Разновидности пусковых систем автомобиля. Система запуска двигателя автомобиля: электрический пуск ДВС

Прежде чем запустить двигатель, необходимо поставить рычаг, переключения передач в нейтральное положение, а автомобиль затормозить ручным тормозом.

В холодное время при температуре окружающего воздуха ниже +5° С двигатель разогревают при помощи индивидуального подогревателя или проливая горячую воду через систему охлаждения при открытых сливных кранах до тех пор, пока из них не будет вытекать теплая вода.

Перед началом разогрева жалюзи радиатора плотно закрываются, а капот двигателя укрывается утеплительным чехлом.

После того как двигатель разогрелся, кнопку управления воздушной заслонкой карбюратора вытягивают на себя (в холодное время полностью), пусковой рукояткой провертывают на два - три оборота коленчатый вал, включают зажигание и затем запускают двигатель стартером или пусковой рукояткой сильным рывком снизу вверх. Рукоятку при этом обхватывают всеми пальцами руки с одной стороны во избежание удара при обратное отдаче.

При запуске двигателя стартером непрерывная работа стартера не должна превышать пяти секунд. Если двигатель не начал работать, то следующую попытку запуска можно повторить не раньше чем через одну минуту. Если после трех - четырех попыток двигатель не начал работать, надо выяснить причину и устранить неисправность.

Как только двигатель начнет работать, приоткрывают воздушную заслонку и, немного нажимая на педаль управления дроссельной заслонкой, на умеренных оборотах вала прогревают двигатель до тех пор, пока температура охлаждающей жидкости в системе охлаждения не достигнет 50° С. После этого кнопку управления воздушной заслонкой возвращают в исходное положение или в положение, обеспечивающее устойчивую работу двигателя. При запуске горячего двигателя закрывать воздушную заслонку карбюратора не рекомендуется.

Запуск дизеля при температуре воздуха выше +5° С осуществляется нажатием на кнопку включения стартера при нажатой до упора педали управления подачей топлива (максимальная подача).

Запуск дизеля при температуре воздуха ниже +5° С осуществляется при помощи электрофакельного пускового подогревателя в следующем порядке. Кнопка включателя пускового подогревателя повертывается по ходу часовой стрелки (в ней загорается лампочка); через 1-2 мин после включения подогревателя нажимается кнопка включения стартера при нажатой до упора педали управления подачей топлива; одновременно делаются четыре-пять полных хода рукояткой насоса электрофакельного пускового подогревателя. При этом полезно педаль сцепления держать выжатой.

При температуре окружающего воздуха ниже 0° С перед запуском необходимо прогреть систему охлаждения двигателя до температуры не менее 30° С подогревательным устройством или горячей водой. Рекомендуется также до запуска двигателя провернуть несколько раз коленчатый вал вручную при помощи специального ключа за шестигранную головку болта крепления шкива коленчатого вала.

После запуска двигателя выключают систему зажигания, повертывают кнопку включения электрофакельного пускового подогревателя против хода часовой стрелки (лампочка при этом гаснет) и вдвигают до упора рукоятку насоса системы подогрева воздуха.

Запускать двигатель, буксируя автомобиль, запрещается во избежание повреждения механизмов силовой передачи автомобиля.

В неподвижном состоянии. Прежде чем он начнёт работать, его нужно раскрутить с помощью внешнего источника энергии. Практически используются следующие варианты:

Мускульная сила человека

Используется при запуске двигателей небольшой мощности . На лодочных моторах и бензопилах дёргают за тросик, намотанный на маховик или пусковой барабан («верёвочный стартёр »); на мотоциклах используют резкое нажатие ногой на специальный рычаг (кикста́ртер ); на мопедах - вращение педалей велосипедного типа; на автомобилях - проворачивают коленвал пусковой (заводной) рукояткой («кривой стартёр»). Мускульная сила всегда доступна и не зависит от заряда аккумуляторов и т. п. Однако такой метод запуска не очень удобен в эксплуатации; чаще он используется в качестве резервного. На современных автомобилях, как правило, использование «кривого стартёра» вообще не предусматривается.

Существуют также ручные инерционные стартеры , при которых ручкой (через повышающий редуктор) раскручивается небольшой маховик , а когда он запасет необходимое количество кинетической энергии, этот маховик через редуктор (понижающий) соединяется с коленвалом пускаемого двигателя. Такой способ позволяет повысить пусковую мощность и не создавать черезмерных усилий на пусковой рукоятке. В СССР такие стартеры устанавливались на часть тракторов Т-16 , Т-25 и небольшие судовые дизели.

Долгое время ручной способ был основным для запуска поршневых двигателей самолётов - всем знакомы кадры хроники, когда коленвал авиадвигателя раскручивают, дёргая рукой пропеллер . Данный способ перестал применяться с ростом мощности моторов, поскольку мускульной силы уже просто не хватало, чтобы провернуть вал тяжёлого и мощного двигателя, зачастую ещё и снабжённого редуктором .

Электростартёр

Наиболее удобный способ. При запуске двигатель раскручивается коллекторным электродвигателем постоянного тока , питающимся от аккумуляторной батареи (после запуска аккумулятор подзаряжается от генератора , приводимого в движение основным двигателем). Но у него есть один существенный недостаток: чтобы провернуть коленчатый вал холодного двигателя, особенно зимой, ему необходим большой пусковой ток, который выдаётся аккумулятором, стремительно теряющим максимальный ток и ёмкость с понижением температуры. Иногда, вместе с использованием слишком вязкого масла, это делает запуск на морозе невозможным.

Электродвигатели автомобильных стартёров имеют особую конструкцию с четырьмя щётками, которая позволяет уменьшить сопротивление ротора, увеличить ток ротора и мощность электродвигателя.

Вспомогательный ДВС

Главный двигатель запускается другим двигателем внутреннего сгорания, меньшей мощности (так называемый «пускач»); такой способ используется на многих тракторах . Пусковой двигатель обычно карбюраторный двухтактный , его мощность составляет примерно 10 % от мощности основного двигателя. Это обеспечивает надёжный запуск в любых условиях. Сам же вспомогательный двигатель запускается вручную (дёрганием тросика) или от электростартёра.

Сжатый воздух

Используется для запуска больших дизелей на тепловозах , судах и бронетехнике . Ранее такой способ был основным для запуска поршневых двигателей в авиации . В цилиндрах, кроме обычных впускных и выпускных клапанов, устраиваются дополнительные пусковые клапаны. При запуске они открываются в таком порядке, чтобы входящий через них в цилиндры воздух толкал поршни и раскручивал двигатель. Ёмкости со сжатым воздухом пополняются от компрессора, приводимого главным двигателем при его работе.

Direct Start (Непосредственный запуск)

Немецкая фирма BOSCH опубликовала результаты экспериментов по исследованию возможности прямого (без внешнего прокручивания) запуска бензинового двигателя с непосредственным впрыском топлива. Суть заключается в следующем: в неработающем двигателе с 4-мя и более цилиндрами в одном из цилиндров поршень стоит в положении соотвествующем рабочему ходу. Зная положение коленчатого вала, можно расчитать объем воздуха в этом цилиндре, впрыснуть туда необходимую дозу топлива и поджечь его искрой. Поршень начнет двигаться, вращая коленчатый вал. Далее процесс развивается лавинообразно и двигатель запускается. Эксперимент признан удачным, но, как заявляет руководство фирмы BOSCH, до применения Direct Start на серийных автомобилях еще далеко.

Экзотические способы

Автомобиль (как и мотоцикл) с механической КПП можно завести, буксируя его другим автомобилем (или толкая руками, это называется «завести с толкача»), а также разгоняя его при включенной передаче по наклонной дороге.

При разряде аккумулятора часто приходится подключаться к аккумулятору другого автомобиля (это называется «прикурить»).

В принципе, можно запускать мотор, раскручивая его электродвигателем, питающимся от внешней электросети. Мощность и время работы такого сетевого стартёра почти не ограничены, однако подключиться к электросети можно далеко не везде.

Для запуска двигателя после кратковременного выключения предлагался маховик-накопитель: раскручиваемый двигателем при движении, он затем позволяет запустить двигатель, не нагружая аккумулятор.

Зажигание при запуске

Для двигателей с искровым зажиганием актуальна также проблема питания системы зажигания в момент запуска. Обычные генераторы с электромагнитами требуют некоторого времени для самовозбуждения, поэтому в момент запуска зажигание питается только от аккумулятора. В итоге мотоциклы «ИЖ» и «Урал» не заводятся при разряженном аккумуляторе, хотя запуск производится кик-стартером, а не электростартером. Эта проблема решается использованием генератора с постоянными магнитами (как на мотоциклах «Минск» и «Восход») или магнето , которые дают ток сразу, однако такие генераторы имеют меньшую мощность. Проблема становится намного слабее при использовании электронного зажигания, но и оно неспособно работать при полностью разрядившейся батарее. Проблема полностью посаженного аккумулятора усугубляется тем, что в современных генераторах вместо постоянных магнитов используют обмотку возбуждения. Это значит, что даже при вращающемся моторе (например, буксируемая машина) искры не будет.

Кроме проблем с питанием системы зажигания, существует также проблема со смесеобразованием при пуске холодного двигателя. При низких температурах топливо недостаточно полно испаряется в карбюраторе , из-за чего попадает в камеру сгорания в виде капелек, которые могут «залить» свечу зажигания . От этого недостатка свободны

3.1. Назначение и требования к системам пуска двигателя

Для запуска ДВС необходимо сообщить коленчатому валу вращение с определенной (пусковой) частотой, при которой обеспечивается нормальное протекание процессов смесеобразования, воспламенения и горения топлива. Пусковая частота вращения карбюраторных двигателей составляет 40...50 мин -1 . У дизелей частота вращения коленчатого вала должна быть не менее 100... 150 мин -1 , так как при более медленном вращении сжимаемый воздух не нагревается до необходимой температуры.

При пуске необходимо преодолеть момент сопротивления на трение, момент, создаваемый при сжатии рабочей смеси в цилиндрах, и момент инерции вращающихся частей двигателя.

Развиваемый стартером крутящий момент зависит от мощности и конструкции двигателя, числа цилиндров, степени сжатия, вязкости масла и частоты вращения двигателя стартера. Момент сопротивления зависит от окружающей температуры. Изменение температуры влияет на физико-механические свойства материалов (топлива, масла, охлаждающей жидкости). Наибольшие трудности вызывает пуск двигателя при низких температурах вследствие повышения вязкости масла и топлива, снижения его испаряемости. Ухудшение условий для воспламенения и сгорания топливно-воздушной смеси, а также характеристик системы зажигания обусловлено падением напряжения на зажимах аккумуляторной батареи при работе ее в стартерном режиме.

Электрический стартер - машина кратковременного действия. Продолжительность пуска карбюраторного двигателя составляет 10 с, дизеля- 15. В связи с этим тепловые и электромагнитные нагрузки, допускаемые для стартера, значительно выше (в 2 раза), чем для машин, работающих в длительном режиме. Стартер должен обладать большим крутящим моментом для преодоления момента сопротивления двигателя поэтому применяется электродвигатель с последовательным возбуждением. При запуске он развивает больший крутящий момент на валу якоря, чем двигатель с параллельным возбуждением. Вместе с тем, электродвигатель с последовательным возбуждением при холостом ходе увеличивает частоту вращения ротора теоретически до бесконечности. Практически возрастание частоты вращения ротора в этом случае ограничивается наличием механических потерь на трение в подшипниках, щеток на коллекторе и т.п.

В стартерах большой мощности КПД выше, потери на трение относительно меньше, поэтому частота вращения ротора значительно возрастает. Так как диаметр якоря стартера большой мощности также большой, то создается опасность "разноса" якоря при холостом ходе, т.е. вырывания его обмотки из пазов центробежной силой. Поэтому в мощных стартерах для ограничения числа оборотов холостого хода применяют добавочную параллельную обмотку, т.е. смешанное возбуждение. Магнитный поток параллельной обмотки составляет только 4...5% общего магнитного потока, поэтому она мало влияет на характеристики двигателя.

В зависимости от конструкции и принципа действия различают стартеры с инерционным и с принудительным электромеханическим перемещением шестерни привода, с принудительным вводом шестерни в зацепление и с самовыключением ее после пуска двигателя.

Наибольшее распространение получили в настоящее время стартеры с принудительным вводом шестерни и самовыключением ее посла пуска двигателя.

3.2. Устройство стартера

На рис. 3.1 показан разрез автомобильного стартера с электро- магнитным реле и дистанционным управлением.

На одном из концов вала имеется муфта свободного хода 9 с ведущей шестерней 8. Тяговое электромагнитное реле 3 с помощью рычага перемещает шестерню и вводит ее в зацепление с зубчатым венцом маховика двигателя. Одновременно с перемещением шестерни контактным диском 2 замыкается электрическая цепь стартера. Обмотка электромагнитного реле состоит из двух обмоток - втягивающей и удерживающей. Кроме тягового реле стартер имеет реле включения, обмотка которого включена на разность напряжения между батареей и генератором. После пуска, когда генератор начнет работать и разность напряжений между аккумулятором и генератором начнет уменьшаться, реле включения отключает удерживающую обмотку и электромагнит. Тяговое реле стартера 4 выключается, а возвратная пружина 6 выводит шестерню из зацепления с зубчатым венцом маховика двигателя. Одновременно происходит электрическое отключение стартера от батареи.

Корпус стартера и полюсные наконечники изготавливаются из листовой электротехнической стали. Обмотки якоря статора и полюсов из голой медной прямоугольной шины с небольшим количеством витков, изолированных друг от друга бумагой и покрытых лаком.

Рис.3.1. Схема стартера с электромагнитным тяговым реле и дистанционным управлением: 1-контакт зажима; 5-якорь реле; 10-корпус стартера; 11-якорь; 12-обмотка возбуждения; 13-щетка; 14-коллектор; (остальные позиции указаны в тексте)

3.3. Устройство и работа приводных механизмов

Приводной механизм - устройство, обеспечивающее ввод и удержание шестерни стартера в зацеплении с венцом маховика во время пуска ДВС, передачу необходимого вращающего момента коленчатому валу и предохранение якоря электродвигателя от разноса вращающимся маховиком после пуска двигателя.

Приводные механизмы электростартера с принудительным механическим или электромеханическим перемещением шестерни имеют роликовые фрикционные или храповые муфты свободного хода, которые передают вращающий момент от вала стартера к коленчатому валу двигателя во время пуска и, работая в режиме обгона, автоматически разъединяют стартер и ДВС после пуска.

Наибольшее распространение получили приводные механизмы с роликовыми муфтами свободного хода, в которых ролики заклиниваются в связи с возникновением сил трения в сопряженных деталях.

Муфта свободного хода (рис. 3.2) обеспечивает передачу вращающего момента только с вала якоря на венец маховика и предотвращает вращение якоря от маховика после пуска двигателя.

На шлице во и втулке жестко укреплена ведущая обойма 4. В ней имеются четыре клинообразных паза, в которых установлены ролики 3, отжимаемые в сторону узкой части паза усилием пружины 10 плунжеров 9. Пружина надета на упоры II плунжеров. Шестерня 7 выполнена вместе с ведомой обоймой. Упорные шайбы 5 и 6 ограничивают осевое перемещение роликов 3.

Рис. 3.2. Муфта свободного хода: 1 - кожух, 2- уплотнитель; 8 - пружины (остальные позиции указаны в тексте)

3.4. Принцип работы системы пуска двигателя

Система пуска (рис. 3.3) содержит стартер 1, аккумуляторную батарею 2 и выключатель стартера 3. Стартер состоит из электродвигателя постоянного тока 4, тягового реле 5 и механизма привода 10. Тяговое реле обеспечивает ввод шестерни 12 привода 8 зацепления с венцом маховика 13, а также подключение электрической цепи электродвигателя стартера к аккумуляторной батарее. Механизм привода 10 передает вращение от вала якоря на венец маховика 13 двигателя и предотвращает передачу вращения от маховика на вал якоря после начала работы двигателя.

Шестерня стартера должна находиться в зацеплении с зубчатым венцом только во время пуска двигателя. После пуска частота вращения коленчатого вала достигает порядка 1000 мин -1 . Если при этом вращение будет передаваться на якорь стартера, его частота вращения повысится до 10000... 15000 мин -1 . Даже при кратковременном увеличении частоты вращения до такого значения возможен разнос якоря. Для предотвращения этого, усилие от вала якоря к шестерне привода у большинства стартеров передается через муфту свободного хода, которая обеспечивает передачу крутящего момента только в одном направлении от вала якоря к маховику. Шестерня в современных стартерах перемещается электромагнитным включением и дистанционным управлением. Для увеличения крутящего момента на коленчатом валу используется пониженная передача с передаточным числом 10...15.

При замыкании контактов выключателя по обмотке электромагнита протекает ток, и якорь электромагнита 8 втягивается, а соединенный с ним рычаг II перемещает шестерню 12. Одновременно якорь давит на пластину 6, которая в момент ввода шестерни в зацепление с венцом маховика замыкает контакты.

Рис. 3.3. Принципиальная схема системы пуска

Ток через замкнутые контакты поступает в обмотку электродвигателя, и якорь начинает вращаться. После пуска двигателя водитель выключает цепь обмотки электромагнита, и шестерня возвращается в исходное положение.

Для обеспечения длительной работоспособности привода и стартера в целом важное значение имеет своевременное отключение стартера. При задержке отключения увеличивается продолжительность работы муфты свободного хода привода, она нагревается, смазка разжижается и вытекает, что приводит к быстрому износу муфты.

Использование: в производстве и эксплуатации машин с поршневыми двигателями внутреннего сгорания для создания системы запуска карбюраторных дизельных двигателей. Сущность изобретения: запуск двигателя внутреннего сгорания с запуском вспомогательного пускового двигателя заключается в заполнении цилиндра горючей смесью, ее сжатии и воспламенении, прокручивании вала запускаемого двигателя, в нем перед запуском вспомогательного пускового двигателя его поршни устанавливают в положение начала рабочего хода, объем, отсекаемый поршнем заполняют горячей смесью, сжигают ее, а получаемое давление передают с поршня вспомогательного пускового двигателя на вал запускаемого с начала его рабочего хода. 1 з.п.ф-лы, 3 ил.

Изобретение относится к производству и эксплуатации машин с поршневыми двигателями внутреннего сгорания (ДВС) и может быть применено для создания системы запуска карбюраторных и дизельных двигателей автомобилей, сельскохозяйственных и других машин, а также стационарных двигателей средней мощности. В настоящее время на автомобилях в подавляющем большинстве случаев применяют электростартерный способ запуска ДВС Электростартер обеспечивает удобный запуск без применения мускульной энергии. Однако он не обеспечивает надежный запуск двигателя при низких температурах в виду недостаточно высокой скорости прокручивания вала, которая ограничена стоимостными и массогабаритными показателями стартерной аккумуляторной батареи и электродвигателя. Кроме того стартерная аккумуляторная батарея недолговечна и требует для своего изготовления остродефицитного свинца, а остальное электрооборудование стартера дорогостоящей меди. Так что при имеющихся широких масштабах производства и эксплуатации ДВС, наличие в изделиях указанных материалов уже с трудом обеспечивается природными ресурсами. Наиболее близким по технической сущности к предлагаемому является способ запуска ДВС с помощью вспомогательного пускового ДВС. Он состоит в том, что сначала запускают вспомогательный пусковой ДВС, прокручивая его вал с помощью мускульной энергии или электростартером, а затем, с помощью пускового ДВС прокручивают вал запускаемого ДВС. При этом в пусковом двигателе при пуске его совершают процессы, аналогичные процессам, происходящим при запуске в основном двигателе, а именно: заполняют горючей смесью при давлении, близком к атмосферному, цилиндр, устанавливая поршень в точку, соответствующую концу рабочего хода, сжимают горючую смесь, поднимая т.о. давление до нескольких атмосфер, зажигают горючую смесь после сжатия и совершают рабочий ход. Причем указанные действия при запуске и после запуска пускового двигателя циклически повторяют неоднократно, и уже затем, после прогрева пускового двигателя, когда он, имея сравнительно малый объем цилиндра, становится способным принять на себя нагрузку, его плавно, посредством фрикционной муфты, соединяют с валом запускаемого и увеличивают обороты до величин, требуемых условиями запуска Такой способ запуска, в виде меньшего по сравнению с электроприводом удельного веса ДВС, а также в следствие частичного подогрева масла главного двигателя при работе пускового двигателя, обеспечивает более высокую скорость прокручивания вала запускаемого двигателя в условиях низких температур при приемлемых массогабаритных показателях. Однако при этом способе проблема запуска, связанная с необходимостью прокручивания вала ДВС от постороннего источника энергии, остается. Она лишь перекладывается на двигатель меньшей мощности. И если это прокручивание осуществляется мускульной энергией, например заводным шнурком, то это обуславливает неудобство, дискомфорт и длительное время запуска, неприемлемые, например, для автомобиля и с чем приходится все же мириться при запуске тяжелых мобильных машин. А если прокручивание пускового ДВС осуществляется электростартером, то не исключается необходимость иметь на мобильном средстве стартерную аккумуляторную батарею и мощный электродвигатель со всеми вышеуказанными негативными последствиями. Кроме того, получающая при этом трехкаскадная система двигателей оказывается слишком сложной по конструкции, т.к. уже сам пусковой ДВС классической двухтактной схемы имеет почти все элементы главного запускаемого двигателя, причем часть систем дублирует системы главного двигателя (система газораспределения, кривошипно-шатунный механизм, сцепление), а часть систем является дополнительной (карбюратор, бензобак, система электрического зажигания). Целью изобретения является повышение удобства запуска ДВС путем устранения необходимости в энергичном прокручивании при запуске пускового ДВС, а также обеспечение возможности упрощения конструкции пускового устройства в целом. Предлагается способ запуска ДВС, согласно которому сначала запускают вспомогательный пусковой ДВС, с помощью которого прокручивают вал запускаемого ДВС. Цель достигается следующими отличиями. Перед запуском поршень пускового ДВС устанавливают в точку, соответствующую началу рабочего хода, а также заполняют образуемый при этом поршнем и головкой цилиндра, объем камеры сгорания горючей смесью при атмосферном давлении. Порядок совершения указанных действий не имеет значения. Несущественно также, какой в пусковом двигателе используется механизм для передачи движения поршня на вал запускаемого ДВС. Однако, если при этом используется кривошипно-шатунный механизм, то указанное положение начала рабочего хода следует выбрать после верхней мертвой точки. Затем производят зажигание горючей смеси. Образующееся при этом давление продуктов сгорания с поршня пускового двигателя передают на вал запускаемого ДВС с самого начала первого рабочего хода, и совершают один рабочий ход. При этом поршень пускового ДВС и вал запускаемого ДВС двигаются одновременно с ускорением, в результате чего запускаемый ДВС достигает скорости вращения, требуемой условиями надежного пуска, а поршень пускового ДВС в конце рабочего хода автоматически расцепляется с валом запускаемого ДВС и, имея сравнительно небольшую массу, останавливается при ударе в буферное устройство. В исходное положение поршень возвращают только для совершения следующего запуска. При этом, несмотря на использование в пусковом ДВС малоэффективного в термодинамическом отношении процесса, характеризующегося отсутствием предварительного сжатия горючей смеси, что приводит, по сравнению с известным способом, и снижению КПД и литровой мощности пускового ДВС, как двигателя, процесс запуска ДВС по всему комплексу показателей оказывается более эффективным, т. к. КПД и литровая мощность при одноходовом процессе не являются решающими. Цилиндр при этом можно сделать достаточно большого объема и одновременно тонкостенным, и это обеспечит любые потребные энергии запуска. Зато устраняется необходимость прокручивания пускового ДВС при запуске. Установка поршня на начало рабочего хода осуществляется без противодавления и может быть осуществлена возвратной пружиной. Это исключает необходимость применения мускульной энергии или электростартера. Может быть также упрощена и конструкция пускового ДВС, т.к. кривошипно-шатунный механизм может быть заменен реечным, тросовым, ленточным и т.п. Механизмы газообмена, подачи топлива и зажигания, работающие в статике, также могут быть решены более просто. Поскольку скорость воспламенения предварительно заряженной и находящейся в статическом состоянии без турбулентных потоков, горячей смеси может оказаться недостаточна велика, что может привести к тому, что рабочий ход будет совершен ранее достижения максимального давления газов, в одном из вариантов предлагаемого способа в период нарастания давления газов, начиная от момента зажигания, поршень удерживают в исходном положении фиксатором, который отключают не позднее момента достижения максимума давления газов. Этим обеспечивается наиболее полное преобразование тепловой энергии продуктов сгорания в работу по ускорению вала запускаемого ДВС. В технике известны одноходовые ДВС, т.е. такие, весь рабочий цикл которых состоит из одного рабочего хода, минуя ход предварительного сжатия горючей смеси. Особенно это касается наиболее ранних изобретений по ДВС, когда полезная роль сжатия еще не была осознана Однако при переходе к использованию ДВС в качестве пускового двигателя, т.е. в более поздний период времени, логика развития техники увела от мысли использования одноходовых ДВС в виду появления более совершенных ДВС с предварительным сжатием. Эта логика состоит в том, что совершенствуя часть системы, мы совершенствуем и саму систему в целом. Однако в данном случае это утверждение ошибочно. Парадоксальность предлагаемого технического решения, чем и доказывается его неочевидность и соответствие критерию "изобретательский уровень", несмотря на апостериорно кажущуюся очевидную простоту решения, состоит в том, что применение в данном случае в системе менее эффективного процесса в пусковом ДВС приводит к повышению эффективности системы запуска в целом. Это получается вследствие того, что критерии эффективности для двигателя вообще и для пускового двигателя в составе пусковой системы различны, например по КПД, по влиянию литровой мощности на массогабаритные показатели и др. И это не было учтено в существующей технике запуска ДВС. Изобретение поясняется описанием примеров осуществления способа и тремя фигурами. На фиг. 1 изображена схема одного из возможных вариантов пускового ДВС, приспособленного к осуществлению предлагаемого способа. На фиг. 2 показан тот же пусковой ДВС в другой проекции, а также показаны его расположение относительно запускаемого ДВС и связи управления процессом запуска. На фиг. 3 показан тот же пусковой ДВС в третьей проекции. Показаны связи управления клапанами цилиндра. Осуществление предлагаемого способа запуска ДВС рассмотрим на примере с использованием специально приспособленной более простой конструкции вспомогательного пускового ДВС, показанной на фигурах 1 3, хотя в принципе не исключена возможность использования пускового ДВС классической схемы с изменением некоторых конструктивных параметров (объем цилиндра и др.). Перед этим необходимо описать устройство примененного в способе пускового ДВС. Он состоит из цилиндра 1 с поршнем 2. К штоку 3 поршня прикреплен трос 4, намотанный на ролик 5. Последний имеет храповые зубья 6 и возвратную пружину 7. Весь пусковой двигатель выполнен в виде рычага 8, образованного цилиндром 1 и жестко с ним связанным стержнем 9. На конце этого рычага, на оси 10, установлен указанный ролик 5. Сам рычаг 8 с помощью цилиндрического шарнира 11 закреплен на неподвижном основании, общем с основанием запускаемого ДВС 12 так, что зубья 6 при отклонении рычага 8 могут быть введены в зацепление с храповиком 13 вала запускаемого двигателя. За счет сжатой пружины 14 рычаг 8 имеет два устойчивых положения прижатое к храповику 13 двигателя 12 и отведенное от храповика 13 в упор 15. Для вентиляции цилиндра 1 имеется два клапана 16, расположенных в верхней и нижней точках цилиндра и снабженных приводными рычагами 17, срабатывающими от упора в основание всей силовой установки (основание всюду изображено штриховкой около незамкнутой линии). На стержне 8 расположен фиксатор 18 для удержания поршня от преждевременного перемещения и выполненный в виде подпружиненной собачки 19, взаимодействующей со штоком 3 и имеющей регулируемый упор 20, расположенный на основании фиксатора 18. Линия, проходящая через ось 21 собачки и точку a касания собачки со штоком, образует с нормалью к поверхности штока угол, расположенный в пределах конуса трения, что является условием заклинивания штока собачкой. Для подачи горючего имеется поршневой объемный дозатор 22 с винтовой подачей поршня 23 и приводным храповиком 24 для вращения винта. Для выхода жидкости имеется трубка 25, малого внутреннего сечения, подведенная к щели одного из клапанов 16. Причем выходное отверстие трубки 25 расположено выше уровня жидкости в дозаторе 22. Собачка 26 храповика дозатора 22 установлена на рычаге 27, имеющем возвратную пружину 28 и упор 29, ограничивающий ход рычага 27 в регулируемых пределах. Рычаг 27 и рычаг 8 присоединены к концам общего балансира 30, средняя точка которого соединена с ручкой 31 дистанционного управления запуском посредством тяги. Для зажигания, в цилиндре установлен механический фрикционный воспламенитель 32, привод вращения которого также осуществляется дистанционно с помощью ручки 33. Следует также указать на наличие у поршня резинового буфера 34 и штифта 35, служащего для автоматического отключения пускового ДВС в конце рабочего хода поршня. У штока 3 имеется ограничитель хода 36, определяющий точку начала рабочего хода. В задней стенке цилиндра 1 имеется отверстие 37, служащее для воздушного демпфирования движений поршня, а в боковой стенке цилиндра имеется отверстие 38 для стравливания избыточного давления газов в конце рабочего хода. Предлагаемый способ запуска состоит в следующем. Поршень 2 вспомогательного пускового двигателя (фиг. 1) устанавливают в положение, соответствующее началу рабочего хода, как показано на фиг. 1, что осуществляется сразу после выполнения предыдущего запуска автоматически возвратной пружиной 7, наматывающей трос 4 на ролик 5. После этого осуществляют заполнение отсекаемого поршнем 2 в цилиндре 1 объема b горячей смесью. В данном варианте это делается в два этапа. На первом этапе производится вентиляция объема b через клапаны 16 воздухом. Вентиляция осуществляется за счет естественной конвективной тяги от тепла предыдущего запуска, чему способствует наличие двух клапанов 16, расположенных в верхней и нижней точках объема b. Для вентиляции используется все время между двумя очередными запусками, т. к. при нерабочем положении рычага 8, когда зубья 6 отведены от храповика 13, рычаги 17 упираются в основание (фиг. 3), и поэтому клапаны 16 открыты. В других конструктивных вариантах пускового двигателя может быть применена принудительная вентиляция объема b, в т.ч. не только воздухом, но и горячей смесью. Однако в любом случае при этом для исключения больших затрат энергии используются низконапорные средства (не более нескольких сотен Паскалей), т.е. в пределах разброса величин абсолютного давления атмосферы), что и позволяет обобщенно говорить, что заполнение объема b горючей смесью производится при атмосферном давлении. Для запуска пускового ДВС может использоваться как жидкое, так и газообразное горючее. Рассмотрим вариант с применением жидкого горючего. Для запуска лучше всего использовать такую горючую жидкость, которая имеет при температуре цилиндра 1 упругость паров не менее 15 o C 20 мм ртутного столба и не имеет при этом шлейфа трудноиспаряющихся фракций с меньшей упругостью паров. В качестве такой жидкости для запуска летом годится, например обычный бензин, этиловый или метиловый спирт, а для запуска зимой легкие фракции бензина (пентан, гексан), метиловый спирт или этиловый эфир. Возможно использование для зимнего запуска бензина и без отгонки низкокипящих фракции, если увеличить вводимую объемную дозу. Однако это потребует корректировать объем подаваемого горючего в цилиндр 1 в зависимости от температуры цилиндра. Подача горючего в цилиндр 1 производится следующим образом. Перед запуском тянут ручку 31 на себя. При этом, поскольку возвратная пружина 28 собачки 26 дозатора 22 слабее силы, необходимой для перевода рычага 8 в другое положение, то сначала движется только рычаг 27 дозатора. В процессе этого движения собачкой 26 осуществляется ввинчивание поршня 23, вытеснение расположенной под ним жидкости через трубку 25 и впрыскивание ее через щель приоткрытого клапана 16 в полость b цилиндра 1. Объем впрыскиваемой жидкости определяется ходом рычага 27, ограничиваемым упором 29, который может быть изменен в зависимости от применяемого горячего (или от температуры, если используется горячее с наличием трудно испаряющихся фракций). Когда при вытягивании ручки 31 рычага 27 дойдет до упора 29, впрыск горячего заканчивается и в движение приходит рычаг 8, который при этом скачком переводится в положение, соответствующее касанию зубьев 6 с храповиком 13. При этом одновременно под действием своих пружин закрываются клапаны 16, т.к. их приводные рычаги 17 перестают упираться в основание (см. фиг. 3). Осуществив таким образом за счет вытягивания ручки 31 все вышеописанные необходимые операции по подготовке пускового двигателя к пуску и выждав время, необходимое для испарения впрыснутого в цилиндр 1 горючего (1 o C 3 сек), производят зажигание горючей смеси, дергая за ручку 33 и вращая т.о. колесико механического фрикционного воспламенителя 32, вырабатывающего искру. Горючая смесь воспламеняется и давление в полости b начинает возрастать. А поскольку фронт горения в условиях спокойной нетурбулизированной газовой среды распространяется со сравнительно небольшой скоростью, то период нарастания давления может составить несколько десятых долей секунды. Чтобы избежать при этом преждевременного перемещения поршня 2 и совместить по времени его движение с максимумом давления, поршень 2 удерживают после зажигания в исходном положении с помощью фиксатора 18. При этом собачка 19, прижимаемая пружиной к штоку 3, заклинивает шток. По мере возрастания давление газов сила трения и сила давления в точке a контакта собачки 19 со штоком 3 возрастают пропорционально, и результирующий вектор силы остается внутри конуса трения. Т.о. шток удерживается собачкой. Однако по мере возрастания давления собачка 19, имеющая надрез С для понижения ее жесткости, а также детали ее крепления, деформируются, что вызывает небольшое перемещение собачки по направлению к упору 20. И при достижении некоторой силы давления, величина которой может регулироваться положением упора 20, собачка дойдет до упора 20. На этом дальнейший рост силы трения и давления в кинематической цепи собачки 19 прекратится и поршень 2 выдернет шток 3. Начнется рабочий ход поршня 2. Упор 20 регулируют так, чтобы выдергивание штока происходило при силе в 1,5 3 раза меньшей максимальной силы давления газов (в зависимости от скорости распространения пламени применяемого горючего). При этом максимум силы давления буде совмещен по времени с движение поршня и работа продуктов сгорания будет максимальная. На начальном этапе рабочего хода, когда скорость еще не велика, происходит натяжение троса 4 и выбор люфта между зубьями 6 и храповиком 13. Затем ускорение передается на вал запускаемого двигателя 12. На протяжение рабочего хода поршня 2 вал запускаемого ДВС 12 совершает примерно один оборот. При этом площадь поршня 2 подобрана так, что к концу рабочего хода газами совершается работа, достаточная для прокручивания вала на один оборот и сообщения ему остаточной кинетической энергии, соответствующей числу оборотов, необходимых для надежного запуска. В данном случае при любых температурах можно получить в конце рабочего хода скорость вращения вала двигателя 12 не меньше числа оборотов холостого хода двигателя, что обеспечивает надежный запуск двигателя. В конце рабочего хода поршень 2, имея скорость порядка 2 4 м/с, ударяется буфером 34 о заднюю стенку цилиндра 1. При этом газы стравливаются через отверстие 38 до давления, определяемого силой возвратной пружины 7. При этом давление уже можно открыть клапаны 16. За счет удара штифта 35 поршня в основание силовой установки, рычаг 8 возвращается в исходное положение. При этом клапаны 16 открываются. Давление в цилиндре 1 падает до атмосферного и пружина 7 возвращает поршень 2 в исходное положение, определяемое упором 36. Спустя несколько секунд, необходимых для вентиляции цилиндра 1, пусковой двигатель готов к проведению следующего запуска. Если же пусковой двигатель не сработал, то вернуть рычаг 8 в исходное положение можно, нажав на ручку 31. Если по каким-либо причинам пусковой двигатель был запущен в холостую - при расцепленном положении зубьев 6 и храповика 13, то разрушения двигателя все равно не произойдет, т.к. сечение отверстия 37 подобрано так, что оно ограничит возрастание скорости поршня 2, если она превышает номинальную, за счет квадратичной зависимости давления в нерабочей полости цилиндра 1 от скорости истечения воздуха из этой полости при движении поршня 2. Приведем основные параметры процесса запуска и конструкции пускового ДВС, разработанного для автомобилей ВАЗ. Объем полости b 1,5 литра. Рабочий ход поршня 150 мм. Диаметр цилиндра 120 мм. Толщина цилиндра 1 мм. Масса всего пускового устройства около 5 кг. Это в 5 раз меньше массы электростартерной системы, которая может быть снята с автомобиля. Пусковой двигатель удобно размещается в моторном отсеке с левой стороны. При этом ось цилиндра 1 располагается наклонно. Тяги управления запуском выведены в салон. Расход горючего на один запуск в пусковом двигателе менее 1 г. Максимальное давление в цилиндре 1 порядка 5 6 атмосфер. При этом к храповику, расположенному на носке коленвала двигателя ВАЗ прикладывается крутящий момент не более 12 кгс/м, т.е. не более момента затяжки храповика. (Штатный храповик заменяется мелкозубчатым). При рабочем ходе поршня 2 совершается работа около 600 дж. Потребная работа запуска при нормальной температуре около 250 дж. Весь избыток энергии идет на увеличение кинематической энергии коленвала. При этом минимальная частота вращения коленвала, получаемая при низких температурах, составляет не менее 750 об/мин, т.е. не менее оборотов холостого хода двигателя. При этом уже выходит на полную мощность штатный электрогенератор двигателя. Однако для обеспечения возможности запуска двигателя совсем без помощи аккумулятора, необходимо решить проблему повышения скорости тока в обмотке возбуждения генератора. Среди других возможных вариантов осуществления способа следует указать на возможность применить вместо задержки поршня турбулизацию горючей смеси при воспламенении. Можно также повысить скорость воспламенения форкамерным зажиганием, распределением воспламенителей по объему и т.п. Таким образом, предлагаемый способ запуска ДВС исключает необходимость в прокручивании пускового ДВС от постороннего источника энергии, что повышает удобство запуска без применении электростартера. Одноходовый процесс в пусковом ДВС позволяет существенно упростить конструкцию пускового устройства по сравнению с применяемым сейчас двухтактным ДВС классической схемы, т.к. кривошипно-шатунный механизм может быть замещен более простым по типу шнурового, а карбюратор, система газораспределения и система зажигания более простыми системами вентиляции, дозированного впрыска и механическим фрикционным воспламенителем, действующим статически без регламентации по времени. Несмотря на пониженные КПД и литровую мощность, масса и габариты пускового двигателя, а также расход топлива на запуск, не только не возрастают, но также могут быть снижены, т. к. запуск проводится всего за один ход поршня. При этом цилиндр не несет практически никакой тепловой нагрузки, а по условиям механической прочности он, даже при объемах в несколько литров, может быть сделан из листовой стали при толщине стенки менее 1 мм. Причем, за счет возможности значительного увеличения объема цилиндра пускового двигателя (до объемов, превышающих суммарный объем цилиндров запускаемого двигателя), значительно возрастают энергетические возможности пускового устройства и обеспечивается надежный запуск ДВС (особенно дизелей) в любых условиях. Растянутость пресса горения по времени при проведении процесса в нетурбулизированной среде не вызывает увеличения теплоотдачи в стенки цилиндра, т.к. определяющей является конвективная теплопередача, а она, в отсутствии турбулизации, в той же мере замедляется. Предлагаемый способ запуска позволит в массовых автомобилях перейти на работу с легкими щелочными аккумуляторами, необходимыми лишь для обеспечения габаритного освещения и формирования системы зажигания при запуске. Это позволит сэкономить свинец и медь, увеличить полезную нагрузку автомобиля, а также повысить степень готовности автомобиля к использованию после длительной стоянки. Источники информации: 1. ж. Изобретатель и рационализатор, N 6, 1989, с. 12. 2. А.В Кузнецов, Устройство и эксплуатация ДВС. М. Высшая школа, 1979, пл. X, стр. 212 216. (прототип) 3. А.В. Моравский, М.А. Файн. Огонь в упряжке. М. Знание. 1990, стр. 69; 77; 78.

Формула изобретения

1. Способ запуска двигателя внутреннего сгорания, включающий запуск вспомогательного пускового двигателя, с помощью которого прокручивают вал запускаемого двигателя внутреннего сгорания, отличающийся тем, что перед запуском вспомогательного пускового двигателя его поршни устанавливают в положение, соответствующее началу рабочего хода, объем, отсекаемый поршнем, заполняют горючей смесью при атмосферном давлении, сжигают горючую смесь, а получаемое давление передают с поршня вспомогательного пускового двигателя внутреннего сгорания на вал запускаемого двигателя внутреннего сгорания с начала его рабочего хода. 2. Способ по п.1, отличающийся тем, что при нарастании давления газов во вспомогательном пусковом двигателе внутреннего сгорания поршень вспомогательного пускового двигателя внутреннего сгорания удерживают в исходном положении фиксатором, который отключают не позднее момента достижения максимального давления газов.

Система запуска двигателя предназначена для проворачивания коленчатого вала двигателя с частотой, достаточной для образования, сжатия и воспламенения смеси, а также нормальной работы остальных систем двигателя. Основное требование к данной системе — обеспечение быстрого и надежного пуска двигателя при низких температурах. Энергоемкость системы должна обеспечивать необходимое число повторных пусков и быстро восстанавливаться при работе двигателя.

Устройство стартера автомобиля

Основным узлом системы запуска двигателя является стартер. Представляет собой электродвигатель постоянного тока напряжением 12 вольт и развивающий на холостом ходу примерно 5000 об\мин.

СХЕМА СТАРТЕРА: 1-коллектор; 2-задняя крышка; 3- корпус стартера; 4 – тяговое реле; 5 – якорь реле; 6 – крышка со стороны привода; 7 – рычаг; 8 – кронштейн рычага; 9 – уплотнительная прокладка; планетарная шестерня; 11 – шестерня привода; 12 – вкладыш крышки; 13 – ограничительное кольцо; 14 – вал привода; 15 – обгонная муфта; 16 – поводковое кольцо; 17 – опора вала привода с вкладышем; 18 – шестерня с внутренним зацеплением; 19 – водило; 20 – центральная шестерня; 21 – опора вала якоря; 22 – постоянный магнит; 23 – якорь; 24 – щеткодержатель; 25 – щетка;

Основная задача стартера - сообщить коленчатому валу двигателя ту минимально необходимую частоту вращения (50-100 мин), при которой двигатель начнет устойчиво работать. При понижении температуры окружающего воздуха для пуска двигателя необходимы повышенные обороты коленчатого вала.

Итак, водитель расположился за рулем автомобиля, выполнил все необходимые подготовительные операции и теперь приступает к пуску двигателя.

Для этого он поворачивает ключ в замке зажигания до момента замыкания контактов электроцепи стартера, после чего раздается характерный, всем знакомый шум включившегося стартера и двигатель пускается.

Что же происходит в этот короткий промежуток времени со стартером? Рассмотрим этапы его работы подробнее:

1. Подготовительный этап - стыковка стартера с коленчатым валом двигателя.

После того как водитель ключом замкнул в замке зажигания соответствующие контакты, якорь тягового реле под действием магнитного поля обмоток через рычаг перемещает муфту привода до зацепления шестерни с венцом маховика двигателя.

2. Основной этап - пуск двигателя.

Подвижный контакт тягового реле замыкает цепь «аккумуляторная батарея-стартер », после чего начинается работа стартера в качестве электродвигателя: его якорь через шестерню вращает коленчатый вал двигателя, обеспечивая его пуск.

3. Заключительный этап - расстыковка стартера с коленчатым валом работающего двигателя.

После пуска двигателя водитель отпускает ключ зажигания и тяговое реле под действием возвратной пружины расстыковывает коленчатый вал двигателя со стартером, возвратив шестерню в первоначальное положение (втянув в себя).

Если после пуска двигателя стартер будет продолжать работать (например, обучающийся вождению не отпустит своевременно ключ зажигания или по какой-либо другой причине), то для того, чтобы стартер не вышел из строя, в его конструкции предусмотрена специальная муфта, которая передает вращение только в одну сторону: от стартера к маховику двигателя. Муфта не позволит двигателю, набравшему значительные обороты (800-6000 мин’), вывести стартер из строя.