Проверь себя — ошибки начинающих мотоциклистов. Как правильно проходить повороты на мотоцикле

Задача по физике - 3505

2017-05-27
Мотоциклист движется по горизонтальной плоскости, описывая окружность радиуса $R = 90 м$ (рис.); коэффициент трения колес о почву $k = 0,4$. На какой угол d от вертикали должен отклониться мотоциклист при скорости $v_{1} = 15 м/с$? С какой максимальной скоростью может он ехать по заданной окружности?


Решение:

Будем рассматривать мотоциклиста и мотоцикл как единое твердое тело. На мотоциклиста при его движении действуют: сила тяжести; сила нормальной реакции; сила тяги двигателя; сила трения, направленная по касательной к траектории; сила трения, направленная к центру окружности. Поскольку при движении по окружности радиального перемещения у мотоциклиста нет, последняя сила - сила трения покоя.

Если мотоциклист движется с постоянной скоростью, то сила тяги двигателя и сила трения, направленные по касательной к траектории, взаимно компенсируют друг друга. Сила тяжести приложена к центру масс, сила нормальной реакции и радиальная сила трения покоя $\vec{f}_{тр}$ приложены к нижней точке каждого из колес и создают вращающий момент относительно воображаемой горизонтальной оси, проходящей через центр масс мотоциклиста. Ось эта вместе с центром масс движется относительно Земли по криволинейной траектории (окружности) и обладает нормальным ускорением. Следовательно, система отсчета, связанная с центром масс мотоциклиста, неинерциальна, и в ней на мотоциклиста, помимо всех перечисленных сил, действует еще центробежная сила инерции

$\vec{F}_{цб} = \sum \vec{F}_{цбi} = - \sum m_{i} \vec{a}_{ni} = \sum m_{i} \omega^{2} \vec{r}_{i}$,

где $m_{i}$ - масса каждой материальной точки; $\vec{a}_{ni}$ - ее нормальное ускорение, направленное к центру окружности; $\vec{r}_{i}$ - ее радиус-вектор, проведенный из центра окружности.

Размеры мотоциклиста малы по сравнению с радиусом его траектории, поэтому можно считать, что радиусы, описываемые каждой материальной точкой окружности, одинаковы, т. е. $r_{i} = R$, следовательно, одинаковы и линейные скорости всех точек. Тогда

$v_{i} = \omega R, F_{цб} = m \omega^{2} R$.

В этом случае центробежная сила инерции приложена в центре масс (как и сила тяжести) и не создает вращающего момента относительно рассматриваемой оси. Условие равновесия мотоциклиста сводится к тому, что сумма моментов сил трения $\vec{f}_{тр}$ и нормальной реакции $\vec{N}$ относительно горизонтальной оси, проходящей через центр масс, равна нулю:

$\vec{M}_{тр} + \vec{M}_{N} = 0$. (1)

Если размеры мотоциклиста сравнимы с радиусом $R$, то центробежные силы инерции, действующие на отдельные точки мотоциклиста, тем больше, чем больше радиус г, описываемой окружности. В этом случае точка приложения результирующей $\vec{F}_{цб}$ будет расположена ниже центра масс и вращающий момент относительно рассматриваемой оси окажется отличным от нуля. Тогда условие равновесия (1) несправедливо.

Уравнение (1) позволит найти угол $\alpha$ отклонения мотоциклиста от вертикали, так как моменты обеих сил [см. (1)] зависят от этого угла.

В рассматриваемой неинерциальной системе мотоциклист неподвижен. Следовательно, сумма всех сил, действующих на мотоциклиста, равна нулю:

$m \vec{g} + \vec{F}_{цб} + \vec{f}_{тр} + \vec{N} = 0$. (2)

Поскольку центробежная сила инерции зависит от угловой скорости движения, уравнение (2) позволит найти ее возможные значения.

Моменты сил трения и нормальной реакции будут скомпенсированы, т. е. равенство (1) выполняется, если результирующая этих сил проходит через центр масс, т. е. если

$rg \alpha = f_{тр}/N$. (3)

Равенство (2), записанное для проекций на оси: горизонтальной, направленной к центру описываемой окружности, и вертикальной, - примет вид

$f_{тр} - F_{цб} = 0$, (4)
$N - mg = 0$. (5)

Из равенства (4) найдем

$f_{тр} = m \omega^{2}R = mv^{2}/R$. (6)

Подставим выражения (5) и (6) в (3), учитывая, что $v = v_{1}$:

$tg \alpha = v_{1}^{2}/ (gR) = 0,255; \alpha = 14^{ \circ}$.

Как уже отмечалось, $f_{тр}$ есть сила трения покоя, следовательно, $f_{тр} \leq kN = kmg$ и равенство (4) можно записать в виде

$F_{цб} = f_{тр} \leq kmg$ или $mv^{2}/R \leq kmg$.

Окончательно

$v_{max} = \sqrt{kgR} = 19 м/с$.

Как мы уже не раз видели, для того чтобы тело двигалось по окружности, необходимо, чтобы сила, приложенная к

нему, была направлена к центру окружности. Если на тело действует несколько сил, то к центру окружности должна быть направлена равнодействующая этих сил.

В качестве примера рассмотрим движение железнодорожного вагона на закруглении горизонтального пути (рис. 144).

Пока поезд движется по прямолинейному участку пути с постоянной скоростью на любой вагон, конечно, действует сила тяжести, но она уравновешивается направленной вверх силой упругости рельсов. Что же касается силы трения, то она уравновешивается силой тяги локомотива. Но вот вагон дошел до закругления пути. В этом месте он повернет и начнет двигаться по дуге окружности. Какая же сила заставляет вагон изменять свою скорость по направлению, т. е. двигаться с ускорением? Этой силой является сила упругости (сила реакции), действующая на колеса вагона со стороны рельса.

Колеса железнодорожных вагонов имеют так называемую реборду, соприкасающуюся с рельсами не сверху, а сбоку (рис. 145). Пока вагон движется по прямолинейному участку пути, реборда особой роли не играет и деформируется лишь та часть колеса, которая прилегает к рельсу сверху. Пройдя точку А (рис. 146), колесо, продолжая свое движение в прежнем направлении, действует на рельс ребордой и деформирует его сбоку-рельс выгибается наружу (деформируется, конечно, и сама реборда). При этом возникает сила упругости направленная перпендикулярно боковой поверхности рельса.

Эта сила и заставляет вагон двигаться по окружности. Если бы колеса вагона не имели реборд, такая сила не могла бы возникнуть и вагон непременно сошел бы с рельсов.

Ускорение вагона, движущегося со скоростью по закруглению радиусом равно . Поэтому сила упругости

действующая на реборду и вызывающая это ускорение, по второму закону Ньютона должна быть равна:

где - масса вагона.

Деформация рельса из-за действия реборд достигает как раз такой величины, при которой сила упругости вызванная этой деформацией, сообщает вагону ускорение Деформация эта очень мала и на глаз незаметна.

Часто для уменьшения сил давления на боковые поверхности реборды и рельса и, стало быть, уменьшения их износа полотно железной дороги на закруглениях делают слегка наклонным в сторону центра закругления (рис. 147). В этом случае сила, направленная к центру, возникает также из-за того, что равнодействующая силы тяжести и силы упругости (реакции рельсов) перпендикулярной верхним поверхностям рельсов, тоже направлена к центру. Это, конечно, «облегчает» поворот в том смысле, что уменьшается сила упругости действующая со стороны рельса на реборду. Действительно, теперь то же центростремительное ускорение вагону сообщают две силы: и поэтому

Отсюда видно, что сила, действующая на реборду, теперь стала меньше на величину Поэтому меньшим будет износ рельса и реборды.

Рассмотрим еще, как движется на закруглении пути велосипедист. В этом случае поворот обеспечивается совместным действием силы реакции (силы упругости) со стороны дороги, силы трения и силы тяжести велосипедиста (вместе с велосипедом). Чтобы равнодействующая сила была направлена к центру, велосипедист наклоняется в сторону поворота (рис. 148. На рисунке Так как в вертикальном направлении велосипедист не перемещается, то Это означает, что равнодействующая всех сил, действующих на велосипедиста, равна силе трения Умелый велосипедист инстинктивно наклоняется ровно настолько, чтобы равнодействующая сила (в данном случае сила трения покоя была равна Излишний или недостаточный наклон приведет к тому, что поворот не удастся и велосипедист упадет:

Наклоняются в сторону поворота мотоциклисты, всадники, конькобежцы и т. д.

Упражнение 38

1. Почему спринтер, велосипедист и конькобежец при большой скорости движения наклоняются при повороте?

2. Равнодействующая каких сил сообщает центростремительное ускорение железнодорожному вагону, проходящему закругление пути?

3. Какая сила сообщает вагону центростремительное ускорение при отсутствии наклона полотна дороги?

4. Поезд движется по закруглению радиусом 500 м. Ширина железнодорожной колеи 1 524 мм. Наружный рельс расположен на 12 см выше внутреннего. При какой скорости движения поезда на закруглении реборды колес не оказывают давления на рельсы?

5. Конькобежец движется по закруглению ледяной дорожки радиусом 10 м со скоростью 5 м/сек. Под каким углом к горизонту он наклоняется, проходя этот поворот? (См. таблицу на стр. 124.)

Вокруг нас нет ни одного тела, на которое бы не действовали другие тела или, что то же самое, силы. Все тела, которые накладывают ограничения на движение рассматриваемого тела, в механике называются связями. Любая связь действует на изучаемое тело с некоторой силой, которая в механике называется реакцией связи . Почему реакцией? Потому что по третьему закону Ньютона не только связь действует на тело, но и тело действует на связь, вызывая в ней «ответную» силу – реакцию.

Колесо локомотива или вагона имеет важную деталь – реборду (франц. reborde – гребень, то есть выступающая часть обода колеса), которая нужна, чтобы вагон не сошёл с рельсов на повороте. В момент, когда колесо входит на закругление, оно продолжает движение в прежнем направлении, действуя на рельс сбоку ребордой, которая при этом деформируется. В результате возникает «боковая» сила упругости Fупр (см. рисунок). Эта сила и заставляет вагон поворачивать, то есть двигаться по рельсам окружности. В отсутствии реборды эта сила не возникала бы, и вагон сошёл бы с рельсов.

Именно сила упругости реборды вызывает центростремительное ускорение вагона. Но наряду с силой упругости реборды, возникает и сила трения реборды о рельс. При движении по прямой этого касания нет, и сила трения уравновешивается силой тяги локомотива или предыдущего вагона.

Однако при повороте вагона трение реборд о рельс есть. Оно замедляет движение, а также приводит к повышенному износу (стриранию) как реборд колёс, так и рельсов на закруглённом участке траектории. Чтобы уменьшить нежелательную силу трения, надо уменьшить силу давления на боковые поверхности реборд и рельсов. Для этого насыпь грунта и гравия под рельсами делают наклонной в сторону центра окружности (см. рисунок).

Тогда «боковая» сила упругости с учётом наклона полотна дороги будет вычисляться по формуле:

В этой формуле: m – масса вагона, v – скорость поезда, R – радиус закругления рельсов, a – угол наклона насыпи под рельсами дороги. Формула показывает, что действующая на реборду сила уменьшается по сравнению с прямым участком дороги (выделено скобками). Значит, износ реборд и рельсов тоже уменьшается.

Например, на маршруте Санкт-Петербург – Хельсинки поезд «Аллегро» развивает скорость до 220 километров в час. Чтобы не терять её при движении на поворотах, вагоны «Аллегро» могут отклоняться от вертикали в сторону закругления полотна дороги на угол до 10 градусов. Это достигается разноуровневым положением рельсов пути (см. фото).


(C) 2012. Некрасов Александр Григорьевич (г. Санкт-Петербург)

1624. Что означает выражение «машину занесло на повороте»? Почему это происходит?

1625. Почему при быстрой езде по кругу мотоциклист сильно наклоняется к центру круга?

1626. При повороте в воздухе самолет опускает вниз то крыло, в какую сторону поворачивает. Корабль при повороте в воде опускает вниз борт, противоположный стороне поворота. Почему?

1627. Почему наездники в цирке свободно держатся на том боку седла, который обращен к центру арены, а на противоположном боку седла им удержаться гораздо труднее?

1628. При вращении шарика на резинке, резинка растягивается, причем тем сильнее, чем быстрее вращается шарик. Почему резинка растягивается?

1629. Велосипедист, двигаясь на большой скорости, может преодолеть чертово колесо (рис. 220). Почему велосипедист не падает в верхней точке петли?

1630. Кубик массой 0,4 кг положили на грампластинку на расстоянии 0,2 м от ее центра (рис. 221). При вращении пластинки линейная скорость кубика равна 0,2 м/с. Каково ускорение кубика? Какая сила удерживает кубик на пластинке и чему она равна?

1631. Мотоцикл проходит поворот радиусом 20 м. Коэффициент трения между колесами и землей равен 0,7. С какой наибольшей скоростью может двигаться мотоцикл, чтобы не возникло заноса?

1632. Во время дождя коэффициент трения между колесами мотоцикла и землей уменьшается до 0,1. Решите предыдущую задачу для дождливой погоды. Во сколько раз найденная вами скорость мотоцикла из предыдущей задачи будет меньше во время дождя?

1633. Определите центростремительную силу, действующую на вагон метро массой 16 т, когда он движется со скоростью 8 м/с по закруглению радиусом 80 м.

1634. Постройте траекторию движения тела, брошенного горизонтально со скоростью 30 м/сек с высоты 80 м. Определите, на каком расстоянии от места бросания тело упадет на землю и скорость его в момент удара о землю. Сопротивление воздуха не учитывать. Принять g = 10 м/сек2.

1635. С мачты парохода с высоты 10 м над палубой уронили мяч. Скорость парохода 18 км/час. На сколько успеет переместиться пароход за время падения мяча? Где упадет мяч? Какова траектория движения мяча по отношению к поверхности моря? Какова скорость мяча в момент удара о палубу?

1636. На краю стола лежит кусочек мела. Мелу сообщили горизонтальный толчок по направлению, перпендикулярному к классной доске. След от удара мела о доску лежит на 20 см ниже поверхности стола. Расстояние доски от края стола 1 м. Определите начальную скорость мела.

1637. С какой скоростью надо бросить тело в горизонтальном направлении с высоты 20 м, чтобы скорость его в момент падения на землю была 25 м/сек?
(Указание. Решите эту задачу на основании закона сохранения энергии.)

1638. Грузовик массой 5000 кг движется со скоростью 28,8 км/ч по выпуклому мосту с радиусом кривизны 0,04 км. С какой силой давит грузовик на середину моста? С какой скоростью он должен ехать, чтобы не оказывать давления на верхнюю точку моста?

1639. Тепловоз массой 15 т движется по вогнутому мосту с радиусом кривизны 0,05 км. Сила давления тепловоза на середину моста равна 149,5 кН. Какова скорость тепловоза?

1640. Автофургон идет по закруглению радиусом 200 м со скоростью 72 км/ч. При этом внутри фургона производится взвешивание на пружинных весах груза массой 49 кг. Определите показания пружинных весов.

1641. Самолет делает «мертвую петлю» радиусом 0,245 км в вертикальной плоскости. При какой наименьшей скорости самолета в верхней части петли летчик не будет отрываться от кресла?

1642. Самолет, летящий со скоростью 360 км/ч, описывает в вертикальной плоскости «петлю Нестерова» радиусом 0,2 км. Во сколько раз сила, прижимающая летчика к сиденью в нижней точке петли, больше его веса?

1643. Самолет, летящий со скоростью 540 км/ч, описывает в вертикальной плоскости «мертвую петлю» радиусом 500 м. Во сколько раз сила, прижимающая летчика к сиденью, в нижней точке петли больше силы, прижимающей летчика к сиденью, в верхней точке петли?

1644. Коленчатый вал двигателя делает 3600 об/мин. Найдите угловую скорость и период вращения коленчатого вала.

1645. Винт вертолета вращается с частотой 1500 об/мин. Скорость полета вертолета 72 км/ч. Сколько оборотов сделает винт на пути 120 км?

1646. Определите угол поворота Земли вокруг собственной оси за 120 мин.

1647. Коленчатый вал радиусом 2 см делает два оборота за ОД с. Какова частота вращения вала? Найдите угловую и линейную скорости точек поверхности вала.

1648. Самолет летит на широте Санкт-Петербурга (60°). Его пассажиры и экипаж видят, что за окнами иллюминаторов все время светло, ночь не наступает. В каком направлении и с какой скоростью летит самолет? (Радиус Земли 6400 км.)

1649. Вал радиусом 10 см с прикрепленной к нему нитью начал равномерно вращаться. Через 5 с на него намоталось 15 м нити. Найти период, частоту и угловую скорость вращения вала.

1650. Диаметр точильного камня равен 0,3 м. Линейная скорость точек на его рабочей поверхности равна 10 м/с. Определите угловую скорость, частоту и период вращения точильного камня. Сколько оборотов он сделает за 1,5 мин? На какой угол он повернется за это же время?

1651. Шкив радиусом 50 см делает 110 об/мин. Определите период вращения и линейную скорость точек, лежащих на окружности шкива. Какой путь пройдет одна из этих точек за 2 мин?

1652. Капля краски на ободе колеса, имеющего диаметр 20 см движется с линейной скоростью 628 см/с. Сколько оборотов шкив делает за минуту?

1653. Для качественной шлифовки поверхность наждачного круга не должна иметь линейную скорость более 50 м/с. На шлифовальной машине такой круг диаметром в 200 мм делает 3000 оборотов в минуту. Допустима ли такая скорость?

1654. Шлифовальный круг радиусом 30 см равномерно вращается вокруг оси в его центре О (рис. 222). Линейная скорость точки А на круге равна 3,5 м/с. Определите линейную скорость точки Б, расположенной на расстоянии 5 см от оси вращения.


1655. Укажите направление ускорения движущегося тела в положениях А и В, показанных на рисунке 223.

1656. На рисунке 224 показана рука, вращающая камень, привязанный к веревке. Укажите, какие силы действуют на камень, на веревку, на руку, и изобразите их векторами. Если в положении, показанном на рисунке, веревка оборвется, то как будет двигаться камень?

1657. На прибор, состоящий из стержня, по которому могут скользить два шарика: масса одного в 2 раза больше массы другого. Оба шарика связаны нитью так, что центры тяжести их расположены друг от друга на расстоянии 12 см. Весь прибор приводится во вращение вокруг вертикальной оси. Рассчитайте, на каком расстоянии от оси вращения должны быть расположены шарики, чтобы при вращении прибора они оставались на месте, не скользили по стержню.

1658. Если на веревке привязать маленькое ведерко с водой, то можно это ведерко вращать по кругу и вода из него не выльется. Изготовьте ведерко из жестяной банки и проделайте такой опыт. Постарайтесь объяснить его.

1659. Радиус окружности, по которой движется конец секундной стрелки, 0,8 см, минутной - 2 см, часовой - 1,5 см. Найдите линейные и угловые скорости стрелок.

1660. Ведущее колесо паровоза диаметром 1,6 м делает 120 оборотов в минуту. С какой скоростью движется паровоз?

1661. Найдите линейную и угловую скорости точки земной поверхности на широте Москвы при суточном вращении Земли вокруг оси. Считать радиус Земли равным 6400 км.

1662. Во сколько раз линейная скорость конца минутной стрелки больше линейной скорости конца часовой стрелки, если минутная стрелка в 1,2 раза длиннее часовой?

1663. Колесо катится без проскальзывания со скоростью 5 м/с. Найдите скорости точек А, В, С, D, Е (рис. 226) относительно Земли. Расстояние от точки Е до центра колеса равно половине радиуса.

1667. Масса планеты Марс составляет 0,11 массы Земли. Во сколько раз первая космическая скорость для Марса меньше, чем для Земли, если его радиус равен 0,53 радиуса Земли?

1668. Космический корабль удалился от поверхности Земли на расстояние, равное радиусу Земли. Какую скорость он должен развить, чтобы вращаться по окружности вокруг Земли?

1669. Искусственный спутник Земли движется по круговой орбите вокруг Земли на высоте, равной 4000 км над поверхностью Земли. Найдите его скорость и период обращения.

1672. Искусственный спутник движется в плоскости земного экватора и с Земли кажется неподвижным. Какова скорость спутника? Найдите расстояние от спутника до центра Земли.