер двигателя, в котором устанавливается коленчатый вал. Поршни изготовлены из высокотемпературного алюминиевого сплава. На днищах поршней выполнены углубления для предотвращения встречи поршня с клпанами в ВТМ.

Поршневые пальцы двигателей 4A-FE, 5A-FE, 4A-F, 5A-F и 7A-FE — «закрепленного» типа:они установлены с натягом в поршневой головке шатуна, но имеют скользящую посадку в бобышках поршня. Поршневые пальцы двигателя 4A-GE — «плавающего» типа; они имеют скользящую посадку, как в поршневой головке шатуна, так и в бобышках поршня. От осевого смещения такие поршневые пальцы зафиксированы стопорными кольцами, установленными в бобышках поршня.

Верхнее копрессионное кольцо изготовлено из нержавеющей стали (двигатели 4A-F, 5A-F, 4A-FE, 5A-FE и 7A-FE) или из стали (двигатель 4A-GE), а 2-е компрессионное кольцо — из чугуна. Маслосъемное кольцо изготовлено из сплава обычной стали и нержавеющей стали. Наружный диаметр каждого кольца несколько больше диаметра поршня, а упругость колец позволяет им плотно охватывать стенки цилиндра, когда кольца установлены в канавках поршня. Компрессионные кольца препятствуют прорыву газов из цилиндра в картер двигателя, а маслосъемное кольцо удаляет избыток масла со стенок цилиндра, препятствуя его проникновению в камеру сгорания.

Максимальная неплоскостность:

  • 4A-fe,5A-fe,4A-ge,7A-fe,4E-fe,5E-fe,2E…..0,05 мм

  • 2C……………………………………………0,20 мм