Газомоторное топливо: экономичность, экологичность и технологичность. Старт в науке

Консалтинговое агентство J.D. Power Asia Pacific провело исследование. Выяснилось, что четверть всех автомобилей работают на дизельных двигателях. Согласно прогнозам, ежегодно число автомобилей с дизельными двигателями будет расти на 1-2%. Это обусловлено тем, что характеристики таких моторов постоянно улучшаются.

Преимущества и недостатки дизельных двигателей

Дизельный двигатель работает на дизтопливе. Его главные преимущества:

  • Экономичность - потребление топлива такими движками на 30-40% ниже по сравнению с бензиновыми аналогами.
  • Экологичность - в выхлопном газе низкое содержание углекислого газа.
  • Долговечность - дизельные агрегаты служат почти в два раза дольше, чем бензиновые.
  • Простота устройства - в нем не предусмотрена система зажигания, поэтому обслуживание и эксплуатация мотора проще.
  • Низкое потребление масла - солярка выполняет функцию масла, смазывает основные функциональные узлы мотора.
  • Водостойкость - даже при большом количестве конденсата двигатель не теряет технических характеристик.
  • Высокий КПД - в полезную энергию преобразуется 36% энергии, а у бензиновых моторов всего 26%.
  • Низкая вероятность возгорания из-за отсутствия системы зажигания

Кроме того, дизельное топливо пока остается дешевле бензина. Вкупе с низким потреблением топлива мотор позволяет экономить на заправке транспортного средства.

Несмотря на многие преимущества, у дизельных агрегатов есть существенные недостатки. В их числе:

  • Чувствительность к качеству топлива - некачественная солярка быстро уничтожит форсунки.
  • Звук мотора - он громче, чем у бензиновых агрегатов, и прогревать машину придется дольше.
  • Высокая стоимость обслуживания - на 20% выше по сравнению с агрегатами, которые работают на бензине.
  • Чувствительность топлива к морозу - в зимние месяцы приходится использовать специальное топливо с высокой морозостойкостью.

Мини-рейтинг самых лучших дизельных двигателей на рынке

Все лучшие агрегаты можно разделить на несколько групп по странам происхождения:

  • Азиатские. Бренды Toyota и Hyundai постоянно работают над высокими динамическими показателями, при этом не забывают о надежности. Их продукция устойчива к низкому качеству топлива, отличается долговечностью и высоким коэффициентом полезного действия.
  • Американские. Известные компании Chrysler и Ford пытаются совместить важные характеристики: работают над мощностью и экономичностью, при этом стараются уменьшить расход топлива. Их агрегаты мощные и надежные, при этом потребляют мало.
  • Немецкие. Бренды Mercedes и BMW славятся отменным качеством, присущим всем изделиям из Германии. Концерны используют самые современные технологии, поэтому их продукция отличается высокими технологическими показателями и надежностью.

В зависимости от параметров оценки, можно выделить несколько лучших двигателей, работающих на дизеле.

Самый экономичный

От Volkswagen. Самым экономичным мотором можно по праву назвать 1,6-литровый TDI от компании Volkswagen. Его устанавливают на хетчбеки Golf, кроссоверы Tiguan, бизнес-седан Passat. Также такой силовой агрегат устанавливают на автомобили дочерних предприятий - Audi, SEAT, Skoda и так далее.

Обновленная версия мотора пришла на смену старой 1,9-литровой комплектации. Инженеры увеличили давление в топливной раме и немного модифицировали турбину. За счет этого удалось значительно снизить «аппетиты» установки, при этом ничуть не потерять в мощности. Так, в зависимости от авто, она может достигать 120 лс.

Максимальные показатели экономичности реализованы в авто Passat BlueMotion. Был заявлен расход топлива 3,2-3,3 литра на каждые 100 километров. По результатам испытаний от независимого эксперта он составил 3,14 литра на 100 километров. Журналист из Британии Гэвин Конуэй проехал на авто с таким силовым устройством проехал более 2 400 километров, не заправляясь. Эта цифра была занесена в Книгу Рекордов Гиннеса.

У других автомобилей «аппетиты» больше, потому что они отличаются худшими показателями аэродинамики. Так, хетчбек Golf «ест» 3,5 литра каждые 100 километров.

От Toyota. В ответ на агрегат компании Volkswagen концерн Toyota выпустил свой дизельный агрегат с уменьшенным расходом топлива. Его используют на полноприводном авто Urban Cruiser. Объем мотора составляет 1,4 литра, а мощность - 90 лошадиных сил. Не самый высокий показатель, однако «аппетит» устройства составляет 4,5 литра на каждые 100 километров. В городских условиях он увеличивается до 5-5,6 литров.

Volkswagen также выпускает еще один экономичный мотор. Под капот хетчбека SEAT Ibiza Ecomotive устанавливают трехцилиндровый мотор объемом 1,4 литра мощностью 75 лс. Средний расход топлива достигает 3,1 литра на «сотку». Таким образом, самые экономичные кроссоверы на дизтопливе - у Toyota, самые экономные малолитражки - у Volkswagen.

Самый мощный

Рекорд по самому мощному дизельному двигателю принадлежит концерну BMW. С самого начала появления агрегатов компания ратовала за одну турбину в моторах, позднее стала использовать две турбины. Потом инженеры представили разработку, которая удивила всех: 6-цилиндровый мотор объемом 3 литра с тремя турбинами с изменяемой геометрией. Он построен на базе уже используемой модульной технологии. Мощность такого дизельного агрегата равна 381 лошадиной силе, что делает двигатель практически единственным самым мощным агрегатом. По удельной мощности ему нет равных среди моторов, работающих на дизельном топливе.

Такими агрегатами комплектуют полноразмерные кроссоверы X5 и X6, а также седаны BMW пятой и седьмой серии. Технические характеристики таких транспортных средств просто поражают. Например, «седьмой» седан весом более 2 тонн разгоняется до 100 километров в час всего за 5-6 секунд. При этом расход агрегата составляет всего 5-6 литров на 100 километров. Для сравнения, аналогичные бензиновые моторы с такими же техническими характеристиками тратят на езду около 20 литров на те же 100 километров в час.

Самый надежный

От Mercedes. Концерн выпускал легендарный мотор ОМ602. Эти пятицилиндровые силовые агрегаты с двумя клапанами выпускались немногим более двадцати лет - с 1985 по 2002 год. Их устанавливали на внедорожники, фургоны и другие автомобили. Так, их до сих пор можно увидеть на Mercedes в кузове W124 или фургоне Sprinter.

Такие моторы отличались экономичностью и надежностью. Несмотря на небольшую мощность, она достигала 130 лошадиных сил, такие силовые агрегаты обладали весьма внушительными техническими характеристиками. Так, пробег некоторых экземпляров превышает 1 500 000 километров. Рекордные показатели перевалили за 2 миллиона километров на одном двигателе.

От BMW. Баварский концерн выпускает не только самые мощные, но и самые надежные моторы. Так, одними из самых надежных силовых агрегатов считаются шестицилиндровые дизели. Их устанавливали на Range Rover, E46 и другие автомобили, в том числе дочерних предприятий. Эти силовые агрегаты выпускались ровно 10 лет - с 1998 по 2008 год.

Мощность дизелей больше, чем у аналогов от концерна Mercedes. В зависимости от модели, она варьируется в пределах 201-286 лошадиных сил. Ресурс моторов достаточно высокий. У них может быть достаточно много мелких проблем, однако крупных поломок практически нет. Так, двигатели прекрасно работают без поломок до пробега в 400-500 тысяч километров.

Самый «российский»

Самый ориентированный на российские условия дизель - силовой агрегат U2 I4. Это - практически совместная разработка инженеров концернов Toyota и Hyundai. Этот двигатель отличается оптимизированной формой камеры сгорания, экономичностью и турбокомпрессором переменной геометрии. Мотор U2 I4 самый тихий в своем классе, к тому же прекрасно справляется с суровыми российскими реалиями - например, он устойчив к некачественному топливу, которое можно встретить на заправках.

Выбирая новый или поддержанный автомобиль, обращайте особое внимание на характеристики его «сердца» - мотора. Чтобы не тратить деньги на ремонт, заправляйтесь на проверенных заправках или покупайте дизельное топливо у нас. Мы продаем его с доставкой по Москве, области и в другие регионы, с сертификатами качества и индивидуальными скидками в зависимости от объема покупок.

ООО «Компания «Нипетойл» поставляет дизельное топливо в Москву и область . У нас есть собственный автопарк из 16-ти бензовозов и нефтебаза, поэтому мы гарантируем стабильность поставок. Предоставляем на каждую партию паспорт качества. Позвоните нам, и вы более подробно узнаете об условиях покупки, нефтепродуктах, доставке и оплате.

При движении в городских условиях с относительно малыми скоростями сопротивление качению является более значимым для экономии топлива, нежели аэродинамическое сопротивление. Величина сопротивления качению главным образом зависит от конструкции каркаса шины. По своим техническим характеристикам шины с радиальным кордом значительно превосходят шины с диагональным кордом: они не только уменьшают сопротивление качению примерно на 50%, но и улучшают сцепление с мокрой или заснеженной дорогой, к тому же они более долговечные.

При холодном пуске автомобиля трение в двигателе и в силовой передаче очень велико, что значительно ухудшает показатели топливной экономичности по сравнению с показателями, характерными для пуска полностью прогретого автомобиля. В новом или только что отремонтированном автомобиле потери на трение в двигателе могут быть достаточно большими. По мере подгонки деталей трение постепенно снижается. Исправное техническое состояние и правильная регулировка систем автомобиля является залогом нормального потребления топлива. Так, к примеру, неправильная установка момента зажигания повышает расход топлива на 15%!

Что касается технического обслуживания, то здесь, в первую очередь, необходимо своевременно менять воздушный фильтр . Как известно, при недостатке воздуха для приготовления топливо-воздушной смеси расходуется гораздо больше бензина. Также необходимо регулярно проверять давление в шинах — недостаточное давление отрицательно сказывается на расходе топлива (чтобы получить адекватные показатели, делать это нужно на холодных шинах). Своевременная замена моторного масла уменьшает износ двигателя и снижает энергопотребление. В целях экономии лучше заливать в двигатель легкие синтетические или полусинтетические моторные масла с низким коэффициентом вязкости. По сравнению с минеральными маслами, у которых более высокая вязкость, такие масла несколько снижают потребление топлива и облегчают пуск двигателя.

Если у вас иномарка с пневмоподвеской, рекомендуем выбрать самое нижнее положение — при низком клиренсе сопротивление автомобиля будет ниже. По поводу коробки передач: оптимальным режимом является езда на максимальной передаче с минимально возможной для нее скоростью. Наиболее экономичный диапазон работы двигателя находится в пределах от 1500 до 2000 оборотов. Передаточное число КП — весьма существенный фактор, влияющий на расход топлива и износ двигателя, так как механическая работа двигателя и его ресурс определяются не пробегом автомобиля, а суммарным числом оборотов коленвала. Поэтому движение на понижающих передачах увеличивает расход топлива и износ двигателя при одном и том же пробеге автомобиля.

Что касается дополнительных опций, повышающих уровень комфорта, то при работе автомагнитолы, кондиционера или еще более сложного климат-контроля расход топлива возрастает приблизительно на 15%. В летний период открытые окна могут быть неплохой альтернативой кондиционеру, но при этом нужно иметь в виду, что при движении с большой скоростью опущенные стекла негативно сказываются на аэродинамике и, соответственно, на расходе топлива. Также губительно на расходе сказываются включенные фары, обогрев стекол и громкая музыка (особенно если установлены сабвуферы и дополнительные усилители). Совет здесь только один — старайтесь пореже включать лишние потребители тока , которые создают дополнительную нагрузку на генератор, и как следствие, мотор сжигает больше топлива.

Автолюбители не понаслышке знают, что аккуратная манера вождения , с плавным троганием с места и таким же торможением, позволяет немало сэкономить. К тому же, езда с постоянной скоростью снижает нагрузку на узлы авто. Если остановка длится дольше 30 секунд, мотор лучше заглушить. Машина с грузом потребляет больше топлива, поэтому не возите с собой ненужные вещи. Установленный на крыше багажник значительно увеличивает аэродинамическое сопротивление, поэтому, если в нем нет постоянной необходимости, его лучше демонтировать.

Планируя дальние поездки, не стоит забывать и о сезонном факторе . Большинству водителей хорошо известно, что летом расход топлива значительно меньше, чем в холодное время года. Характеристика дорожного покрытия — весьма немаловажный фактор. При движении по гравию или песку, а также мокрым и заснеженным дорогам расход бензина выше. Условия окружающей среды также влияют на топливную экономичность, начиная от влияния температуры на гистерезисные потери в шинах, трение в двигателе, требуемый состав топливной смеси и кончая влиянием влажности воздуха на процесс горения топливной смеси.

Удачи вам на дорогах!

Текст работы размещён без изображений и формул.
Полная версия работы доступна во вкладке "Файлы работы" в формате PDF

1.Введение

В последние десятилетия остро встала проблема защиты окружающей среды. Известно, что основным источником загрязнения воздуха является автотранспорт, выхлопные газы которого, попадая в атмосферу, делают её небезопасной для живых существ. С каждым годом количество автомобилей только растет, поэтому актуальность данной проблемы остаётся высокой, несмотря на то, что производители автомобилей делают всё возможное для того, чтобы их машины были максимально безопасными для окружающей среды.

В данной исследовательской работе я преследую следующие цели:

    изучить от чего же зависит экологичность двигателей внутреннего сгорания (ДВС);

    узнать современные методы борьбы с токсичностью выхлопных газов;

    рассмотреть альтернативные пути решения проблемы;

    попытаться предложить собственные идеи для снижения вредности автомобилей;

    сделать выводы о том, что же нужно делать, чтобы обезопасить себя окружающую среду от вредных выбросов.

Более подробно изучив зависимость расхода топлива от стиля вождения, можно получить наиболее полную информацию о том, что же представляет собой эта проблема, и исходя из результатов исследований подвести итоги работы.

2. Экономичность и экологичность современных автомобилей

2.1 Виды двигателей

При полном сгорании углеводородов конечными продуктами являются углекислый газ и вода. Но в поршневых ДВС полное сгорание не происходит из-за конструктивных особенностей, и через выхлопную трубу в атмосферу выбрасывается более 200 различных химических веществ. Среди них:

Соединения неорганических веществ, которые входят в состав топлива

Продукты термических реакций азота с кислородом - оксиды азота

Продукты неполного сгорания в виде оксида углерода, альдегидов, кетонов, углеводородов, сажи и т.д

В данной работе мы рассмотрим три самых распространённых вида двигателей для автомобильного транспорта и выясним, какой же из них наиболее вреден для природы. Очевидно, что главным фактором экологичности двигателя является его расход топлива, ведь чем меньше сжигается топлива, тем меньше вредных веществ выбрасывается в атмосферу. В настоящий момент на автомобилях наиболее распространены три вида двигателей:

1)бензиновый двигатель

2)дизельный двигатель

3)гибридные двигатели (электрическая тяга +ДВС)

Каждый из этих силовых установок имеет свои эксплуатационные характеристики, в которые, конечно же, входит и расход топлива. Если сравнивать бензиновый и дизельный ДВС, то наиболее экономичным по отношению к горючему окажется дизельный. Так, например, дизельный двигатель такого же объёма, как и бензиновый, потребляет примерно в 1,5 раза меньше топлива, чем двигатель, работающий на бензине. Однако,это вовсе не означает, что дизельный двигатель менее вреден для человека. Для наглядности обратим внимание на таблицу:

Исходя из этой информации, видим, что содержание сажи в выхлопных газах дизельного ДВС намного выше, бензинового. Получается, что нельзя делать выводы о вреде двигателя только по его расходу топлива. Есть еще множество факторов влияющих на содержание вредных веществ в отработавших газах. К ним вернемся чуть позже, а теперь более детально рассмотрим, что же представляют собой гибридные автомобили.

2.2 Гибридные двигатели, их преимущества и недостатки

Гибридные автомобили - транспортные средства, использующие для движения более одного двигателя. Современные производители автомобилей часто прибегают к совместному использованию двигателя внутреннего сгорания (ДВС) и электродвигателя. Основной причиной для начала производства таких автомобилей стало увеличение цен на нефть и ужесточение экологических норм. Гибриды в несколько раз меньше сжигают топливо и меньше выделяют вредных веществ при эксплуатации. Объясняется это тем, что ДВС в гибридном автомобиле, в общей сложности, работает меньшее количество времени и нагрузка на него меньше, чем в обычном автомобиле и вследствие этого меньше выхлопных газов. Так же некоторые гибриды в городских условиях могут двигаться исключительно на электротяге, что способствует уменьшению загазованности в мегаполисах во время дорожных пробок.

Несмотря на все преимущества гибридных автомобилей, их количество на дорогах невелико. Это говорит о том, что они имеют ряд недостатков и автолюбители еще не готовы приобрести экологичные автомобили. Так какие же недостатки существуют у гибридных автомобилей?

Во-первых, гибриды имеют больший вес, относительно обычных автомобилей, что сказывается на маневренности и управляемости транспортного средства.

Во-вторых, гибридная установка является сложной конструкцией, и из-за этого увеличивается стоимость её ремонта и обслуживания.

В-третьих, если встает вопрос об утилизации аккумуляторов, то все экологические преимущества перечёркиваются, ведь в батареях для питания электродвигателя содержатся опасные химические вещества.

Ко всему этому добавляется ещё и более высокая рыночная стоимость гибридных автомобилей. Именно по этим причинам доля таких машин на дорогах мала.

2.3 Зависимость экологичности автомобилей от системы зажигания

Вернёмся к бензиновым и дизельным двигателям. Было сказано, что кроме топливной экономичности существуют множество факторов, влияющих на природу. Среди них первое место занимает приготовление качественной горючей смеси. Поясню, что это значит. Для того чтобы полностью сгорел 1 кг бензина, нужно 14,7 кг атмосферного воздуха. Это и называется нормальным качеством смеси. Если количество воздуха для 1 кг бензина будет больше 14,7 ,то смесь называется бедной. Если же воздуха будет меньше 14,7 кг, то смесь будет богатой. Для регулировки качества смеси на двигателях могут устанавливаться две различные системы питания: карбюраторная и инжекторная. Подробнее рассмотрим каждую из них и узнаем, какая из них более экономичная.

Карбюраторная система является более простой по конструкции и менее эффективной в отношении рационального использования топлива. Она состоит из топливного бака, фильтров, самого карбюратора, топливного насоса, топливных проводов. Качество смеси, приготовляемое карбюратором, регулируется один раз, и не может меняться без участия человека в зависимости от режимов работы двигателя. И зачастую происходит так, что двигатель расходует больше топлива, чем хотелось бы. Именно это является главным недостатком этой системы.

Почти все современные автомобили оборудованы инжекторной системой подачи топлива. Преимущества её в том, что на любых режимах работы двигателя она обеспечивает качественное смесеобразование. Происходит это за счёт более точной дозировки топлива, в зависимости от температуры окружающей среды, температуры двигателя и режима его работы, а также других факторов, которые влияют на процессы, происходящие в ДВС. Контролирует все это электронный блок управления (ЭБУ), который считывает и обрабатывает информацию с датчиков и корректирует качество смеси. В совокупности, инжекторная система делает двигатель экономичнее, мощнее, экологичнее карбюраторного. Благодаря всем этим преимуществам двигатели, оборудованные электронными системами, почти полностью вытеснили карбюраторные версии.

2.4 Современные методы борьбы с токсичностью выхлопных газов и альтернативные пути решения проблемы

С каждым годом конструкция современных двигателей все усложняется новыми системами,которые снижают уровень выделяемых вредных веществ. Вот уже несколько лет существуют эффективные методы снижения токсичности выхлопа автомобилей, которые хорошо зарекомендовали себя на практике:

Каталитический нейтрализатор . Он состоит из носителя, заключенного в корпус. Носитель представляет собой керамический материал (сотовой конструкции или в виде шариков), покрытый тонким слоем катализатора из благородных металлов, например, платины, палладия, родия. При температуре поверхности катализатора свыше 250-300°С содержащиеся в отработавших газах окислы углерода СО эффективно окисляются, а их концентрация в выхлопных газах снижается во много раз. Окисление углеводородов СН происходит при более высокой температуре (400°C). Окисление СО и СН происходит в присутствии свободного кислорода воздуха, небольшое количество которого образуется в результате сгорания.

Рециркуляция отработавших газов . Эта система направляет небольшую часть выхлопных газов обратно в двигатель. Повторное сжигание снижает количество оксидов азота в выхлопе.

Система старт-стоп . Эта функция автоматический выключает двигатель во время остановки на светофорах, пробках и включает его перед началом движения.

Так же улучшается качество топлива в заправочных станциях, что тоже помогает развитию экологичности двигателей.

Существуют и альтернативные способы уменьшения вреда двигателей. Например, использование в качестве топлива водорода. Известно, что водород можно получить путём пропускания электрического тока через воду. По этому принципу построены автомобили,оборудованные водородными генераторами. Но высокая взрывоопасность таких конструкций пока ещё не позволяет получить широкое распространение данной идеи.

Нельзя не упомянуть двигатели, работающие на метане. Относительно невысокая стоимость и экологичность данного вида топлива создают потенциал для развития данной отрасли.

2.5 Исследование зависимости расхода топлива от стиля вождения

В этой работе было проведено исследование зависимости расхода топлива от стиля вождения.

Испытания проводились следующим образом: на одном и том же автомобиле замерялся расход топлива при различных условиях движения. Результаты снимались со штатного бортового компьютера автомобиля.

Опыт 1.Движение в городских условиях с интенсивными ускорениями и торможениями. Бортовой компьютер показал значение расхода топлива: 12,5 литра на 100 километров пути.

Опыт 2. Движение в городских условиях с плавным ускорением и торможением. Показания бортового компьютера: 11,2 литра на 100 километров пути.

Опыт 3.Движение по загородной трассе со скоростью 80 км/ч. Расход топлива составил: 10,2 литра на 100 километров пути.

Опыт 4.Движение по загородной трассе со скоростью 100 км/ч. Расход топлива равнялся: 10,5 литров на 100 километров пути.

3.Заключение, выводы

Таким образом, проделанная работа позволяет сделать выводы о том, что проблема загрязнения окружающей среды автомобильным транспортом может решаться силами не только учёных и инженеров, но и силами обычных водителей. Проведенные опыты показали, что даже манерой своего вождения можно снизить расход топлива, тем самым сэкономить деньги и уберечь природу от вредных веществ.

4.Использованная литература

1 .http://www.newreferat.com/ref-6964-3.html

2.http://www.avtovzglyad.ru/sovety/ekspluataciya/2015-1..

3.https://ru.m.wikipedia.org/wiki/Выхлопные_газы

4.http://znanieavto.ru/toplivo/toplivno-vozdushnaya-sme..

5.http://biofile.ru/bio/36719.html

6.http://kit-e.ru/articles/sensor/2009_06_29.php

  • 3.2. Силы, действующие на автомобиль при движении
  • 3.3. Мощность и момент, подводимые к ведущим колесам
  • 3.4. Потери мощности в трансмиссии. Кпд трансмиссии
  • 3.5. Радиусы колес автомобиля
  • 3.6. Скорость и ускорение автомобиля
  • 3.7. Реакции дороги, действующие при движении на колеса автомобиля
  • 3.8. Тяговая сила и тяговая характеристика автомобиля
  • 3.9. Тяговая характеристика автомобиля с дополнительной коробкой передач
  • 3.10. Сила и коэффициент сцепления колес автомобиля с дорогой
  • 3.11. Силы сопротивления движению и мощности, затрачиваемые на их преодоление
  • Сила сопротивления качению
  • Коэффициент сопротивления качению
  • Сила сопротивления подъему
  • Сила сопротивления дороги
  • Сила сопротивления воздуха
  • Коэффициент учета вращающихся масс
  • 3.12. Уравнение движения автомобиля
  • 3.13. Силовой баланс автомобиля
  • 3.14. Силовой баланс автомобиля при различной нагрузке
  • 3.15. Динамические факторы автомобиля
  • 3.16. Динамическая характеристика автомобиля
  • 3.17. Динамический паспорт автомобиля
  • 3.18. Динамический паспорт автопоезда
  • 3.19. Мощностной баланс автомобиля
  • 3.20. Степень использования мощности двигателя
  • 3.21. Разгон автомобиля
  • Ускорение при разгоне
  • Время и путь разгона
  • 3.22. Динамические нормальные реакции на колесах автомобиля
  • 3.23. Динамическое преодоление подъемов
  • 3.24. Движение накатом
  • 3.25. Влияние различных факторов на тягово-скоростные свойства автомобиля
  • 4. Топливная экономичность
  • 4.1. Измерители топливной экономичности
  • 4.2. Уравнение расхода топлива
  • 4.5. Топливная экономичность автопоезда
  • 4.6. Нормы расхода топлива
  • 4.7. Влияние различных факторов на топливную экономичность автомобиля
  • 5. Тягово-скоростные свойства и топливная экономичность автомобиля с гидропередачей
  • 5.1. Гидромуфта
  • 5.2. Гидротрансформатор
  • 5.4. Влияние гидропередачи на тягово-скоростные свойства автомобиля
  • 5.5. Показатели топливной экономичности автомобиля с гидропередачей
  • 5.6. Влияние гидропередачи на топливную экономичность автомобиля
  • 5.7. Повышение тягово-скоростных свойств и топливной экономичности автомобиля с гидропередачей
  • 6. Тяговый расчет автомобиля
  • 6.1. Поверочный тяговый расчет
  • 6.2. Проектировочный тяговый расчет
  • 6.3. Влияние передаточного числа главной передачи на максимальную скорость автомобиля
  • 6.6. Тяговый расчет автопоезда
  • 6.7. Особенности тягового расчета автомобиля с гидропередачей
  • 7. Тормозные свойства
  • 7.1. Измерители тормозных свойств
  • 7.2. Уравнение движения при торможении
  • 7.3. Экстренное торможение
  • 7.4. Время торможения
  • 7.5. Тормозной путь
  • 7.6. Коэффициент эффективности торможения
  • 7.8. Служебное торможение
  • 7.10. Торможение автопоезда
  • 7.11. Влияние различных факторов на тормозные свойства автомобиля
  • 8. Управляемость
  • 8.1. Поворот автомобиля
  • 8.3. Увод колес автомобиля
  • 8.4. Колебания управляемых колес
  • 8.5. Стабилизация управляемых колес
  • 8.6. Установка управляемых колес
  • 8.7. Влияние различных факторов на управляемость автомобиля
  • 9. Поворачиваемость
  • 9.1. Виды поворачиваемости автомобилей
  • 9.2. Критическая скорость автомобиля по уводу
  • 9.3. Коэффициент поворачиваемости автомобиля
  • 9.4. Диаграмма устойчивости движения автомобиля
  • 9.5. Влияние различных факторов на поворачиваемость автомобиля
  • 10. Маневренность
  • 10.1. Показатели маневренности
  • 11. Устойчивость
  • 11.1. Показатели поперечной устойчивости
  • 11.2. Поперечная устойчивость на вираже
  • 11.3. Занос автомобиля
  • 11.5. Продольная устойчивость автопоезда
  • 11.6. Влияние различных факторов на устойчивость автомобиля
  • 12. Проходимость
  • 12.1. Габаритные параметры проходимости
  • 12.2. Тяговые и опорно-сцепные параметры проходимости. Комплексный фактор проходимости
  • 12.3. Влияние различных факторов на проходимость автомобиля
  • 13. Плавность хода
  • 13.1. Колебания автомобиля
  • На пассажиров и водителя
  • 13.2. Измерители плавности хода
  • 13.3. Колебательная система автомобиля
  • 13.4. Приведенная жесткость подвески
  • 13.5. Свободные колебания автомобиля
  • 13,6. Парциальные частоты колебаний
  • 13.7. Свободные колебания автомобиля с учетом неподрессоренных масс
  • 13.8. Свободные колебания автомобиля с учетом затухания
  • 13.9. Свободные колебания автомобиля с учетом неподрессоренных масс и затухания
  • 13.10. Вынужденные колебания автомобиля
  • 14. Экологичность
  • 14.2. Меры по снижению токсичности двигателей
  • 14.3. Малотоксичные и нетоксичные двигатели
  • 14.4. Электромобили
  • 14.6. Меры по снижению уровня шума
  • 14.7. Влияние различных факторов на экологичность автомобиля
  • 5. Тягово-скоростные свойства и топливная
  • 4. Топливная экономичность

    Топливная экономичность автомобиля имеет важное значение в эксплуатации, так как топливо - один из основных эксплуата­ционных материалов, потребляемый автомобилем в большом ко­личестве. Себестоимость перевозок существенно зависит от топ­ливной экономичности автомобиля, поскольку затраты на топли­во составляют примерно 10... 15 % всех затрат на перевозки. По­этому чем выше топливная экономичность автомобиля, тем меньше расход топлива и ниже себестоимость перевозок.

    4.1. Измерители топливной экономичности

    Топливная экономичность автомобиля оценивается двумя груп­пами измерителей. К первой группе относятся измерители топ­ливной экономичности самого автомобиля, ко второй - измери­тели топливной экономичности двигателя автомобиля.

    Измерителями первой группы являются расход топлива в лит­рах на единицу пробега автомобиля (путевой расход топлива) q n , л на 100 км, и расход топлива в граммах на единицу транспортной работы q n , г/(т∙км) или пасс.-км.

    К измерителям второй группы относятся расход топлива в ки­лограммах за час работы двигателя (часовой расход топлива) G т, кг/ч, и удельный эффективный расход топлива в граммах на ки­ловатт-час q e , г/(кВт∙ч).

    Рассмотрим указанные измерители топливной экономичности.

    Путевой расход топлива

    где Q - общий расход топлива, л; S a - пробег автомобиля, км.

    В указанном выражении единицей пробега являются 100 км пути (принято для автомобилей в России и многих европейских стра­нах).

    Путевой расход топлива - легко определяемая величина, но не учитывающая полезной работы автомобиля. Так, например, ав­томобиль, который перевозит груз, расходует больше топлива,

    чем автомобиль без груза. Поэтому согласно формуле он оказыва­ется менее экономичным по сравнению с автомобилем, соверша­ющим порожний рейс.

    Расход топлива на единицу транспортной работы

    ,

    где m rp - масса перевезенного груза (число пассажиров), кг (пасс); S rp - пробег автомобиля с грузом, км; р т - плотность топлива, кг/л.

    Расход топлива на единицу транспортной работы более пра­вильно оценивает топливную экономичность автомобиля. Однако практическое использование этой величины сопряжено с опреде­ленными трудностями вследствие того, что объем транспортной работы, выполненной автомобилем, не всегда поддается точному измерению.

    Часовой расход топлива

    ,

    где T д - время работы двигателя, ч.

    Удельный эффективный расход топлива

    ,

    где N e - эффективная мощность двигателя, кВт.

    С учетом удельного эффективного расхода топлива определим его путевой расход:

    ,

    где величина g e выражена в г/(кВт∙ч), N e - в кВт, a v - в м/с.

    4.2. Уравнение расхода топлива

    В процессе движения автомобиля эффективная мощность дви­гателя затрачивается на преодоление сил сопротивления движе­нию. Для ее определения воспользуемся уравнением мощностного баланса автомобиля:

    .

    Подставив найденную величину N e в выражение для путевого расхода топлива, получим уравнение расхода топлива автомоби­лем

    В этих выражениях мощность представлена в кВт, сила - в Н, а скорость - в м/с.

    Из уравнения расхода топлива следует, что путевой расход топ­лива зависит от топливной экономичности двигателя (g e ), техни­ческого состояния шасси (η тр), дорожных условий (Р д), скорости движения и обтекаемости кузова (Р в), нагрузки и режима движе­ния (Р и).

    При использовании уравнения расхода топлива для определе­ния путевого расхода топлива в различных дорожных условиях должна быть известна зависимость удельного эффективного рас­хода топлива от степени использования мощности двигателя при разных значениях угловой скорости коленчатого вала. Такая зави­симость для бензинового двигателя приведена на рис. 4.1.

    Из этого рисунка следует, что удельный эффективный расход топлива g e существенно зависит от степени использования мощ­ности двигателя И и в меньшей степени - от угловой скорости коленчатого вала ω е . При увеличении степени использования мощности двигателя и снижении угловой скорости коленчатого вала g e уменьшается. Возрастание удельного эффективного расхода топлива при низкой степени использования мощности двигателя вызвано уменьшением механического коэффициента полезного действия двигателя и ухудшением условий для сгорания смеси в цилиндрах. Удельный эффективный расход топлива также несколь­ко возрастает при высокой (близкой к полной) степени исполь­зования мощности из-за обогащения горючей смеси.

    Рис. 4.1. Зависимости удельного эффектив­ного расхода топлива g e от степени исполь­зования И мощности двигателя при разных значениях угловой скорости коленчатого вала ω е :

    ω е 1 - ω е 3 - значения угловой скорости коленча­того вала двигателя

    4.3. Топливно-экономическая характеристика автомобиля

    Топливно-экономической характеристикой автомобиля назы­вается зависимость путевого расхода топлива от скорости при рав­номерном движении автомобиля по дорогам с разным сопротив­лением.

    Топливно-экономическая характеристика позволяет определять расход топлива по известным значениям скорости движения и коэффициента сопротивления дороги. Она может быть построена для любой передачи, однако обычно ее строят для высшей пере­дачи.

    На рис. 4.2 представлена топливно-экономическая характерис­тика автомобиля для трех различных дорог с разными коэффици­ентами сопротивления, причем ψ 1 < ψ 2 < ψ 3 .

    Каждая кривая топливно-экономической характеристики име­ет три характерные точки - a , b и с.

    Точка а соответствует минимальной устойчивой скорости дви­жения автомобиля.

    Точка b (точка минимума) определяет наименьший расход топ­лива q min при движении автомобиля по дороге с определенным коэффициентом сопротивления ψ. Скорость, соответствующая этой точке, является оптимальной для данной дороги с точки зрения топливной экономичности.

    Точка с характеризует расход топлива при его полной подаче, т.е. при полной нагрузке двигателя. Она соответствует максималь­но возможной скорости движения на данной дороге. Кривая, про­веденная через точки c 1 , с 2 и с 3 , отвечает расходу топлива при полной нагрузке двигателя.

    Из рис. 4.2 видно, что каждому значению сопротивления доро­ги соответствуют определенный минимальный расход топлива, оптимальная и максимально возможная скорости движения авто­мобиля. При возрастании сопротивления дороги увеличивается рас­ход топлива, а эти скорости уменьшаются.

    Рис. 4.2. Топливно-экономическая характеристика автомобиля:

    ψ 1 - ψ 3 - значения коэффициента сопро­тивления дороги, соответствующие трем кривым путевого расхода топлива; а 1 - а 3 - точки, отвечающие минимальной устой­чивой скорости движения v min ; b 1 - b 3 - точки минимума кривых; с 1 - с 3 - точки, соответствующие максимальной скорос­ти движения по каждой дороге; q min , v эк1 , v max 1 – минимальный расход топлива, оп­тимальное и максимальное значения ско­рости движения по дороге, характеризуе­мой коэффициентом ψ 1 .

    Хотя движение автомобиля с оптимальной скоростью сопро­вождается наименьшим расходом топлива, из этого не следует, что при выполнении транспортной работы необходимо двигаться с указанной скоростью. При выборе скорости движения нужно исхо­дить не из условий, обеспечивающих топливную экономичность, а из времени перевозок, безопасности движения, сохранности груза и комфортабельности пассажиров. Так, например, увеличение ско­рости движения приводит к повышению производительности ав­томобиля и уменьшению себестоимости перевозок.

    Представленная топливно-экономическая характеристика ти­пична для автомобилей с бензиновыми двигателями. Аналогич­ный вид имеет и топливно-экономическая характеристика авто­мобилей с дизелями. Ее отличительной особенностью является менее крутой подъем кривых в области низких значений скорости движения, что можно объяснить более высокой экономичностью дизелей при малой угловой скорости коленчатого вала.

    4.4. Построение топливно-экономической характеристики

    Существует несколько способов построения топливно-эконо­мической характеристики автомобиля:

      по результатам дорожных испытаний;

      по результатам стендовых испытаний;

      приближенный расчетный способ.

    В первом и втором случаях топливно-экономическая характе­ристика строится на основании экспериментальных данных, тог­да как при использовании третьего способа она может быть пост­роена при отсутствии экспериментальных данных. Рассмотрим рас­четный способ построения топливно-экономической характерис­тики автомобиля.

    В соответствии с этим способом удельный эффективный рас­ход топлива определяется по формуле

    g e = g N k ω k И

    где g N - удельный эффективный расход топлива при максималь­ной мощности двигателя, г/(кВт∙ч); k ω - коэффициент измене­ния удельного эффективного расхода топлива в зависимости от угловой скорости коленчатого вала двигателя; k И - коэффициент изменения удельного эффективного расхода топлива в зависимо­сти от степени использования мощности двигателя.

    Удельный эффективный расход топлива при максимальной мощ­ности для бензиновых двигателей составляет 300...340 г/(кВт∙ч), а для дизелей - 220...260 г/(кВт∙ч).

    Коэффициент k ω определяется в зависимости от отношения ω е N угловых скоростей коленчатого вала двигателя при текущем и максимальном значениях мощности:

    k ω

    Коэффициент k И определяется в зависимости от степени ис­пользования мощности двигателя И:

    (бензиновый)

    k И

    Коэффициенты k ω и k И могут быть также найдены по специ­альным графикам, представленным на рис. 4.3.

    Расчет и построение топливно-экономической характеристи­ки выполняют в такой последовательности:


    Рис. 4.3. Графики для определения коэффициентов k И (а ) и k ω (б ): 1 - дизели; 2 - бензиновые двигатели


      задают коэффициент сопротивления дороги у;

      выбирают пять-шесть значений угловой скорости коленчато­- го вала двигателя ω е в диапазоне от ω min до ω m ах;

      для выбранных значений ω е определяют отношения ω е / ω N (зна­- чение ω N известно) и по полученным отношениям находят значе­- ния k ω ;

      для выбранных значений ω е определяют соответствующие скорости движения автомобиля v и для этих скоростей по задан­ному коэффициенту сопротивления дороги ψ находят мощнос­ти, затрачиваемые на преодоление сопротивления дороги N Д и воздуха N B ;

      по внешней скоростной характеристике двигателя для выб­ранных значений ω е определяют эффективную мощность двигате­ля N e или для соответствующих скоростей движения по графику мощностного баланса находят значения тяговой мощности N T на ведущих колесах;

      по известным значениям мощностей N Д + N B и N e (или N T) для каждого значения ω е (или v ) определяют степень использования мощности двигателя И и по полученным значениям находят k И;

      по найденным значениям коэффициентов k ω и k И определяют удельный эффективный расход топлива g e ;

    По полученным значениям g e находят путевой расход топлива q П для дороги с заданным коэффициентом сопротивления ψ, для чего используют уравнение расхода топлива при равномерном движении автомобиля.

    Повторив указанные выше расчеты для других коэффициентов сопротивления дороги ψ, строят топливно-экономическую харак­теристику автомобиля.

    3 декабря 2015, 12:51

    Армения сегодня занимает лидирующие позиции среди стран, где природный газ используется в качестве моторного топлива. Более 77% всего автотранспорта в республике работает на компримированном природном газе (КПГ).

    Активному развитию рынка газомоторного топлива способствовала Программа восстановления газоснабжения и газификации, которую в период с 1998 по 2011 гг. реализовала компания «Газпром Армения», в тот период - ЗАО «Армросгазпром».

    По словам Председателя Правления - Генерального директора ЗАО «Газпром Армения» Вардана Арутюняна, благодаря выбранной компанией позиции рынок сжатого природного газа Армении полностью либерализован. Это в свою очередь способствует тому, что рынок продолжает расширяться. За период с 2001 по 2014 годы объемы потребления выросли более чем в 16 раз - с 29 млн до 480 млн куб. м. в год.

    Заместитель министра энергетики и природных ресурсов РА Арег Галстян, в свою очередь, отмечает, что компания «Газпром Армения» сработала достаточно гибко и очень быстро создала соответствующую инфраструктуру для развития рынка сжатого природного газа. А потребитель и бизнес, по его словам, сам выбирает КПГ в качестве моторного топлива с учетом его экономичности по сравнению с бензином и дизельным топливом.

    Перевод общественного, коммунального, грузового, сельскохозяйственого и частного транспорта на КПГ, а также расширение потребительского спроса на этот вид моторного топлива привели к ежегодному увеличению объемов потребления природного газа в транспортном секторе. И сегодня на долю автомобильных газонаполнительных компрессорных станций (АГНКС) приходится 25% от реализуемого в республике газа.

    Газифицированная на рекордные 96% Армения в скором времени может достичь этого показателя и по части потребления газомоторного топлива. Сегодня общественный транспорт во всех областях страны практически полностью переведен на природный газ, что существенно снизило транспортные издержки хозяйствующих субъектов и населения: владельцы транспортных компаний сократили затраты на топливо, а пассажиры избежали повышения тарифов на проезд.

    В настоящее время на территории Армении действуют 360 АГНКС, из них более 30-и - в столице. Развитая инфраструктура газозаправочных станций позволяет осуществлять заправку автомобилей сжатым природным газом практически в любом регионе страны.

    Первая в республике АГНКС открылась в 1986 г. в одном из пригородов Еревана. Эта станция работает и в настоящее время. В начале 90-х годов на территории Армении действовали 4 АГНКС, ежегодный объем потребления природного газа этими станциями составлял порядка 650 тыс. куб. м.

    Экономичность

    Годы назад Армения стала одним из пионеров по использованию газомоторного топлива, и сегодня природный газ по сравнению с бензином и дизельным топливом - вне конкуренции. Основная причина в том, что это существенно сократило расходы автовладельцев на моторное топливо, заметно улучшив их личный бюджет.

    Как отмечает Председатель Правления - Генеральный директор ЗАО «Газпром Армения», использование КПГ в качестве моторного топлива имеет большое значение для экономики всей республики. Расширение газового рынка положительно сказалось и на социальной сфере. В частности, расчеты показывают, что только за счет разницы между ценой сжатого природного газа и бензина в Армении ежегодно экономия составляет почти 80–90 млрд драмов.

    Экологичность

    Природный газ - самый экологичный вид топлива, выхлопные газы транспорта, работающего на метане, на 60% менее вредны для здоровья по сравнению с бензином или дизельным топливом. Выбросы угарного газа снижаются в 10 раз, задымленность - в 9, а сажа, соединения серы и свинца просто отсутствуют.

    По словам академика Международной академии экологии Карине Даниелян, в случае с КПГ происходит полное сгорание, значительно снижается уровень выделения побочных веществ. Но самое главное, как подчеркивает эксперт в области экологии, не образуются циклические углеводороды, имеющие очень серьезное и мутагенное, и канцерогенное влияние. Поэтому перевод транспорта на КПГ экологи очень приветствуют.

    Безопасность и технологичность

    Еще одно преимущество природного газа в том, что он относится к самому безопасному классу топлива. Метан в 2 раза легче воздуха и в случае утечки быстро улетучивается. Для взрыва или воспламенения необходимо образование топливовоздушной смеси, то есть смешение газа с воздухом. Нахождение газа в баллоне под давлением исключает возможность проникновения воздуха, в то время как в баках с бензином или дизельным топливом всегда присутствует смесь их паров с воздухом.

    Газ повышает и ресурс работы автомобильного двигателя: при сгорании не образуются твердые частицы и зола, которые изнашивают поршни двигателя.


    Служба по связям с общественностью и средствами массовой информации ЗАО «Газпром Армения»