Цикл миллера описание. Разберемся в циклах работы двигателя

Двигатель внутреннего сгорания очень далек от идеала, в лучшем случае достигает 20 – 25%, дизельного 40 – 50% (то есть остальное топливо сжигается почти в пустую). Чтобы повысить эффективность (соответственно увеличить коэффициент полезного действия) требуется улучшить конструкцию мотора. Над этим бьются многие инженеры, и по сей день, но первыми были всего несколько инженеров, таких как Николаус Август ОТТО, Джеймсом АТКИНСОНОМ и Ральфом Миллером. Каждый вносил определенные изменения, и пытался сделать моторы более экономичными и производительными. Каждый предлагал определенный цикл работы, который мог кардинально отличаться от конструкции оппонента. Сегодня я постараюсь простыми словами, объяснить вам какие основные различия есть в работе ДВС, ну и конечно видео версия в конце …


Статья будет написана для новичков, так что если вы искушенный инженер, можете ее не читать, написана для общего понимания циклов работы ДВС.

Также хочется отметить, что вариаций различных конструкций очень много, самые известные которые мы еще можем знать, цикл ДИЗЕЛЯ, СТИРЛИНГА, КАРНО, ЭРИКСОННА и т.д. Если посчитать конструкции, то их может набраться около 15. И не все двигатели внутреннего сгорания, а например, у СТИРЛИНГА внешнего.

Но самые известные, которые применяются и по сей день в автомобилях, это ОТТО, АТКИНСОН и МИЛЛЕР. Вот про них и будем говорить.

По сути это обычный тепловой двигатель внутреннего сгорания с принудительным воспламенением горючей смеси (через свечу) который применяется сейчас в 60 — 65% автомобилей. ДА – да, именно тот, который у вас стоит под капотом, работает по циклу ОТТО.

Однако если копнуть в историю, первым принцип такого ДВС предложил в 1862 году французский инженер Альфонс БО ДЕ РОШ. Но это был теоритический принцип работы. ОТТО же в 1878 году (спустя 16 лет) воплотил этот двигатель в металле (на практике) и запатентовал эту технологию

По сути это четырехтактный мотор, которому свойственны:

  • Впуск . Подача свежей воздушнотопливной смеси. Открывается впускной клапан.
  • Сжатие . Поршень идет вверх, сжимая эту смесь. Оба клапана закрыты
  • Рабочий ход . Свеча поджигает сжатую смесь, загоревшиеся газы толкают поршень вниз
  • Отвод отработанных газов . Поршень идет вверх, выталкивая сгоревшие газы. Открывается выпускной клапан

Хочется отметить, что впускные и выпускные клапана, работают в строгой последовательности – ОДИНАКОВО при высоких и при низких оборотах. То есть изменения работы при различных оборотах не наблюдается.

В своем двигателе ОТТО первый применил сжатие рабочей смеси, для поднятия максимальной температуры цикла. Которое осуществлялось по адиабате (простыми словами без теплообмена с внешней средой).

После сжатия смеси, она воспламенялась от свечи, после этого начинался процесс отвода тепла, который протекал практически по изохоре (то есть при постоянном объеме цилиндра двигателя).

Так как ОТТО запатентовал свою технологию, ее промышленное использование было не возможным. Чтобы обойти патенты Джеймс Аткинсон в 1886 году, решил модифицировать цикл ОТТО. И предложил свой тип работы двигателя внутреннего сгорания.

Он предложил изменить соотношение времен тактов, благодаря чему рабочий ход был увеличен за счет усложнения кривошипно-шатунной конструкции. Нужно отметить что тестовый экземпляр который он построил, был одноцилиндровый, и не получил большого распространения из-за сложности конструкции.

Если в двух словах описать принцип работы этого ДВС, то получается:

Все 4 такта (впрыск, сжатие, рабочий ход, выпуск) – происходили за одно вращение коленчатого вала (у ОТТО вращений — два). Благодаря сложной системе рычагов, которые крепились рядом с «коленвалом».

В этой конструкции получилось реализовать определенные соотношения длин рычагов. Если сказать простыми словами — ход поршня на такте впуска и выпуска БОЛЬШЕ, чем ход поршня в также сжатия и рабочего хода.

Что это дает? ДА то, что можно «играться» степенью сжатия (меняя ее), за счет соотношения длин рычагов, а не за счет «дросселирования» впуска! Из этого выводится преимущество цикла АКТИНСОНА, по насосным потерям

Такие моторы получились достаточно эффективными с высоким КПД и маленьким расходом топлива.

Однако отрицательных моментов также было много:

  • Сложность и громоздкость конструкции
  • Низкий на низких оборотах
  • Плохо управляется дроссельной заслонкой, будь то ()

Ходят упорные слухи, что принцип АТКИНСОНА использовался на гибридных автомобилях, в частности компании TOYOTA. Однако это немного не правда, там использовался только его принцип, а вот конструкция применялась другого инженера, а именно Миллера. В чистом виде моторы АТКИНСОНА скорее имели единичный характер, чем массовый.

Ральф Миллер также решил поиграться со степенью сжатия, в 1947 году. То есть он как бы продолжит работу АТКИНСОНА, но взял не его сложный двигатель (с рычагами), а обычный ДВС ОТТО.

Что он предложил . Он не стал делать такт сжатия механически более коротким, чем такт рабочего хода (как предлагал Аткинсон, у него поршень движется быстрее вверх, чем вниз). Он придумал сократить такт сжатия за счет такта впуска, сохраняя движение поршней вверх и вниз одинаковым (классический мотор ОТТО).

Можно было пойти двумя способами:

  • Закрывать впускные клапана раньше окончания такта впуска – такой принцип получил название «Укороченный впуск»
  • Либо закрывать впускные клапана позже такта впуска – этот вариант получил названия «Укороченного сжатия»

В конечном итоге, оба принципа дают одно и тоже – уменьшение степени сжатия, рабочей смеси относительно геометрической! Однако сохраняется степень расширения, то есть такт рабочего хода сохраняется (как в ДВС ОТТО), а такт сжатия как бы сокращается (как в ДВС Аткинсона).

Простыми словами — воздушно-топливная смесь у МИЛЛЕРА сжимается намного меньше, чем должна была сжиматься в таком же моторе у ОТТО. Это позволяет увеличить геометрическую степень сжатия, и соответственно физическую степень расширения. Намного большую, чем обусловлено детонационными свойствами топлива (то есть бензин нельзя сжимать бесконечно, начнется детонация)! Таким образом, когда топливо воспламеняется в ВМТ (верней мертвой точке), оно имеет намного большую степень расширения чем у конструкции ОТТО. Это дает намного больше использовать энергию расширяющихся в цилиндре газов, что и повышает тепловую эффективность конструкции, что влечет высокую экономию, эластичность и т.д.

Стоит также учитывать, что на такте сжатия уменьшаются насосные потери, то есть сжимать топливо у МИЛЛЕРА легче, требуется меньше энергии.

Отрицательные стороны – это уменьшение пиковой выходной мощности (особенно на высоких оборотах) из-за худшего наполнения цилиндров. Чтобы снять такую же мощность как у ОТТО (при высоких оборотах), мотор нужно было строить больше (объемнее цилиндры) и массивнее.

На современных моторах

Так в чем же разница?

Статья получилась сложнее, чем я предполагал, но если подвести итог. ТО получается:

ОТТО – это стандартный принцип обычного мотора, которые сейчас стоят на большинстве современных автомобилей

АТКИНСОН – предлагал более эффективный ДВС, за счет изменения степени сжатия при помощи сложной конструкции из рычагов которые подсоединялись к коленчатому валу.

ПЛЮСЫ — экономия топлива, эластичнее мотор, меньше шума.

МИНУСЫ – громоздкая и сложная конструкция, низкий крутящий момент на низких оборотах, плохо управляется дроссельной заслонкой

В чистом виде сейчас практически не применяется.

МИЛЛЕР – предложил использовать пониженную степень сжатия в цилиндре, при помощи позднего закрытия впускного клапана. Разница с АТКИНСОНОМ огромна, потому как он использовал не его конструкцию, а ОТТО, но не в чистом виде, а с доработанной системой ГРМ.

Предполагается что поршень (на такте сжатия) идет с меньшим сопротивлением (насосные потери), и лучше геометрически сжимает воздушно-топливную смесь (исключая ее детонацию), однако степень расширения (при воспламенении от свечи) остается почти такая же, как и в цикле ОТТО.

ПЛЮСЫ — экономия топлива (особенно на низких оборотах), эластичность работы, низкий шум.

МИНУСЫ – уменьшение мощности при высоких оборотах (из-за худшего наполнения цилиндров).

Стоит отметить, что сейчас принцип МИЛЛЕРА используется на некоторых автомобилях при невысоких оборотах. Позволяет регулировать фазы впуска и выпуска (расширяя или сужая их при помощи

Аткинсон, Миллер, Отто и другие в нашем небольшом техническом экскурсе.

Для начала разберемся что такое цикл работы двигателя. ДВС – это объект, который превращает давление от сгорания топлива в механическую энергию, а так как он работает с теплом, то он является тепловой машиной. Так вот, цикл для тепловой машины – это круговой процесс, в котором совпадают начальные и конечные параметры, которые определяют состояние рабочего тела (в нашем случае это цилиндр с поршнем). Такими параметрами являются давление, объем, температура и энтропия.

Именно эти параметры и их изменение задают то, как будет работать двигатель, а другими словами – каким будет его цикл. Поэтому, если у вас есть желание и познания в термодинамике, можете создать свой цикл работы тепловой машины. Главное потом заставить работать ваш двигатель, чтоб доказать право на существование.

Цикл Отто

Начнем мы с самого главного цикла работы, который используют практически все ДВС в наше время. Назван он в честь Николауса Августа Отто, немецкого изобретателя. Первоначально Отто использовал наработки бельгийца Жана Ленуара. Немного понимания первоначальной конструкции даст эта модель двигателя Ленуара.

Так как Ленуар и Отто не были знакомы с электротехникой, то воспламенение в их прототипах создавалось открытым пламенем, которое через трубку зажигало смесь внутри цилиндра. Главное отличие двигателя Отто от двигателя Ленуара было в размещении цилиндра вертикально, что натолкнуло Отто на использование энергии отработанных газов для поднятия поршня после рабочего хода. Рабочий ход поршня вниз начинался под действием атмосферного давления. И после того, как давление в цилиндре достигало атмосферного, открывался выпускной вентиль, и поршень своей массой вытеснял отработанные газы. Именно полнота использования энергии позволила поднять КПД до умопомрачительных на то время 15%, что превышало эффективность даже паровых машин. Кроме того, такая конструкция позволила использовать в пять раз меньше топлива, что потом привело к тотальному доминированию подобной конструкции на рынке.

Но главная заслуга Отто – изобретение четырехтактного процесса работы ДВС. Это изобретение было сделано в 1877 году и тогда же было запатентовано. Но французские промышленники покопались в своих архивах и нашли, что идею четырехтактной работы за несколько лет до патента Отто описал француз Бо де Рош. Это позволило снизить патентные выплаты и заняться разработкой собственных моторов. Но благодаря опыту, двигатели Отто были на голову лучше конкурентов. И к 1897 году их было сделано 42 тысячи штук.

Но что, собственно говоря, такое цикл Отто? Это знакомые нам со школьной скамьи четыре такта ДВС – впуск, сжатие, рабочий ход и выпуск. Все эти процессы занимают равное количество времени, а тепловые характеристики мотора показаны на следующем графике:

Где 1-2 – это сжатие, 2-3 – рабочий ход, 3-4 – выпуск, 4-1 – впуск. КПД такого двигателя зависит от степени сжатия и показателя адиабаты:

, где n – степень сжатия, k – показатель адиабаты, или отношение теплоемкости газа при постоянном давлении к теплоемкости газа при постоянном объеме.

Другими словами – это количество энергии, которую нужно потратить, чтобы вернуть газ внутри цилиндра к прежнему состоянию.

Цикл Аткинсона

Был изобретен в 1882 году Джеймсом Аткинсоном, британским инженером. Цикл Аткинсона повышает эффективность работы цикла Отто, но уменьшает выделяемую мощность. Основное отличие – разное время выполнения разных тактов работы мотора.

Особенная конструкция рычагов двигателя Аткинсона позволяет совершать все четыре хода поршня всего за один поворот коленчатого вала. Также данная конструкция делает ходы поршня разной длинны: ход поршня во время впуска и выпуска длиннее, чем во время сжатия и расширения.

Еще одна из особенностей двигателя в том, что кулачки газораспределения (открытия и закрытия клапанов) расположены прямо на коленчатом валу. Это устраняет потребность отдельной установки распределительного вала. К тому же нет необходимости устанавливать редуктор, так как коленчатый вал крутится с вдвое меньшей скоростью. В XIX веке двигатель распространения не получил из-за сложной механики, но в конце ХХ века он стал более популярным, так как начал применяться на гибридах.

Так что, в дорогих Lexus стоят такие странные агрегаты? Отнюдь нет, цикл Аткинсона в чистом виде никто и не собирался реализовывать, но модифицировать обычный моторы под него – вполне реально. Поэтому не будем долго разглагольствовать об Аткинсоне и перейдем к циклу, который его воплотил в реальность.

Цикл Миллера

Цикл Миллера был предложен в 1947 году американским инженером Ральфом Миллером как способ совмещения достоинств двигателя Аткинсона с более простым двигателем Отто. Вместо того, чтобы сделать механически такт сжатия более коротким, чем такт рабочего хода (как в классическом двигателе Аткинсона, где поршень движется вверх быстрее, чем вниз), Миллер придумал сократить такт сжатия за счет такта впуска, сохраняя движение поршня вверх и вниз одинаковым по скорости (как в классическом двигателе Отто).

Для этого Миллер предложил два разных подхода: либо закрывать впускной клапан существенно раньше окончания такта впуска, либо закрывать его существенно позже окончания этого такта. Первый подход у мотористов носит условное название «укороченного впуска», а второй - «укороченного сжатия». В конечном счете оба этих подхода дают одно и то же: снижение фактической степени сжатия рабочей смеси относительно геометрической при сохранении неизменной степени расширения (то есть такт рабочего хода остается таким же как в двигателе Отто, а такт сжатия как бы сокращается - как у Аткинсона, только сокращается не по времени, а по степени сжатия смеси).

Таким образом смесь в двигателе Миллера сжимается меньше, чем должна была бы сжиматься в двигателе Отто такой же механической геометрии. Это позволяет увеличить геометрическую степень сжатия (и, соответственно, степень расширения!) выше пределов, обуславливаемых детонационными свойствами топлива - приведя фактическое сжатие к допустимым значениям за счет вышеописанного «укорочения цикла сжатия». Другими словами, при той же фактической степени сжатия (ограниченной топливом) мотор Миллера имеет значительно большую степень расширения, чем мотор Отто. Это дает возможность более полно использовать энергию расширяющихся в цилиндре газов, что, собственно, и повышает тепловую эффективность мотора, обеспечивает высокую экономичность двигателя и так далее. Также одним из плюсов цикла Миллера является возможность более широкой вариации времени зажигания без риска детонации, что дает более широкие возможности для инженеров.

Выгода от повышения тепловой эффективности цикла Миллера относительно цикла Отто сопровождается потерей пиковой выходной мощности для данного размера (и массы) двигателя из-за ухудшения наполнения цилиндра. Так как для получения такой же выходной мощности потребовался бы двигатель Миллера большего размера, чем двигатель Отто, выигрыш от повышения тепловой эффективности цикла будет частично потрачен на увеличившиеся, вместе с размерами двигателя, механические потери (трение, вибрации и т. д.).

Цикл Дизеля

И напоследок стоит хотя бы кратко вспомнить о цикле Дизеля. Рудольф Дизель изначально хотел создать двигатель, который бы максимально приблизился к циклу Карно, в котором КПД определяется лишь разностью температур рабочего тела. Но так как охлаждать двигатель до абсолютного ноля – не круто, Дизель пошел другим путем. Он увеличил максимальную температуру, для чего начал сжимать топливо до запредельных на то время значений. Мотор у него получился с действительно высоким КПД, но работал изначально на керосине. Первые прототипы Рудольф построил в 1893 году, и только к началу ХХ столетия перешел на другие виды топлива, в том числе и дизельное.

  • , 17 Июл 2015

Слайд 2

Классический ДВС

Классический четырехтактный мотор был изобретен в далеком 1876 году одним немецким инженером по имени Николаус Отто, цикл работы такого двигателя внутреннего сгорания (ДВС) прост: впуск, сжатие, рабочий ход, выпуск.

Слайд 3

Индикаторная диаграмма цикла Отто и Аткинсона.

  • Слайд 4

    Цикл Аткинсона

    Британский инженер Джеймс Аткинсон еще до войны придумал свой цикл, который немного отличается от цикла Отто - его индикаторная диаграмма отмечена зеленым цветом. В чем же отличие? Во-первых, объем камеры сгорания такого мотора (при том же рабочем объеме) меньше, и соответственно, выше степень сжатия. Поэтому самая верхняя точка на индикаторной диаграмме располагается левее, в области меньшего надпоршневого объема. И степень расширения (то же самое, что и степень сжатия, только наоборот) тоже больше - а значит, мы эффективнее, на большем ходе поршня используем энергию отработавших газов и имеем меньшие потери выпуска (это отражено меньшей ступенькой справа). Дальше все то же самое - идут такты выпуска и впуска.

    Слайд 5

    Теперь, если бы все происходило в соответствии с циклом Отто и впускной клапан закрылся бы в НМТ то кривая сжатия прошла бы вверху, и давление в конце такта оказалось бы чрезмерным - ведь степень сжатия здесь больше! После искры последовала бы не вспышка смеси, а детонационный взрыв - и двигатель, не проработав и часа, почил бывзрыв. Но не таков был британский инженер Джеймс Аткинсон! Он решил продлить фазу впуска - поршень доходит до НМТ и идет вверх, а впускной клапан меж тем остается открытым примерно до половины полного хода поршня. Часть свежей горючей смеси при этом выталкивается обратно во впускной коллектор, что повышает там давление - вернее, уменьшает разрежение. Это позволяет на малых и средних нагрузках больше открывать дроссельную заслонку. Вот почему линия впуска на диаграмме цикла Аткинсона проходит выше, и насосные потери двигателя оказываются ниже, чем в цикле Отто.

    Слайд 6

    Цикл «Аткинсона»

    Так что такт сжатия, когда закрывается впускной клапан, начинается при меньшем надпоршневом объеме, что и иллюстрирует зеленая линия сжатия, начинающаяся с половины нижней горизонтальной линии впуска. Казалось бы, чего проще: сделать повыше степень сжатия, измени профиль впускных кулачков, и дело в шляпе - двигатель с циклом Аткинсона готов! Но дело в том, что для достижения хороших динамических показателей во всем рабочем диапазоне оборотов двигателя надо компенсировать выталкивание горючей смеси во время продленного впускного цикла, применяя наддув, в данном случае - механический нагнетатель. А его привод отбирает у мотора львиную долю той энергии, что удается отыграть на насосных и выпускных потерях. Применение цикла Аткинсона на безнаддувном двигателе гибрида ToyotaPrius стало возможным благодаря тому, что он работает в облегченном режиме.

    Слайд 7

    Цикл «Миллера»

    Цикл Миллера - термодинамический цикл используемый в четырёхтактных ДВС. Цикл Миллера был предложен в 1947 году американским инженером Ральфом Миллером как способ совмещения достоинств двигателя Анткинсона с более простым поршневым механизмом двигателя Отто.

    Слайд 8

    Вместо того, чтобы сделать такт сжатия механически более коротким, чем такт рабочего хода (как в классическом двигателе Аткинсона, где поршень движется вверх быстрее, чем вниз), Миллер придумал сократить такт сжатия за счет такта впуска, сохраняя движение поршня вверх и вниз одинаковым по скорости (как в классическом двигателе Отто).

    Слайд 9

    Для этого Миллер предложил два разных подхода: закрывать впускной клапан существенно раньше окончания такта впуска (или открывать позже начала этого такта), закрывать его существенно позже окончания этого такта.

    Слайд 10

    Первый подход у двигателей носит условное название «укороченного впуска», а второй - «укороченного сжатия». Оба этих подхода дают одно и то же: снижение фактической степени сжатия рабочей смеси относительно геометрической, при сохранении неизменной степени расширения (то есть такт рабочего хода остается таким же, как в двигателе Отто, а такт сжатия как бы сокращается - как у Аткинсона, только сокращается не по времени, а по степени сжатия смеси)

    Слайд 11

    Второй подход «Миллера»

    Такой подход несколько более выгоден с точки зрения потерь на сжатие, и поэтому именно он практически реализован в серийных автомобильных моторах Mazda «MillerCycle». В таком моторе впускной клапан не закрывается с окончанием такта впуска, а остается открытым в течение первой части такта сжатия. Хотя на такте впуска топливно-воздушной смесью был заполнен весь объем цилиндра, часть смеси вытесняется обратно во впускной коллектор через открытый впускной клапан, когда поршень двигается вверх на такте сжатия.

    Слайд 12

    Сжатие смеси фактически начинается позже, когда впускной клапан наконец закрывается, и смесь оказывается запертой в цилиндре. Таким образом смесь в двигателе Миллера сжимается меньше, чем должна была бы сжиматься в двигателе Отто такой же механической геометрии. Это позволяет увеличить геометрическую степень сжатия (и, соответственно, степень расширения!) выше пределов, обуславливаемых детонационными свойствами топлива - приведя фактическое сжатие к допустимым значениям за счет вышеописанного «укорочения цикла сжатия».Слайд 15

    Заключение

    Если внимательно присмотреться к циклу – как Аткинсона, так и Миллера, можно заметить, что в обоих присутствует дополнительный пятый такт. Он имеет свои собственные характеристики и не является, по сути, ни тактом впуска, ни тактом сжатия, а промежуточным самостоятельным тактом между ними. Поэтому двигатели, работающие по принципу Аткинсона или Миллера называют пятитактными.

    Посмотреть все слайды

    Мало кто задумывается о процессах, происходящих в привычном двигателе внутреннего сгорания. В самом деле, кто вспомнит курс физики уровня 6-7-го класса средней школы? Разве что общие моменты запечатлелись в памяти железно: цилиндры, поршни, четыре такта, впуск и выпуск. Неужели за сто с лишним лет ничего не изменилось? Разумеется, это не совсем так. Усовершенствовались поршневые двигатели, появились и принципиально иные способы заставить вал вращаться.

    Помимо прочих заслуг, компания "Мазда" (она же Toyo Cogyo Corp) известна как большой почитатель нетрадиционных решений. Имея изрядный опыт разработки и эксплуатации привычных четырехтактных поршневых двигателей, "Мазда" уделяет большое внимание альтернативным решениям, причем речь идет не о каких-то сугубо экспериментальных технологиях, а о продуктах, устанавливаемых в серийные автомобили. Наиболее известны две разработки: поршневой двигатель с циклом Миллера и роторный двигатель Ванкеля, по отношению к которым стоит отметить, что идеи, лежащие в основе этих моторов, родились не в лабораториях "Мазды", но именно этой компании удалось довести до ума оригинальные инновации. Часто бывает, что вся прогрессивность какой-либо технологии сводится на нет дорогостоящим процессом производства, неэффективностью в составе конечного изделия или еще какими-то причинами. В нашем случае звезды сложились в удачную комбинацию и Миллер с Ванкелем получили путевку в жизнь в качестве узлов автомобилей "Мазда".

    Цикл сгорания топливовоздушной смеси в четырехтактном двигателе называется циклом Отто. Но немногие автолюбители знают, что существует усовершенстованный вариант этого цикла - цикл Миллера, и именно "Мазде" удалось построить реально работающий мотор в соответствии с положениями цикла Миллера - этим двигателем в 1993 году оснастили автомобили Xedos 9, известные также как Millenia и Eunos 800. Этот V-образный шестицилиндровый двигатель объемом 2,3 литра оказался первым в мире работающим серийным двигателем Миллера. По сравнению с обычными моторами он развивает момент трехлитрового мотора с расходом горючего, как у двухлитрового. Цикл Миллера более эффективно использует энергию горения топливовоздушной смеси, поэтому мощный мотор получается более компактным и эффективным с точки зрения экологических требований.

    У маздовского Миллера следующие характеристики: мощность 220 л. с. при 5500 об/мин, крутящий момент 295 Нм при 5500 об/мин - и это было достигнуто в 1993 году при объеме 2,3 литра. За счет чего же это было достигнуто? За счет некоторой непропорциональности тактов. Их длительность различна, поэтому степень сжатия и степень расширения, основные величины, описывающие работу ДВС, оказываются неодинаковыми. Для сравнения, в двигателе Отто продолжительность всех четырех тактов одинакова: впуск, сжатие смеси, рабочий ход поршня, выпуск - и степень сжатия смеси равна степени расширения газов сгорания.

    Повышение степени расширения приводит к тому, что поршень способен выполнить большую работу - это существенно повышает КПД двигателя. Но, по логике цикла Отто, степень сжатия также повышается, и здесь существует определенный предел, выше которого сжать смесь невозможно, происходит ее детонация. Напрашивается идеальный вариант: степень расширения увеличить, степень сжатия по возможности снизить, что применительно к циклу Отто невозможно.

    "Мазда" сумела побороть это противоречие. В ее двигателе с циклом Миллера понижение степени сжатия достигается путем введения задержки впускного клапана - он остается открытым, а часть смеси возвращается обратно во впускной коллектор. В этом случае сжатие смеси начинается не тогда, когда поршень прошел нижнюю мертвую точку, а в момент, когда им пройдена уже пятая часть пути до верхней мертвой точки. Кроме того, предварительно немного сжатую смесь подает в цилиндр компрессор Лисхолма, некий аналог нагнетателя. Вот так просто преодолевается парадокс: длительность такта сжатия несколько меньше такта расширения, а кроме того, уменьшается температура двигателя и процесс сгорания смести становится намного более чистым.

    Еще одна удачная идея "Мазды" - разработка роторно-поршневого двигателя на основе идей, предложенных почти полсотни лет назад инженером Феликсом Ванкелем. Сегодняшние вызывающие восторг спорткары RX-7 и RX-8 с характерным "инопланетным" звуком мотора как раз скрывают под капотами роторные двигатели, которые теоретически схожи с обычными поршневыми, но практически - совершенно не от мира сего. Использование роторных двигателей Ванкеля в RX-8 позволило компании "Мазда" сообщить своему детищу 190 или даже 230 лошадиных сил при объеме двигателя всего лишь 1,3 литра.

    При массе и габаритах в два-три раза меньше, чем у поршневого мотора, роторный двигатель способен развить мощность, примерно равную мощности поршневого, вдвое большего по объему. Эдакий чертик в табакерке, который заслуживает самого пристального внимания. За всю историю автомобилестроения лишь две фирмы в мире умудрились создать работоспособные и не слишком дорогие роторы - это "Мазда" и... ВАЗ.


    Mazda RX-7

    Функции поршня в роторно-поршневом двигателе выполняет ротор с тремя вершинами, с помощью которого давление сгоревших газов преобразуется во вращательное движение вала. Ротор как бы обкатывается вокруг вала, заставляя последний вращаться, причем ротор совершает движение по сложной кривой, именуемой "эпитрохоида". За один оборот вала ротор поворачивается на 120 градусов, а за полный оборот ротора в каждой из камер, на которую ротор делит неподвижный корпус-статор, происходит полный четырехтактный цикл "впуск - сжатие - рабочий ход - выпуск".

    Интересно, что для этого процесса не требуется газораспределительный механизм, имеются лишь окна впуска и выпуска, которые перекрываются одной из трех вершин ротора. Еще одно неоспоримое преимущество двигателя Ванкеля - гораздо меньшее по сравнению с привычным поршневым мотором количество движущихся частей, что существенно уменьшает вибрацию и мотора, и автомобиля.

    Необходимо признать, что сама эффективная сущность такого двигателя вовсе не исключает многих недостатков. Во-первых, это очень высокооборотистые, а значит, и высоконагруженные моторы, которым требуются дополнительные смазка и охлаждение. Например, расход от 500 до 1000 граммов специального минерального масла для Ванкеля - вполне привычное дело, ведь его приходится впрыскивать прямо в камеру сгорания для уменьшения нагрузок (синтетика не подходит из-за повышенной закоксовки отдельных узлов двигателя).

    Конструктивый недостаток, пожалуй, единственный: дороговизна производства и ремонта, ведь прецизионные ротор и статор имеют весьма сложную форму, а потому у многих дилеров "Мазды" серьезный гарантийный ремонт таких моторов крайне прост: замена! Трудность еще и в том, что статор должен успешно противостоять температурным деформациям: в отличие от обычного мотора, где теплонагруженная камера сгорания частично охлаждается в фазе впуска и сжатия свежей рабочей смесью, здесь процесс сгорания всегда происходит в одной части двигателя, а впуск - в другой.

    Двигатель внутреннего сгорания (ДВС) считается одним из самых важных узлов в автомобиле, от его характеристик, мощности, приемистости и экономичности зависит, насколько комфортно будет чувствовать себя за рулем водитель. Хотя авто постоянно совершенствуются, «обрастают» навигационными системами, модными гаджетами, мультимедиа и так далее, моторы так и остаются практически неизменными, по крайней мере, принцип их работы не меняется.

    Цикл Отто Аткинсона, который лег в основу автомобильного ДВС, был разработан еще в конце 19-го века, и с того времени не претерпел почти никаких глобальных изменений. Лишь в 1947 году Ральф Миллер сумел усовершенствовать разработки своих предшественников, взяв лучшее от каждой из моделей построения двигателя. Но чтобы в общих чертах понять принцип работы современных силовых агрегатов, нужно немного заглянуть в историю.

    КПД двигателей Отто

    Первый двигатель для автомобиля, который мог нормально работать не только теоретически, был разработан французом Э. Ленуаром в далеком 1860 году, являлся первой моделью с кривошипно-шатунным механизмом. Агрегат работал на газу, использовался на лодках, его коэффициент полезного действия (КПД) не превышал 4,65%. В дальнейшем Ленуар объединился с Николаусом Отто, в сотрудничестве с немецким конструктором в 1863-м году был создан 2-тактный ДВС с КПД 15%.

    Принцип четырехтактного двигателя впервые был предложен Н. А. Отто в 1876 году, именно этот конструктор-самоучка считается создателем первого мотора для автомобиля. Движок имел газовую систему питания, изобретателем же 1-го в мире карбюраторного ДВС на бензине считается российский конструктор О. С. Костович.

    Работа цикла Отто применяется на многих современных двигателях, всего здесь четыре такта:

    • впуск (при открытии впускного клапана цилиндрическое пространство наполняется топливной смесью);
    • сжатие (клапана герметичны (закрыты), происходит сжимание смеси, в конце этого процесса – воспламенение, которое обеспечивает свеча зажигания);
    • рабочий ход (из-за высоких температур и большого давления поршень устремляется вниз, заставляет двигаться шатун и коленвал);
    • выпуск (в начале этого такта открывается выпускной клапан, освобождая путь выпускным газам, коленвал в результате преобразования теплоэнергии в механическую энергию продолжает вращаться, поднимая шатун с поршнем вверх).

    Все такты зациклены и идут по кругу, а маховик, который запасает энергию, способствует раскручиванию коленчатого вала.

    Хотя по сравнению с двухтактным вариантом четырехтактная схема кажется более совершенной, КПД бензинового мотора даже в самом лучшем случае не превышает 25%, а наибольший коэффициент полезного действия – у дизелей, здесь он может повыситься максимально и до 50%.

    Термодинамический цикл Аткинсона

    Джеймс Аткинсон – британский инженер, решивший модернизировать изобретение Отто, предложил свой вариант усовершенствования третьего цикла (рабочего хода) в 1882 году. Конструктором была поставлена цель повысить КПД двигателя и сократить процесс сжатия, сделать ДВС более экономичным, менее шумным, а различие его схемы построения заключалось в изменении привода кривошипно-шатунного механизма (КШМ) и в прохождении всех тактов за один оборот коленвала.

    Хотя Аткинсон и сумел повысить эффективность своего мотора по отношению к уже запатентованному изобретению Otto, схема не была реализована на практике, механика оказалась слишком сложной. Но Atkinson стал первым конструктором, который предложил работу ДВС с пониженной степенью сжатия, и принцип этого термодинамического цикла был в дальнейшем учтен изобретателем Ральфом Миллером.

    Идея сокращения процесса сжатия и более насыщенного впуска не ушла в забвение, к ней вернулся в 1947 году американец Р. Миллер. Но на этот раз инженер предложил реализовать схему не с помощью усложнения КШМ, а путем изменения фаз газораспределения. Рассматривалось две версии:

    • рабочий ход с запаздыванием закрытия впускного клапана (LICV или короткое сжатие);
    • ход с ранним закрытием клапана (EICV или укороченный впуск).

    При позднем закрытии впускного клапана получается сокращенное сжатие по отношению к двигателю Отто, из-за чего часть топливной смеси попадает назад во впускной канал. Такое конструктивное решение дает:

    • более «мягкое» геометрическое сжатие топливно-воздушной смеси;
    • дополнительную экономию топлива, особенно на малых оборотах;
    • меньшую детонацию;
    • низкий уровень шума.

    К минусам этой схемы можно отнести уменьшение мощности на больших оборотах, так как процесс сжатия получается сокращенным. Но за счет более полного наполнения цилиндров возрастает КПД на низких оборотах и увеличивается геометрическая степень сжатия (фактическая уменьшается). Графическое изображение этих процессов можно увидеть на рисунках с условными диаграммами ниже.

    Двигатели, работающие по схеме Миллера, проигрывают Otto на высоких скоростных режимах по мощности, но в городских условиях эксплуатации это не так и важно. Зато такие моторы более экономичны, меньше детонируют, мягче и тише работают.

    Miller Cycle Engine на автомобиле Mazda Xedos (2.3 L)

    Особенный механизм газораспределения с перекрытием клапанов обеспечивает повышение степени сжатия (СЗ), если в стандартном варианте, допустим, она равна 11, то в моторе с коротким сжатием этот показатель при всех других одинаковых условиях увеличивается до 14. На 6-цилиндровом ДВС 2.3 L Mazda Xedos (семейство Skyactiv) теоретически это выглядит так: впускной клапан (ВК) открывается, когда поршень расположен в верхней мертвой точке (сокращенно – ВМТ), закрывается не в нижней точке (НМТ), а позднее, остается открытым 70º. При этом часть топливно-воздушной смеси выталкивается назад во впускной коллектор, сжатие начинается после закрытия ВК. По возвращению поршня в ВМТ:

    • объем в цилиндре уменьшается;
    • давление возрастает;
    • воспламенение от свечи происходит в какой-то определенный момент, оно зависит от нагрузки и количество оборотов (работает система опережения зажигания).

    Затем поршень идет вниз, происходит расширение, при этом теплоотдача на стенки цилиндров получается не такой высокой, как в схеме Otto из-за короткого сжатия. Когда поршень доходит до НМТ, идет выпуск газов, затем все действия повторяются заново.

    Специальная конфигурация впускного коллектора (шире и короче, чем обычно) и угол открытия ВК 70 градусов при СЗ 14:1 дает возможность установить опережение зажигания 8º на холостых оборотах без какой-либо ощутимой детонации. Также эта схема обеспечивают больший процент полезной механической работы, или, другими словами, позволяет поднять КПД. Получается, что работа, вычисляемая по формуле A=P dV (P – давление, dV – изменение объема), направлена не на нагревание стенок цилиндров, головки блока, а идет на совершение рабочего хода. Схематически весь процесс можно посмотреть на рисунке, где начало цикла (НМТ) обозначено цифрой 1, процесс сжатия – до точки 2 (ВМТ), от 2 до 3 – подвод теплоты при неподвижном поршне. Когда поршень идет от точки 3 к 4, происходит расширение. Выполненная работа обозначена заштрихованной областью At.

    Также всю схему можно посмотреть в координатах T S, где T означает температуру, а S – энтропию, которая растет с подводом теплоты к веществу, и при нашем анализе это величина условная. Обозначения Q p и Q 0 – количество подводимой и отводимой теплоты.

    Недостаток серии Skyactiv – по сравнению с классическими Otto у этих движков меньше удельная (фактическая) мощность, на моторе 2.3 L при шести цилиндрах она составляет всего лишь 211 лошадиных сил, и то при учете турбонаддува и 5300 об/ мин. Зато у моторов есть и ощутимые плюсы:

    • высокая степень сжатия;
    • возможность установить раннее зажигание, при этом не получить детонации;
    • обеспечение быстрого разгона с места;
    • большой коэффициент полезного действия.

    И еще одно немаловажное преимущество двигателя Miller Cycle от производителя Mazda – экономичный расход топлива, особенно при малых нагрузках и на холостом ходу.

    Двигатели Аткинсона на автомобилях Тойота

    Хотя цикл Аткинсона не нашел свое практическое применение в 19-м веке, идея его двигателя реализована в силовых агрегатах 21-го столетия. Такие моторы устанавливаются на некоторые модели гибридных легковых автомобилей Тойота, работающих одновременно и на бензиновом топливе, и на электричестве. Нужно уточнить, что в чистом виде теория Atkinson так и не используется, скорее, новые разработки инженеров Toyota можно называть ДВС, сконструированными по циклу Аткинсона/ Миллера, так как в них используется стандартный кривошипно-шатунный механизм. Уменьшение цикла сжатия достигается за счет изменения газораспределительных фаз, при этом цикл рабочего хода удлиняется. Моторы с использованием подобной схемы встречаются на авто компании Toyota:

    • Prius;
    • Yaris;
    • Auris;
    • Highlander;
    • Lexus GS 450h;
    • Lexus CT 200h;
    • Lexus HS 250h;
    • Vitz.

    Модельный ряд моторов с реализованной схемой Atkinson/ Miller постоянно пополняется, так в начале 2017 года японский концерн приступил к выпуску 1,5-литрового четырехцилиндрового ДВС, работающего на высокооктановом бензине, обеспечивающего 111 лошадиных сил мощности, со степенью сжатия в цилиндрах 13,5:1. Двигатель оснащен фазовращателем VVT-IE, способным переключать режимы Otto/ Atkinson в зависимости от скорости и нагрузки, с этим силовым агрегатом автомобиль может ускоряться до 100 км/ч за 11 секунд. Движок отличается экономичностью, высоким КПД (до 38,5%), обеспечивает отличный разгон.

    Цикл дизеля

    Первый дизельный мотор был спроектирован и построен немецким изобретателем и инженером Рудольфом Дизелем в 1897-м году, силовой агрегат обладал большими размерами, был даже больше паровых машин тех лет. Так же как и двигатель Отто, он был четырехтактным, но отличался превосходным показателем КПД, удобством в эксплуатации, и степень сжатия у ДВС была значительно выше, чем у бензинового силового агрегата. Первый дизели конца XIX века работали на легких нефтепродуктах и растительных маслах, также была попытка в качестве топлива использовать угольную пыль. Но эксперимент провалился практически сразу:

    • обеспечить подачу пыли в цилиндры было проблематично;
    • обладающий абразивными свойствами уголь быстро изнашивал цилиндро-поршневую группу.

    Интересно, что английский изобретатель Герберт Эйкройд Стюарт запатентовал аналогичный двигатель на два года раньше, чем Rudolf Diesel, но Дизелю удалось сконструировать модель с увеличенным давлением в цилиндрах. Модель Стюарта в теории обеспечивала 12% тепловой эффективности, тогда как по схеме Diesel коэффициент полезного действия доходил до 50%.

    В 1898 году Густав Тринклер сконструировал нефтяной двигатель высокого давления, оснащенный форкамерой, именно эта модель и является прямым прототипом современных дизельных ДВС.

    Современные дизели для автомобилей

    Как у бензинового мотора по циклу Отто, так и у дизеля, принципиальная схема построения не изменилась, зато современный дизельный ДВС «оброс» дополнительными узлами: турбокомпрессором, электронной системой управления подачи топлива, интеркулером, различными датчиками и так далее. Последнее время все чаще разрабатываются и запускаются в серию силовые агрегаты с прямым топливным впрыском «Коммон Рэйл», обеспечивающие экологичный выхлоп газов в соответствии с современными требованиями, высокое давление впрыска. Дизели с непосредственным впрыском обладают достаточно ощутимыми преимуществами перед моторами с обычной топливной системой:

    • экономично расходуют топливо;
    • имеют более высокую мощность при том же объеме;
    • работают с низким уровнем шума;
    • позволяет автомобилю быстрее разгоняться.

    Недостатки движков Common Rail: достаточно высокая сложность, необходимость при ремонте и обслуживании использовать специальное оборудование, требовательность к качеству солярки, относительно высокая стоимость. Как и бензиновые ДВС, дизели постоянно совершенствуются, становятся все технологичнее и сложнее.

    Видео: Цикл ОТТО, Аткинсона и Миллера, в чем различие: