Двигатель на воде - будущее автопроизводства! Как сделать двигатель на воде своими руками: пошаговая инструкция.

С экранов телевизоров нам заявляют, что количество нефти стремительно уменьшается, и вскоре бензиновые машины отойдут в далёкое прошлое. Вот только это не совсем верно.

Действительно, количество разведанных запасов нефти не очень велико. В зависимости от степени потребления их может хватить на период от 50 до 200 лет. Но в этой статистике не учитываются до сих пор неразведанные места нефтедобычи.

В действительности нефти на нашей планете более чем достаточно. Другой вопрос, что сложность её добычи постоянно возрастает, а значит, растёт и цена. К тому же нельзя списывать со счетов экологический фактор. Выхлопные газы сильно загрязняют среду и с этим нужно что-то делать.

Современная наука создала множество альтернативных источников энергии вплоть до двигателя ядерного распада в ваших машинах. Но большинство из этих технологий пока что представляют собой концепты без возможности реального применения. По крайней мере, так было до недавнего времени.

С каждым годом машиностроительные компании выпускают всё больше машин, работающих на альтернативных источниках питания. Одним из самых эффективных решений в данном контексте является водородный двигатель от бренда «Тойота». Он позволяет полностью забыть про бензин, делая автомобиль экологичным и дешёвым транспортом.

Водородные двигатели

Типы водородных двигателей и их описание

Наука непрерывно развивается. Каждый день придумываются новые концепты. Но только лучшие из них воплощаются в жизнь. Сейчас существует всего два типа водородных двигателей, которые могут быть рентабельными и производительными.

Первый тип водородного двигателя работает на топливных элементах. К сожалению, водородные двигатели данного типа до сих пор имеют высокую стоимость. Дело в том, что в конструкции содержаться дорогие материалы вроде платины.

Ко второму типу относятся водородные двигатели внутреннего сгорания. Принцип работы таких устройств сильно напоминает пропановые модели. Именно поэтому их часто перенастраивают для работы под водород. К сожалению, КПД подобных устройств на порядок ниже тех, что функционируют на топливных элементах.

На данный момент тяжело сказать, какая из двух технологий по созданию водородных двигателей победит. У каждой есть свои плюсы и минусы. В любом случае работы в данном направлении не прекращаются. Поэтому, вполне возможно, что к 2030 году машину с водородным двигателем можно будет купить в любом автосалоне.

Принцип работы

Водородный двигатель работает на основе принципа электролиза. Данный процесс происходит в воде под воздействием специального катализатора. В результате выделяется гидроген. Его химическая формула следующая — ННО. Газ не обладает взрывоопасными качествами.

Важно! Внутри специальных ёмкостей газ смешивается с топливно-воздушной смесью.

В состав генератора входит электролизер и резервуар. За процесс генерации газа отвечает модулятор тока. Для обеспечения наилучших результатов в инжекторных водородных двигателях устанавливается оптимизатор. Это устройство отвечает за регулирование соотношения топливно-воздушной смеси и газа Брауна.

Характеристики катализаторов

Катализаторы, используемые для создания нужной реакции в водородном двигателе, могут быть трёх видов:

  1. Цилиндрические банки. Это самая простая конструкция, работающая на довольно примитивной системе управления. Производительность водородного двигателя, работающего с данным катализатором, не превышает 0,7 литра газа в минуту. Такие системы могут использоваться на машинах с водородным двигателем объёмом до полутора литра. Увеличение числа банок позволяет превысить данный лимит.
  2. Раздельные ячейки. Считается, что именно такой тип катализатора является наиболее эффективным. Производительность системы составляет более двух литров газа в минуту, КПД — максимальный.
  3. Открытые пластины или сухой катализатор. Данная система рассчитана на длительный срок работы. Производительность колеблется в диапазоне от одного до двух литров газа в минуту. Открытое расположение обеспечивает максимально эффективное охлаждение.

Эффективность водородных двигателей с каждым годом растёт. Сейчас начинают вводиться в эксплуатации гибридные устройства, функционирующие на водороде и бензине. В свою очередь, конструкторы не прекращают искать наиболее эффективной модели катализатора, обеспечивающей ещё большую производительность.

Водородный двигатель своими руками

Генератор

Чтобы создать эффективный водородный двигатель для автомобиля своими руками, нужно начать с генератора. Самый простой самодельный генератор — это герметичная ёмкость с жидкостью, в которую погружаются электроды. Для такого устройства достаточно источника питания в 12 В.

Штуцер устанавливается на крышке конструкции. Он отводит смесь водорода с кислородом. Собственно, это и есть основа генератора для водородного двигателя, которая подключается к ДВС.

Чтобы создать полноценную систему также понадобится дополнительный накопитель и аккумулятор. В качестве корпуса лучше всего использовать водопроводный фильтр или же можно купить специальную установку. В последней применяются цилиндрические электроды повышенной производительности.

Как видите, выделить нужный газ для реакции не так-то уж и сложно. Намного сложнее произвести его в нужном для водородного двигателя количестве. Чтоб повысить эффективность необходимо использовать электроды из меди. В крайнем случае подойдёт и нержавейка.

В ходе реакции ток должен подаваться с разной силой. Поэтому без электронного блока не обойтись. К тому же в резервуаре всегда должно быть определённое количество воды, чтобы реакция проходила в нормальных условиях. Система автоматической подпитки в водородном двигателе решает эту проблему. Интенсивность электролиза обеспечивает достаточное количество соли.

Важно! Если вода дистиллированная, электролиза не будет вовсе.

Чтобы сделать воду для водородного двигателя необходимо взять 10 литров жидкости и добавить столовую ложку гидроксида.

Устройство водородного двигателя

В первую очередь нужно позаботиться о дополнительных резервуарах и трубопроводе. Водородный двигатель нуждается в датчике уровня воды, который устанавливается в середине крышки. Это предотвратит ложное срабатывание при движении вверх-вниз. Именно он будет давать команду системе автоматической подпитки, когда это понадобится.

Особую роль играет датчик давления. Он включается на показателе в 40 psi. Как только внутреннее давление достигнет показателя в 45 psi, подкачка отключается. При превышении 50 psi сработает предохранитель.

Предохранитель водородного двигателя должен состоять из двух частей: вентиля аварийного сброса и разрывного диска. Разрывной диск активируется, когда давление достигает 60 psi, не нанося никакого вреда системе.

Для отвода тепла нужно использовать самую холодную свечу. Не подходят свечи с платиновыми наконечниками. Платина — отличный катализатор для реакции водорода и кислорода.

Важно! Уделите особое внимание созданию вентиляции картера водородного двигателя.

Электрическая часть

Важную роль в электрической схеме водородного двигателя играет таймер 555. Он выполняет роль импульсного генератора. Мало того, с его помощью можно регулировать частоту и ширину импульса.

Важно! Таймер имеет три частотных диапазона. Сопротивление резисторов в пределах 100 Ом. Подключение происходит параллельно.

В плате водородного двигателя должно быть два импульсных таймера 555. При этом первый должен иметь конденсаторы большей ёмкости. Выход с ноги 3 поступает на второй генератор. Он его собственно и включает.

Третий выход второго таймера импульсного водородного генератора подключается к резисторам на 220 и 820 Ом. Транзистор усиливает ток до нужной величины. За его защиту отвечает диод 1N4007. Это обеспечивает нормальную работу всей системы.

Итоги

Сейчас водородный двигатель уже не плод фантазии учёных, а вполне реальная разработка, которую можно сделать самостоятельно. Конечно, по характеристикам подобный агрегат будет уступать заводской модели. Но экономия для ДВС всё равно будет заметной.

Водородные двигатели не просто помогают сократить потребление бензина, но и являются полностью безопасными для окружающей среды. Именно поэтому уже в первом квартале продажи водородного автомобиля марки «Тойота» побили все рекорды в Японии.

Умельцев собирать всевозможные механизмы из подручных средств в нашей стране всегда хватало. Подтверждением этих слов выступают советские журналы большим тиражом (не будем вспоминать названия), передачи наподобие «Очумелые ручки», книги «Сделай сам», и многочисленные видео в интернете. В этой статье разберем двигатель на воде.

Определения

Все устройства, которые созданы для превращения энергии в механическую работу, называются двигателями.

Двигатель на воде - определение размытое. Под ним можно подразумевать:

  • винтовые двигатели лодочных типов (может использовать двигатель внутреннего сгорания на воде, паровой и другие);
  • двигатели на реактивной тяге (гидроциклы, БТР и опять-таки подлодки);
  • генератор, превращающий энергию воды в механическую работу (двигатель, который работает на воде);
  • паровой двигатель (двигатель, работающий на воде, из-за простоты строения рассмотрен в деталях не будет).

Паровой двигатель устроен подобным образом: в котел заправляется горючее, в цилиндре закипает вода, увесистый поршень сверху под давлением поднимается до тех пор, пока не откроется клапан цилиндра. За счет поршня приходит в движение механизм.

О винтовых двигателях

В водном транспорте преимущественно используется следующий принцип: к двигателю (паровому, электрическому, дизельному, бензиновому и, с меньшей вероятностью, газовому) присоединяют винт определенных параметров.

О двигателях на реактивной тяге

По устройству - воду пропускают через себя за счет винтов (у ракет немного другой принцип). Особенность заключается в направленной струе, за счет которой объект приходит в движение. Для наглядного представления стоит вспомнить принцип работы водяного насоса. Преимуществами подобной системы является эффективность работы при высоких оборотах и относительная бесшумность.

О водных генераторах

Если встанет вопрос «как сделать двигатель на воде?», то за счет вращения винта можно привести в движение ротор. Он, в свою очередь, вызывает в катушках проводника магнитную индукцию. Она вызывает переменный ток. Ток или напрямую приводит в движение объект, или накапливает заряд в батарее. С батареи уже идет распределение на нужды.

Принцип сборки

Разберем примерную структуру цепи, использующей электрогенератор, и прицепим к нему двигатель на реактивной тяге. Это наглядно покажет, как работает определенный элемент. Цепь будет состоять из следующих компонентов: вращающиеся лопасти для генератора переменного тока, преобразователя переменного тока в постоянный, аккумулятора, совместимого электродвигателя, системы реактивной тяги.

Для обеспечения работоспособности генератора необходимо хотя бы примерно представлять скорость вращения ротора. Отталкиваясь от скорости вращения, получаем представление о мощности, которую должен вырабатывать генератор.

Электрический асинхронный генератор переменного тока состоит из статора (неподвижной части) и ротора (вращающейся). Статор состоит из блока наложенных друг на друга листов металла диэлектрика (не проводящих ток) с вырезанными сквозными пазами, и магнитных катушек, вставляющихся в них. Катушки не должны соприкасаться с блоком. Для этого используются специальные прокладки внутри, и стрелки снаружи из изолирующего материала. За пределы пазов они выступать не должны. Также изолируются катушки друг от друга. Форма и элементы ротора могут отличаться друг от друга.

Возьмем за основу двигатели на воде своими руками с расчетом на три фазы, так как данный вид наиболее распространен. Это значит, что будет использовано три катушки одинаковых размеров. В домашних условиях при напряжении в 220 вольт постоянного тока в 19 ампер, потребуется провод с сечением 1,5 миллиметра. Работать будет при условии потребления не выше 4,1 киловатта. Стоит также учесть частоту вращения. Количество вращений в секунду измеряется в герцах. В России принята чистота 50 Герц в секунду для электроники. Провода на выходе соединяются «треугольником» или «звездой».

О физике

Ватт представляет произведение ампер на вольт. Киловатт - это 1000 ватт. Вольт равен произведению Ампер (сила тока) на Ом (сопротивление). Добавляя витки, вы увеличите мощность генератора, но и необходимую требуемую работу при вращении ротора. В данном случае рекомендуется отталкиваться от требований аккумулятора на потребление, а не на отдачу.

Разумеется, возможно сделать расчеты будущего изделия, но в целях безопасности рекомендуется поэкспериментировать с малой мощностью ручного генератора, так как без опыта с первого раза собрать полностью рабочую модель не получится. Причиной этого могут служить мелкие недочеты, неподходящие материалы и прочее, а следствием нарушения техники безопасности - чья-то жизнь. Используйте для начала аккумулятор на 12 вольт и проволоку меньшего диаметра. В качестве ротора - простой ферромагнитный сердечник (железный цилиндр подойдет). Для начала можно сделать авто двигатель на воде для какой-нибудь машинки.

С генератора переменного тока потребуется сделать цепь из трансформатора (высокого напряжения в низкое), 4 диода прямоугольником (одностороннее движение), конденсатор (для бесперебойности), резистор и стабилитрон (ограничение по верхней и нижней планке) и последним регулятор. Вся цепь подключается к накопительной батарее. От батареи непосредственно двигатель под винт. Двигатель можно аналогичный изготовить.

С двигателя для реактивного движения делается вытяжка из проводов (с гидроизоляцией) или бобина. Удлинение размещается у нижнего основания лодки. Винт прикрепляется к нему. Форма винта, углы и количество лепестков по усмотрению.

В маленьком размере получится лодка с ручной подзарядкой и соплом, что обеспечит высокую скорость. Если масштаб увеличить, то при правильном подходе получится мощный двигатель на воде, а главное, появятся навыки.

На заметку

  • В обязательном порядке используйте амперметр.
  • Сила тока зависит от потребления и варьируется в зависимости от него.
  • Проводники должны быть покрыты изоляцией и не повреждены.
  • Для вставки проводников в пазы может использоваться специальный инструмент или резиновый молоток.
  • К открытым элементам нельзя прикасаться до тех пор, пока они работают.
  • После выключения двигателя в нем остается остаточный заряд, стоит дождаться пока излишек выйдет или снять его с помощью дополнительного прибора.
  • Для удобства следует подключить разрыватели цепи, чтобы легко можно было отключать двигатель на воде.
  • Возможно, стоит подумать о системе охлаждения ;
  • Важным элементом может стать реле для контроля напряжения и устройство защитного отключения.

Умельцев собирать всевозможные механизмы из подручных средств в нашей стране всегда хватало. Подтверждением этих слов выступают советские журналы большим тиражом (не будем вспоминать названия), передачи наподобие «Очумелые ручки», книги «Сделай сам», и многочисленные видео в интернете. В этой статье разберем двигатель на воде.

Определения

Все устройства, которые созданы для превращения энергии в механическую работу, называются двигателями.

Двигатель на воде - определение размытое. Под ним можно подразумевать:

  • винтовые двигатели лодочных типов (может использовать двигатель внутреннего сгорания на воде, паровой и другие);
  • двигатели на реактивной тяге (гидроциклы, БТР и опять-таки подлодки);
  • генератор, превращающий энергию воды в механическую работу (двигатель, который работает на воде);
  • паровой двигатель (двигатель, работающий на воде, из-за простоты строения рассмотрен в деталях не будет).

Паровой двигатель устроен подобным образом: в котел заправляется горючее, в цилиндре закипает вода, увесистый поршень сверху под давлением поднимается до тех пор, пока не откроется клапан цилиндра. За счет поршня приходит в движение механизм.

О винтовых двигателях

В водном транспорте преимущественно используется следующий принцип: к двигателю (паровому, электрическому, дизельному, бензиновому и, с меньшей вероятностью, газовому) присоединяют винт определенных параметров.

О двигателях на реактивной тяге

По устройству - воду пропускают через себя за счет винтов (у ракет немного другой принцип). Особенность заключается в направленной струе, за счет которой объект приходит в движение. Для наглядного представления стоит вспомнить принцип работы водяного насоса. Преимуществами подобной системы является эффективность работы при высоких оборотах и относительная бесшумность.

О водных генераторах

Если встанет вопрос «как сделать двигатель на воде?», то за счет вращения винта можно привести в движение ротор. Он, в свою очередь, вызывает в катушках проводника магнитную индукцию. Она вызывает переменный ток. Ток или напрямую приводит в движение объект, или накапливает заряд в батарее. С батареи уже идет распределение на нужды.

Принцип сборки

Разберем примерную структуру цепи, использующей электрогенератор, и прицепим к нему двигатель на реактивной тяге. Это наглядно покажет, как работает определенный элемент. Цепь будет состоять из следующих компонентов: вращающиеся лопасти для генератора переменного тока, преобразователя переменного тока в постоянный, аккумулятора, совместимого электродвигателя, системы реактивной тяги.

Для обеспечения работоспособности генератора необходимо хотя бы примерно представлять скорость вращения ротора. Отталкиваясь от скорости вращения, получаем представление о мощности, которую должен вырабатывать генератор.

Электрический асинхронный генератор переменного тока состоит из статора (неподвижной части) и ротора (вращающейся). Статор состоит из блока наложенных друг на друга листов металла диэлектрика (не проводящих ток) с вырезанными сквозными пазами, и магнитных катушек, вставляющихся в них. Катушки не должны соприкасаться с блоком. Для этого используются специальные прокладки внутри, и стрелки снаружи из изолирующего материала. За пределы пазов они выступать не должны. Также изолируются катушки друг от друга. Форма и элементы ротора могут отличаться друг от друга.

Возьмем за основу двигатели на воде своими руками с расчетом на три фазы, так как данный вид наиболее распространен. Это значит, что будет использовано три катушки одинаковых размеров. В домашних условиях при напряжении в 220 вольт постоянного тока в 19 ампер, потребуется провод с сечением 1,5 миллиметра. Работать будет при условии потребления не выше 4,1 киловатта. Стоит также учесть частоту вращения. Количество вращений в секунду измеряется в герцах. В России принята чистота 50 Герц в секунду для электроники. Провода на выходе соединяются «треугольником» или «звездой».

О физике

Ватт представляет произведение ампер на вольт. Киловатт - это 1000 ватт. Вольт равен произведению Ампер (сила тока) на Ом (сопротивление). Добавляя витки, вы увеличите мощность генератора, но и необходимую требуемую работу при вращении ротора. В данном случае рекомендуется отталкиваться от требований аккумулятора на потребление, а не на отдачу.

Разумеется, возможно сделать расчеты будущего изделия, но в целях безопасности рекомендуется поэкспериментировать с малой мощностью ручного генератора, так как без опыта с первого раза собрать полностью рабочую модель не получится. Причиной этого могут служить мелкие недочеты, неподходящие материалы и прочее, а следствием нарушения техники безопасности - чья-то жизнь. Используйте для начала аккумулятор на 12 вольт и проволоку меньшего диаметра. В качестве ротора - простой ферромагнитный сердечник (железный цилиндр подойдет). Для начала можно сделать авто двигатель на воде для какой-нибудь машинки.

С генератора переменного тока потребуется сделать цепь из трансформатора (высокого напряжения в низкое), 4 диода прямоугольником (одностороннее движение), конденсатор (для бесперебойности), резистор и стабилитрон (ограничение по верхней и нижней планке) и последним регулятор. Вся цепь подключается к накопительной батарее. От батареи непосредственно двигатель под винт. Двигатель можно аналогичный изготовить.

С двигателя для реактивного движения делается вытяжка из проводов (с гидроизоляцией) или бобина. Удлинение размещается у нижнего основания лодки. Винт прикрепляется к нему. Форма винта, углы и количество лепестков по усмотрению.

В маленьком размере получится лодка с ручной подзарядкой и соплом, что обеспечит высокую скорость. Если масштаб увеличить, то при правильном подходе получится мощный двигатель на воде, а главное, появятся навыки.

На заметку

  • В обязательном порядке используйте амперметр.
  • Сила тока зависит от потребления и варьируется в зависимости от него.
  • Проводники должны быть покрыты изоляцией и не повреждены.
  • Для вставки проводников в пазы может использоваться специальный инструмент или резиновый молоток.
  • К открытым элементам нельзя прикасаться до тех пор, пока они работают.
  • После выключения двигателя в нем остается остаточный заряд, стоит дождаться пока излишек выйдет или снять его с помощью дополнительного прибора.
  • Для удобства следует подключить разрыватели цепи, чтобы легко можно было отключать двигатель на воде.
  • Возможно, стоит подумать о системе охлаждения ;
  • Важным элементом может стать реле для контроля напряжения и устройство защитного отключения.

Сегодня мы зальём несколько капель воды в бензобак и утроим пробег автомобиля. Добудем водород из обычной воды методом электролиза, и этого хватит для обслуживания дома. А чашка морской воды, которой на Земле видимо-невидимо, решит мировой энергетический кризис. Мы обсуждаем сегодня возможность использования воды в виде альтернативного топлива.

Если вы следите за новостями, то вероятно слышали о широко нашумевших случаях извлечения энергии из воды. На вашу почту, вероятно, приходили сообщения о коварном правительстве и нефтяных компаниях, которые скрывают правду о двигателе, работающем на воде. Попробуйте погуглить фразу «двигатель на воде», и вы обнаружите массу примеров: это чисто, это бесплатно, это не выделяет углекислый газ, но наука не развивает двигатель, работающий на воде вследствие заговора молчания.

Автору приходилось слышать об устройстве гидролиза воды, которое работает от автомобильного аккумулятора. Получаемый газ добавляется в цилиндры двигателя, существенно снижая потребность в бензине и значительно повышая мощность. Так как генератор автомобиля вырабатывает 12 Вольт постоянно, источник энергии из воды неиссякаем. Fox News посвятили целую передачу, в которой двое приятелей заправляли армейский Хаммер одной только водой. Звучит впечатляюще, правда?

Не столь давно новости выдали следующую историю об энергии из воды. Пенсионер с инженерным опытом, занимаясь дома разработкой средства от рака, обнаружил, что морская вода электризованная радиоволнами, может гореть. Телерепортёры радостно подхватили новость и подняли шум. Это неудивительно, ведь морской воды полно, сжигание её не выделяет вредных веществ, а тепло от реакции можно использовать для получения электричества или многих других целей.

Можно ли использовать воду в виде топлива? Может ли решение находиться прямо под нашим носом? Или перефразируем вопрос: Могут ли столь громкие заявления не гарантировать здорового скептицизма?

Короткий ответ да, заявления о двигателях на воде гарантируют скептицизм и не дают решения проблем, о которых задумывались ранее. Использование воды в виде топлива потребляет больше энергии, чем вырабатывает. Телевизионные репортёры трубят о двигателях на воде, не анализируя научную сторону сенсации.

Давайте начнём с морской воды. Джон Канзиус (John Kanzius) носился с идеей атаковать раковые клетки радиоволнами, нацеливая металлические пластины. Во время экспериментов была замечена конденсация паров воды в пробирке, что привело к попыткам опреснять морскую воду. Это сработало. Интенсивные радиоволны приводили к электролизу воды, высвобождая водород. В ходе реакции водород может поддерживать постоянное пламя. Горение, в свою очередь, можно использовать для выработки электроэнергии. Раструм Рой (Rustum Roy), химик Университета Пенсильвании, назвал электролиз радиоволнами «наиболее значительным открытием в воде за последние 100 лет». Затраты электроэнергии для генерации радиоволн значительно превышают энергию полученного пламени, но кого это интересовало? Каким-то образом новость попала в прессу под нужным углом зрения, полностью игнорируя важнейшие вопросы получения энергии. СМИ вырвали из контекста нужную часть сказанного Роем, что полностью исказило его высказывание. Проще говоря, получение пламени Канзиуса требовало невероятных затрат электроэнергии. Вода никак не является топливом. В данном случае вода явилась элементом преобразования радиоволн в тепло. Можно было бы сказать: «Хорошо, пусть это неэффективно сейчас. Но можно работать в таком направлении и развивать тему двигателя работающего на воде. Кто может предсказать потенциал?» Если бы! Термодинамика неумолима. Затраты электроэнергии для получения радиоволн всегда будут превышать энергию пламени. Кстати, Джон Канзиус продолжает искать методы борьбы с раковыми клетками.

А как насчёт автомобильных двигателей? Используя энергию генератора, получать водород из воды, добавлять его в топливо, существенно поднимая эффективность. Наполнять бак водой одновременно с заправкой бензином, используя воду как топливо. Правильно? Нет, не правильно. Сварщик засмеял бы подобный вопрос без долгих раздумий. Кислородно – водородная горелка известна давно, она используется для сварки металлов. Основной недостаток окисления водорода это высокая взрывоопасность, вспомните взрыв при запуске «Челенджера» в 1986 году. Правда автомобилестроители не рассматривают такой вид топлива по другой причине, затраты на гидролиз воды значительно превышают энергию пламени. Но ведь сварка не самый лучший образец экономичности, да и горелка соответствует требованиям, давая температуру более 2000°C. Превышение затрат энергии на гидролиз воды в автомобиле потребует более мощную систему электроснабжения и, соответственно, более мощный двигатель. В любом случае, энергетический баланс системы с «двигателем на воде» не будет положительным.

К сожалению, вода в виде топлива не выдерживает критики. Относитесь скептически к подобным заявлением. Инженеры лучше знают физику, чем телерепортёры.

Теперь самое время сказать, что некоторые истории о двигателе на воде почти правдивы. Брюс Кровер (Bruce Crower), любитель — рационализатор гоночных двигателей из Южной Калифорнии, использует энергию пара в двигателе внутреннего сгорания. К обычному четырёхцилиндровому двигателю он приладил два дополнительных цилиндра. Зная, что ДВС впустую выбрасывает много тепловой энергии, Кровер решил задействовать её в дополнительных цилиндрах. Для этого в выпускной тракт подаётся немного воды, которая, превращаясь в пар, приводит в действие пятый цилиндр. Пара дополнительных цилиндров расположена оппозитно, назначение шестого цилиндра вытолкнуть отработку в атмосферу. В отличие от других, рассмотренных случаев, Двигатель Кровера работает. Брюс Кровер прекрасно понимает, что вода не может быть топливом. Он превращает тепло в кинетическую энергию посредством водяного пара. Что интересно, такой двигатель не требует радиатора и системы охлаждения в привычном для нас исполнении.

Итак, будьте скептичны к громким заявлениям о двигателях на водяном топливе. Скорее всего, корреспонденты не захотят портить сенсационность дотошным рассмотрением физики процесса. Требуйте доказательства и обоснование. Будьте скептичны.

Перевод Владимир Максименко 2013-2014

Устройство предназначено для привода различных машин и механизмов. Двигатель содержит питательную емкость воды, гильзы, поршни-понтоны, перемещающиеся по направляющим стержням, впускные и выпускные клапаны, распределительный вал с кулачками, связанный с коленчатым валом. Поршни-понтоны выполнены полыми и снабжены клапанами перетока жидкости, обеспечивающими сообщение объема поршня с полостью цилиндра в нижнем и верхнем положениях поршня-понтона. Гильзы расположены ниже коленчатого вала, а между гильзой и поршнем-понтоном уплотнение отсутствует. Изобретение улучшает экономичность работы двигателя. 8 ил.

Изобретение относится к двигателестроению и может быть использовано в различных отраслях народного хозяйства, может быть использован в качестве источника энергоснабжения изолированных, удаленных от централизованного энергоснабжения объектов, в расположении которых имеются условия для работы двигателя. Известен гидростатический двигатель /1/, обеспечивающий получение энергии с использованием закона Архимеда за счет двигателя, образованного бесконечным рукавом, установленным на шкивы-барабаны, расположенные на параллельных осях. Известен гидравлический трансформатор /2/, содержащий две пары поршневых камер, имеющих соответственно верхнее и нижнее их попарное расположение с установленными в них, с возможностью возвратно-поступательного перемещения, поршневыми группами, связанными между собой механической связью и приводимыми в движение под действием давления рабочего тела, причем все поршневые камеры в устройстве снабжены входными и выходными каналами, верхние поршневые камеры имеют дополнительный входной канал для равномерного ввода рабочего тела (гидравлического потока) с относительно большим входом (и, соответственно, с большой мощностью), которые установлены вместе с емкостями выше самих камер, а нижние поршневые камеры снабжены упорами в верхней своей части для образования зазора между поршнем и упорной штангой, входящими в состав поршневой группы, необходимого для избежания потерь в развиваемой мощности при работе самого устройства. Наиболее близким аналогом является водяной двигатель /1/, содержащий питательную емкость, коленчатый вал с маховиком и опорами коренных подшипников, поршни-понтоны, гильзы цилиндров, расположенные ниже коленчатого вала, подводящие и отводящие трубы, направляющий стержень с направляющей втулкой и кронштейном, при этом между гильзой и поршнем-понтоном имеется зазор без уплотнения. Рабочий ход в двигателе совершается за счет подъемной силы Архимеда при движении поршня вверх. Недостатком известного водяного двигателя является неэкономичность его работы. Объясняется это тем, что при работе двигателя создается усилие на поршень-понтон только при его движении вверх за счет силы Архимеда. Вращающий момент на коленчатом валу действует при его повороте на 180 o и соответствует периоду действия усилия на поршень-понтон (только при его движении вверх). При движении поршня-понтона вниз совершается холостой ход двигателя. При этом при истечении жидкости из цилиндра уровень ее понижается, а "плавающий" поршень-понтон не подвержен усилию со стороны жидкости. Вращающий момент коленчатому валу за счет усилия поршня при движении его вниз не передается. Таким образом, при истечении жидкости из цилиндра она не совершает полезную работу. Другим недостатком двигателя, принятого за прототип, является низкая надежность энергоснабжения при его использовании в качестве источника энергии. Объясняется это тем, что для работы известного двигателя необходим источник воды, расположенный выше поверхности земли, как правило, заполняемый посредством дополнительного источника энергии. Такие источники воды не являются возобновляемыми и не могут работать бесконечно долго, а работают только в периоды, когда имеется запас воды. Это и снижает надежность энергоснабжения при использовании известного двигателя в качестве источника энергии (механической, а при подключении к коленчатому валу через трансмиссионную систему электрогенератора - электрической). Задачей предлагаемого изобретения является создание экономичного водяного двигателя, работающего за счет потока с циклическим применением подъемной силы Архимеда и гравитационной силы без использования минерального топлива, а также с повышенной надежностью энергоснабжения при использовании двигателя в качестве источника энергии. Поставленная задача достигается тем, что водяной двигатель содержит питательную емкость, коленчатый вал с маховиком и опорами коренных подшипников, шатуны, поршень-понтон, рабочие камеры, например гильзы цилиндров, расположенные ниже коленчатого вала, подводящие и отводящие трубы, впускной и выпускной клапаны, распределительное устройство, например распределительный вал с впускным и выпускным кулачками, взаимодействующими с электрическими контактами управления выпускным и впускными клапанами. Новым является то, что поршень-понтон выполнен полым и снабжен клапанами перетока, срабатывающими в его нижнем и верхнем положениях, а детали, расположенные ниже коленчатого вала, установлены в горной выработке, например буровой скважине, пересекающей проницаемый, поглощающий интервал, с установленными в ней двумя соосными колоннами обсадных труб большего и меньшего диаметра, при этом питательная емкость образована кольцевым объемом между обсадными колоннами и имеющим сообщение с возобновляемым источником воды, например с подземным водоносным горизонтом, а рабочая камера образована объемом обсадной колонны меньшего диаметра, в которой установлен впускной клапан, выпускной клапан установлен в скважине ниже рабочей камеры, при этом ниже обсадных колонн расположен пересекаемый скважиной проницаемый поглощающий интервал. На фиг.1, 2 и 3 в качестве примера схематично показано устройство и принцип действия предлагаемого одноцилиндрического водяного двигателя. На фиг. 4, 5, 6, 7, 8 приведены временные диаграммы перемещения поршня-понтона и работы клапанов. В том числе на фиг.1 дано положение коленчатого вала, поршня-понтона, воды впускного и выпускного клапанов двигателя, клапанов перетока поршня-понтона, кулачков распределительного вала при рабочем ходе поршня-понтона "вниз", на фиг.2 - положение тех же деталей в положении поршня-понтона в нижней мертвой точке (НМТ). На фиг.3 - положение тех же деталей при совершении рабочего хода поршня-понтона "вверх" в положении в верхней мертвой точке (ВМТ). На фиг.4 приведен график зависимости перемещения поршня Н от времени t H=f 1 (t) при работе двигателя. На фиг.5-8 приведены соответственно временные диаграммы работы клапанов при работе водяного двигателя: впускного клапана - Sвп.кл.дв.=f 2 (t), фиг.5; выпускного клапана двигателя S вып.кл.дв.=f 3 (t), фиг.6; впускного клапана перетока поршня S вп.кл.п.=f 4 (t), фиг.7; выпускного клапана перетока поршня-понтона S вып.кл.п.=f 5 (t), фиг.8. На диаграммах обозначениям S, равным 1 и 0, соответствуют открытое и закрытое положения клапанов - соответственно. Водяной двигатель содержит: 1 - питательную емкость для воды; 2 - впускные клапаны, например, электромагнитные с контактами К1, 3 - рабочую камеру; 4 - гильзу; 5 - поршень-понтон; 6 - направляющий стержень с направляющей втулкой 7; 8 - кронштейн; 9 - шатун; 10 - кривошип коленчатого вала; 11 - маховик; 12 - кулачок распределительного механизма; 13 - контакт впускного электромагнитного клапана; 14 - контакт выпускного электромагнитного клапана; 15 - выпускной клапан двигателя (в нормальном обесточенном состоянии клапан открыт); 16 - проницаемый поглощающий интервал; 17 - скважина; 18 - тумблер включения; 19 - канал сообщения с атмосферой; 20 - впускные клапаны перетока поршня-понтона с пружинами 21; 22 - обратные клапаны впуска в поршень-понтон; 23 - упоры впускных клапанов перетока поршня-понтона; 24 - выпускной клапан перетока поршня-понтона с пружиной 25; 26 -обратный клапан выпуска из поршня-понтона; 27 - упор выпускного клапана; 28 - обсадная колонна меньшего диаметра; 29 - обсадная колонна большего диаметра; 30 - водоносный интервал; 31 - отверстия в обсадной колонне большего диаметра; 32 - фильтр. Водяной двигатель работает следующим образом. В остановленном с использованием тумблера 18 двигателе состояние, предшествующее включению, характеризуется закрытым положением впускных клапанов 2, открытым положением выпускного клапана 15 и освобожденной от воды полости поршня-понтона 5. При этом, в общем случае, положение поршня-понтона 5 в гильзе 4 может быть различным. Для включения двигателя в работу "вручную" или с использованием пускового устройства (условно не показано) вращением маховика 11 устанавливается такое положение коленчатого вала 10 и кулачков 12, при котором замыкаются контакты 13 и 14 управления впускным 2 и выпускным 15 электромагнитными клапанами, включается тумблер 18. При этом через контакты 13 и 14 на впускные 2 и выпускной 15 клапаны подается напряжение, они срабатывают, при этом впускные клапаны 2 открываются, а выпускной клапан 15 закрывается. При этом питательная емкость 1 сообщается с рабочей камерой 3. Напор "Н" превышает положение поршня-понтона 5 в верхней мертвой точке на величину потерь напора при движении воды через впускные клапаны 2, в рабочей камере 3 в кольцевом канале между гильзой 4 и поршнем-понтоном 5. Вода из питательной емкости через впускные клапаны 2 перетекает в рабочую камеру 3. Поршень-понтон 5 размещен на направляющем стержне 6 и перемещается в направляющей втулке 7. Кронштейн 8 при помощи шарнирной пары соединен с шатуном 9, а последний с кривошипом коленчатого вала 10. При помощи привода приводится в работу вал распределительного устройства с установленным на нем кулачком 12. Рабочий ход поршня-понтона вверх осуществляется под действием силы Архимеда. При этом обладающий плавучестью поршень-понтон, погруженный в воду в цилиндре, перемещается вверх с перемещением вверх уровня воды в цилиндре. Рабочий ход поршня-понтона вниз осуществляется под действием гравитационной силы. При этом в верхнем положении поршня-понтона его полость наполняется перетекаемой из зазора между поршнем и гильзой цилиндра водой. Утяжеленный водой поршень-понтон движется в освобожденном от воды цилиндре (в воздухе) под действие силы тяжести. Таким образом, усилие на поршень-понтон воздействует как при его движении вверх (сила Архимеда), так и при его движении вниз (сила тяжести). Силы эти по абсолютной величине одного порядка и создают постоянный вращающий момент на коленчатом валу. В общем виде сила Архимеда Р A определяется исходя из следующего равенства: Р A =qw, (1) где - плотность жидкости, кг/м 3 ; q - ускорение силы тяжести, м/с 2 ; w - объем рассматриваемого тела, погруженного в жидкость, м 3 ; Различаются три случая: P A G - тело всплывает на поверхность жидкости; Р A =G - тело плавает в погруженном состоянии. Для предлагаемого водяного двигателя при движении поршня вверх применен случай, когда P A >G. При движении поршня вниз гравитационная сила определяется силой тяжести поршня, заполненного водой, в воздухе в соответствии с соотношением:
R G =mg,
где m - масса поршня заполненного водой, кг;
g - ускорение свободного падения, м/с 2 . При запуске водяного двигателя в работу рабочая камера 3 заполняется водой. Рабочий ход поршня-понтона вверх (фиг.3) обеспечивается быстрым заполнением полости цилиндра 4 рабочей камеры 3 водой до верхнего уровня поршня 5, в том числе кольцевого зазора между поршнем и гильзой цилиндра. При этом кулачком 12 распределительного вала замкнуты контакты 13, напряжение подается на впускные клапаны 2 двигателя, они открыты, а выпускной клапан 15 закрыт. В результате образования силы Архимеда под ее действием поршень-понтон 5 перемещается вверх, преобразуя за счет шатуна 9 его поступательное движение во вращательное движение коленчатого вала. Поршень-понтон приближается к верхней мертвой точке (ВМТ). Для обеспечения последующего рабочего хода поршня-понтона вниз в конце его рабочего хода вверх (в окрестности ВМТ) происходит заполнение полости поршня-понтона водой из зазора, образованного стенками поршня и гильзой цилиндра. Впускной клапан 2 двигателя находится в открытом состоянии в течение промежутка времени t 2 -t 1 (фиг.5). В момент времени t 2 поршень-понтон приближается к ВМТ (фиг.4), при этом подпружиненные 21 толкатели впускных клапанов перетока 20 поршня 5 прижимаются к упорам 23, и клапаны перетока 20 открываются (время t 2 , фиг.7). Из зазора между поршнем-понтоном и гильзой цилиндра вода через открытый клапан 20 перетекает в полость поршня-понтона за счет перепада уровней в сообщающихся сосудах. При этом обратные клапаны 22, изготовленные из материала с плотностью, несколько большей плотности воды, под действием потока воды через клапаны перемещаются по стержню толкателя. В последующем они предупреждают истечение воды из полости поршня-понтона при нештатных ситуациях, например когда поршень еще находится в ВМТ (клапан 20 открыт), а уровень воды в зазоре или цилиндре находится ниже уровня воды в поршне. В момент времени t 2 (фиг.5) кулачок 12 размыкает контактную группу 13, впускные электромагнитные клапаны 2 обесточиваются и закрываются. Спустя промежуток времени t 3 -t 2 (фиг.7), достаточный для полного перетока воды в полость поршня-понтона (коленчатый вал при этом проворачивается при положении поршня-понтона в окрестности ВМТ за счет момента инерции маховика), последний начинает движение вниз (фиг.4). В момент времени t 3 концы подпружиненных 21 толкателей впускных клапанов перетока 20 поршня 5 "отходят" от упоров 23 и клапаны 20 закрываются (фиг.7). Одновременно с этим (t 3 на фиг.6) кулачком 12 размыкается группа контактов 14, обесточивается и открывается выпускной клапан 15 двигателя (фиг.1). Начинает осуществляться рабочий ход поршня вниз. Вода из полости цилиндра 4 быстро сливается в скважину 17, а из нее - в проницаемый поглощающий интервал 16 с расходом, при котором уровень воды в полости цилиндра перемещается вниз с опережением положения дна поршня-понтона. При этом поршень-понтон 5 движется вниз под действием силы тяжести поршня, заполненного водой, находясь в воздухе. За счет шатуна 9 поступательное движение поршня-понтона преобразуется во вращательное движение коленчатого вала. Поршень приближается к нижней мертвой точке НМТ (фиг. 2), при этом в момент времени t 4 (фиг.4 и 6) кулачком 12 распредвала замыкается контактная группа 14 и закрывается выпускной клапан 15. Впускные клапаны 2 пока так же закрыты. При дальнейшем движении поршня-понтона вниз при его "подходе" к НМТ, для обеспечения последующего рабочего хода поршня-понтона вверх под действием силы Архимеда, происходит освобождение полости поршня-понтона от воды путем истечения ее в полость цилиндра (рабочей камеры). В момент времени t 5 (фиг.8) подпружиненный толкатель выпускного клапана перетока 24 поршня 5 прижимается к упору 27 и клапан перетока 24 открывается (фиг. 2). Из полости поршня-понтона 5 через канал клапана перетока 24 вода вытекает в полость цилиндра. При этом обратный клапан 26, изготовленный из материала с плотностью, несколько меньшей плотности воды, и установленный с возможностью свободного перемещения по стержню толкателя выпускного клапана перетока 24, предупреждает поступление воды в полость поршня в нештатной ситуации, например когда поршень-понтон находится в НМТ и клапан 24 открыт, а уровень жидкости в цилиндре при его повышении находится выше дна поршня. Спустя промежуток времени t 6 -t 5 (фиг.8), достаточный для истечения воды из полости поршня-понтона (при этом коленчатый вал проворачивается на некоторый угол за счет момента инерции маховика), последний начинает движение вверх. При t 6 стержень выпускного клапана перетока поршня "отходит" от упора 27 и клапан 24 закрывается (t 6 , (фиг.8). Одновременно открываются впускные клапаны 2 двигателя в момент t 6 (фиг.5), начинается рабочий ход поршня-понтона вверх, и цикл повторяется. Остановку двигателя производят выключением тумблера 18. При этом обесточиваются клапаны, как следствие впускные клапаны 2 закрываются, а выпускной клапан 15 открывается и двигатель останавливается. Пополнение питательной емкости 1 водой в процессе работы двигателя осуществляется из водоносного горизонта 30. Под действием постоянного гидростатического давления, действующего в этом водоносном горизонте, при понижения уровня в питательной емкости 1 в процессе работы двигателя вода из водоносного горизонта 30 поступает в нее через водяной фильтр 32. Фильтр представляет собой, как правило, сетку, устанавливаемую снаружи перфорированного отверстиями 31 обсадной колонны 29 большего диаметра. При соблюдении условия, когда расход воды при работе двигателя не превышает естественного восполнения, истощения запасов подземных вод в данном водоносном горизонте не происходит, его гидростатическое давление сохраняется, и двигатель может работать бесконечно долго. Возможны и другие варианты питания скважинного двигателя водой, например когда питательная емкость, образованная кольцевым объемом соосных обсадных колонн, имеет сообщение с другими вышерасположенными естественными водоемами - рекой, озером - или искусственными - отстойники, очистные сооружения и др. Возможна реализация многоцилиндрового водяного двигателя, при этом должны быть пробурены несколько буровых скважин. Преимуществом предлагаемого нами технического решения по сравнению с водяным двигателем, принятым в качестве прототипа является более высокая экономичность работы, характеризуемая меньшим удельным расходом воды (расход воды - на выполнение единицы работы). Удельный расход в предлагаемом двигателе меньше за счет того, что при одном расходе воды при совершении работы в одном цикле хода поршня выполняемая им работа увеличивается за счет совершения дополнительной полезной работы при движении поршня вниз. Применение предлагаемого водяного двигателя позволяет расширить номенклатуру средств "малой" энергетики, использующих нетрадиционные, в первую очередь возобновляемые ресурсы - подземные воды в естественных условиях их существования. При этом достигается эффект энергосбережения в сравнении с применением традиционных источников энергии и схем энергоснабжения. Также преимуществом двигателя при его использовании в качестве источника электроэнергии в сравнении с речными мини-ГЭС является возможность эксплуатировать круглогодично в районах с резкоконтинентальным климатом, в частности при низких температурах, при которых реки замерзают, так как используемое в нем рабочее тело - подземная вода - не замерзает. Источники информации
1. Заявка РФ 93018233, F 03 B 17/04, 1993 г. 2. Заявка РФ 98122451, F 03 B 17/02, 1998 г. 3. Патент РФ 2140562, F 03 1/02; F 01 B 29/08, 1997 - прототип.