Правила эксплуатации никель-кадмиевых аккумуляторов. Никель-кадмиевые аккумуляторы: устройство, восстановление

Кадмиевый аккумулятор – востребованный источник энергии, который используют для комплектации бытовой техники. Они причислены к щелочным типам. Ими оснащают те агрегаты и устройства, в состав которых нельзя ввести другие модели.

В состав никель кадмиевых аккумуляторов введены минусовые и плюсовые токопроводящие выводы, для разделения которых использован сепаратор. Внутренняя часть заполнена щелочным электролитическим составом. Корпус для никель кадмиевых батарей подготовлен из специального металла, герметично запаян.

Дабы обеспечить лучший контакт, для подготовки электродов используют фольгу, которая отличается небольшой толщиной. Для конструирования сепаратора, который сосредотачивают между выводами в батареях никель кадмиевых, применяют тканое сырье. Ведь он не взаимодействует со щелочным электролитом.

Для подсоединения аккумуляторной батареи к другим никелево кадмиевым источникам питания применяют борн. В состав устройства никель кадмиевых аккумуляторов входят сварные соединения, при помощи которых обеспечивается плотное соединение.

Преимущества никель-кадмиевых источник питания

  • Численность циклов разряда и заряда достигает 1 000 и более.
  • Период хранения таких устройств продолжителен. При этом степень заряженности агрегата не влияет на данный показатель.
  • Технология зарядки никель кадмиевых аккумуляторов относительно проста. Ее смогут реализовать и новички-автомобилисты.
  • Эксплуатировать такие источники питания можно и в зимний период, в жестких условиях.
  • Емкость не снижается даже при минусовой температуре.

Отрицательные стороны

  • Устройства обладают таким свойством, как «эффект памяти». Для его устранения возникает потребность в проведении определенных мероприятий.
  • Уровень саморазряда повышенный.
  • Если сравнить cd аккумуляторы с иными источниками питания, то можно выделить их невысокую энергетическую плотность.
  • Для подготовки применены токсичные компоненты. Поэтому некоторые государства не используют такие аккумуляторные батареи, не занимаются их изготовлением.
  • Для утилизации таких агрегатов применяют соответствующее оборудование. В нашей стране для никель кадмиевых агрегатов подготавливают установки для утилизации, переработки.

Заряд, разряд никель-кадмиевых аккумуляторных батарей

Процесс разряда

Разрядные параметры источника питания во многом зависят от конструктивных особенностей, характеристик электродов и токовыводов. Они же предопределяют величину напряжения и внутреннего сопротивления.

Разрядные параметры зависят от:

  • Особенности и структуры сепаратора.
  • Качества сборки.
  • Количества электролитического состава, которым заполнен корпус.
  • Прочее.

При продолжительном разряде nicd источника специалисты рекомендуют пользоваться дисковыми батарейками, который дополнены крупногабаритными прессованными выводами. Поэтому при небольшом увеличении тока емкость разрядная, а также напряжение снижается. Дабы оптимизировать этот показатель, толщину выводов уменьшают, численность увеличивают.

Максимальное значение емкости наблюдается при комнатной температуре. Дальнейшее повышение температуры не влияет на этот параметр. Отрицательная температура провоцирует снижение разрядного напряжения, повышение разрядного тока.

Использование шуруповертов, которые укомплектованы никель-кадмиевыми источниками питания, в зимний период требует осторожности.

Зарядный процесс

В процессе зарядки ni cd аккумуляторов необходимо вводить ограничения по заряду. Ведь в процесс подзарядки внутри корпуса повышается давления, вырабатывается кислород, а коэффициент применения тока понижается.

Как заряжать ni cd батарею? Дабы полностью восстановить заряд, должна быть сообщена емкость в 150–160 процентов. Температурный диапазон – 0-+35 градусов. Если не учитывать температурный диапазон, то давление повысится. Через аварийный клапан будет выделяться кислородная смесь. Поэтому важно заранее определить, как правильно заряжать аккумуляторную батарею.

Разряженный никель-кадмиевый аккумулятор заряжают в различных режимах. От того, какой режим выбран, зависит время зарядки.

  1. Током в 0,2 от общей емкости в течение 7 часов.
  2. Током в 0,3 от общей емкости не более 4 часов.

Заряжая агрегат в ускоренном режиме (током в 0,4 от имеющейся емкости), перезаряд запрещен, так как это повлечет уменьшение емкости. Устанавливать, до скольки заряжен источник питания, можно с помощью соответствующих устройств. При работе с токами применяется амперметр. Дабы определить количество вольт, используют вольтметр или мультиметр.

Зарядник для никель-кадмиевых аккумуляторных батарей

Для заряда ni cd батареи используют реверсивные и автоматические зарядники.

Автоматическое зарядное устройство для ni cd отличается простотой использования. С его помощью можно подзарядить 2–4 батарейки для шуруповерта или другой бытовой техники. После размещения батарейки в ЗУ устанавливается режим, число. После этого агрегат подключают к сети.

Автоматические модели оснащены индикаторами, с помощью которых определяется состояние заряжаемых источников питания при работе с током. Такие устройства подходят и для того, чтобы разряжать ni cd батареи.

Импульсные зарядники отличаются более сложной конструкцией. Их можно использовать при работе со значительным током. Поскольку их относят к профессиональным агрегатам, перед использованием изучается, как зарядить источник питания, как выставить требуемые параметры.

Реверсные (импульсные) модели подходят для циклической подачи ток заряда и разряда. При разряде и заряде заранее определяются параметры тока, напряжения.

Особенности использования

Продолжительная эксплуатация влияет на функционирование и работоспособность кадмий никелевых акб. К ухудшению работоспособности и выходу из строя приводят:

  • Рабочая поверхность токопроводящих выводов уменьшается.
  • Активная масса токопроводящих выводов существенно уменьшается.
  • Щелочной электролитический состав меняет состав, неправильно перераспределяется по источнику питания.
  • Образуется утечка по проводящим элементам. В итоге, разрядка заряженного источника питания наступает достаточно быстро.
  • Расход жидкости, кислорода возрастает. При чрезмерном выделении кислорода процесс становится необратимым.
  • Органические составы начинают распадаться.

Восстановление никель-кадмиевых аккумуляторов

Процедура восстановления никель кадмиевых аккумуляторов, которые используются для комплектации шуруповёрта, иного портативного агрегата, занимает определенное время. Поскольку стоимость таких акб высокая, перед реализацией следует изучить особенности.

По сути, восстанавливаем никель-кадмиевый аккумулятор шуруповерта импульсным током, который подается в течение 2–4 секунд. Величина тока превышает параметры емкости в 10 и более раз.

Перед тем как восстановить АКБ, подготавливаются определенные элементы и инструменты:

  1. Работоспособный источник питания с сильными показателями тока. В качестве АКБ используют автоаккумулятор.
  2. Зажимы.
  3. Провода.
  4. Мультиметр, с помощью которого контролируется напряжение.
  5. Защитные предметы.

Процедура восстановления включает определенные мероприятия:

  • У блока портативного инструмента или отдельной батареи определяется положительный и отрицательный контакт.
  • Пользуясь зажимами или крокодилами, а также отрезками проводов присоединяются минусы.
  • Другой конец провода прижимают к положительному контакту. Длительность контакта провода составляет 1–2 секунды (возможно увеличение до 3 секунд). Подобные действия занимают немного времени. При контакте следят за тем, чтобы провода не прикипели к блоку, батарее.

По истечении одного цикла при помощи мультиметра замеряется уровень напряжения. Как только напряжение восстановилось, переходят к набору емкости. Дабы восстановить и выполнить ремонт источника питания, выполняется 2–4 цикла.

Такая методика приносит ожидаемый эффект лишь на короткий срок. Все потому, что электролитический состав меняется, изменяется и его объем. В результате, аккумуляторы как источники долго использовать нельзя.

Модернизированная методика

Дабы своими руками восстановить никель кадмиевые аккумуляторы, а также обеспечить их продолжительную эксплуатацию, выполняются следующие действия:

  • Все батарейки тщательно проверяются, измеряется напряжение. Те элементы, на которых напряжение близко к нулю, изымаются.
  • В корпусе при помощи соответствующего инструмента подготавливаются отверстия, дабы залить 1 см3 дистиллированной воды.
  • Источники питания отстаиваются в течение короткого временного промежутка, после чего проводят повторную проверку напряжения.
  • Если работоспособность АКБ восстановлена, то сформированные отверстия обрабатывают герметиком, пайкой.
  • Блок комплектуется батарейками, повторно заряжается. Портативный инструмент готов к эксплуатации, как только на заряднике индикатор изменит оттенок. Для этих целей стоит пользоваться импульсными зарядными устройствами, которые отличаются обширным функционалом, качественной комплектацией.
  • При нулевом напряжении в АКБ вводят дистиллированную воду вновь.
  • Процедуру повторяют до тех пор, пока не достигнут положительного результата.

Особенности хранения

На кадмиевые аккумуляторы правила эксплуатации подготовлены специалистами. В инструкции прописано, как хранить источники питания. Выделено несколько основных правил.

Хранить ni cd источники можно только при полной разрядке. Для этих целей используют зарядные устройства, которые оснащены соответствующей функцией. Для опустошения применяют и лампы накаливания с соответствующим количеством ампер.

Хранить аккумуляторные батареи, которые правильно подготовлены, можно долго. Температурные изменения не влияют на состояние и работоспособность.

Для хранения никель кадмиевых аккумуляторов используют помещения. Ведь температурные колебания не провоцируют разрядку, запуск необратимых процессов.

Хотя хранятся никель-кадмиевые аккумуляторы долго, на определенном этапе возникает потребность в утилизации. Для этого следует обратиться в организацию, которая выполняет подобные процессы.

Эффективность никель кадмиевых аккумуляторов сложно переоценить. Ими комплектуют портативные инструменты, используемые в быту и в промышленности. При правильном обращении, соблюдении техники безопасности и условий эксплуатации период применения превышает пять лет.

Видео про Никель кадмиевые аккумуляторы



Никель-кадмиевые аккумуляторы (Ni-Cd) на данный момент все ещё достаточно широко используются в народном хозяйстве. По своей конструкции они относятся к группе щелочных аккумуляторов. Эти батареи востребованы, несмотря на то, что их производство и применение ограничивается из соображений охраны окружающей среды (кадмий является ядовитым веществом). Но полностью отказаться от них не получается, поскольку эти аккумуляторные батареи используют в устройствах, где другие батареи работать не могут. В частности это эксплуатация с разрядными и зарядными токами большой величины. Это достаточно простые в обслуживании устройства с длительным сроком эксплуатации. Поэтому они заслуживают рассмотрения в отдельной статье.

Первый никель-кадмиевый аккумулятор создал Вальдмар Юнгнер ещё в 1899 году. Но тогда производство этих щелочных аккумуляторов обходилось значительно дороже, чем других видов батарей. Так, что об этом изобретении на некоторое время забыли. В 1932 году был разработан метод осаждения активного материала на пористый никелевый электрод. Это приблизило выпуск промышленных аккумуляторов Ni-Cd.

В 1947 году был проведен ряд работ, в ходе которых осуществили рекомбинацию газов, выделяющихся при заряде, без их отведения. В результате на свет появились герметичные Ni-Cd аккумуляторы, которые применяются до сих пор. Среди производителей никель-кадмиевых аккумуляторов можно назвать такие крупные компании, как GP Batteries, Самсунг, Варта, GAZ, Konnoc, Advanced Battery Factory, Панасоник, Metabo, Ansmann и другие.

Несмотря на широкое распространение в народном хозяйстве за последние десятилетия, никель-кадмиевые аккумуляторы постепенно сужают область применения. Их постепенно теснят никель-металлогидридные, а также литиевые батареи.

В частности Ni-Cd батареи уступают им место портативной технике. Причиной тому является опасность кадмия для человека и окружающей среду. Для утилизации таких аккумуляторов требуется специальное оборудование для улавливания кадмия. для автомобиля проводится проще, быстрее и лучше отработана. Но до сих пор существует достаточно много направлений, где никель-кадмиевые батареи незаменимы.

Применение никель-кадмиевых аккумуляторов (Ni-Cd)

Никель-кадмиевые аккумуляторы с небольшими размерами применяются в технических устройствах, требующих для своей работы большой ток. В таких условиях Ni-Cd аккумуляторы выдают стабильную мощность и не перегреваются в отличие от других типов аккумуляторных батарей. Никель-кадмиевые аккумуляторы широко используются в троллейбусах, трамваях, в роли тяговых АКБ на электрических карах, встречаются промышленные аккумуляторы Ni-Cd. Кроме того, широкое применение они нашли на морском и речном транспорте.

Ni-Cd аккумуляторы можно встретить в вертолетах и самолетах в роли бортовых батарей, в портативных инструментах (шуруповёрт, перфоратор и т. п.). Однако в инструментах все чаще встречаются литиевыми батареями. Никель-кадмиевые аккумуляторные батареи пока не могут заменить в тех портативных устройствах, которые имеют потребление большой мощности. Хотя в некоторых устройствах их успешно заменяют , которые не имеют в своём составе вредного кадмия.

Широкое применение нашли Ni-Cd батареи в дисковом исполнении. Этот вариант широко использовался в качестве батареи для питания энергонезависимой памяти в первых персональных компьютерах. Они были распаяны на материнской плате. Впоследствии их заменили литиевыми аккумуляторами. Дисковые батарейки также широко применялись в фотоаппаратах, вспышках, калькуляторах, фонариках, радиоприёмниках, слуховых аппаратах и т. п.

Ni-Cd аккумуляторы могут долго храниться, просты в обслуживании, малочувствительны к низким температурам, имеют низкое внутреннее сопротивление и малый удельный вес. Все это пока перевешивает отрицательный момент, связанный с наличием в них ядовитого кадмия. Никель-кадмиевые аккумуляторы по-прежнему доминируют при использовании в авиации, военной технике, устройствах мобильной радиосвязи. Дополнительно можете прочитать материал о том, как восстанавливаются Ni-Cd .

Устройство никель-кадмиевых аккумуляторов (Ni-Cd)

Конструкция Ni-Cd аккумуляторов

Конструктивно никель-кадмиевый аккумулятор представляет собой положительный и отрицательный электрод, разделенные сепаратором. Они погружены в щелочной электролит и все это закрыто в герметичном металлическом корпусе. Положительный электрод имеет в своем составе NiOOH (оксид-гидроксид никеля). В составе отрицательного присутствует кадмий (Cd) в компаунде. В роли электролита выступает раствор KOH (гидроксид калия). Это сильная щелочь, не имеющая запаха. Преимущества KOH в том, что вещество не взрывоопасное и не пожароопасное. Массовая доля KOH в электролите по ГОСТ Р 50711-94 должна составлять не меньше 85 процентов в твердом и не меньше 45 процентов в жидком виде.

Чтобы увеличить площадь поверхности электродов, их выпускают из фольги малой толщины. Сепаратор между электродами делается из нетканого материала, который не взаимодействует со щелочью. Сам электролит в процессе реакции не расходуется.

Один никель-кадмиевый элемент выдает напряжение около 1 вольта. Поэтому они объединяются в батареи с плотностью энергии примерно 60 Вт-ч на один килограмм.

На изображении ниже можно посмотреть основные элементы щелочного никель кадмиевого аккумулятора серии KL.

Борн или токовывод предназначен для съем тока с аккумулятора и выступает в роли клеммы для соединения батарей. Через пробку обеспечивается заливка электролита, а также выход газа, образующегося в процессе зарядки. Соединение электродов вместе с контактными планками обеспечивает съём и подачу с электродов на борн. Контактные планки имеют сварное соединение с электродами.

Электрод представляет собой ламели, расположенные горизонтально. В них находится активное вещество в перфорированной ленте из стали. Ребро дает жесткость электрода и обеспечивает перетекание тока на контактную планку. Электроды разной полярности разделяются рамочным сепаратором, который не препятствует свободной циркуляции электролита.

Реакции, проходящие на электродах Ni-Cd аккумулятора

Процессы на положительном электроде

Основные электрохимические реакции, протекающие на положительном электроде никель-кадмиевой аккумуляторной батареи, можно описать следующими формулами:

В процессе заряда

Ni(OH) 2 + OH - ? NiOOH + H 2 O + e -

В процессе разряда

NiOOH + H 2 O + e - ? Ni(OH) 2 + OH -

Оксид-гидроксид никеля (NiOOH) на положительном электроде может быть в двух вариантах:

  • ?- Ni(OH) 2 ;
  • ?-Ni(OH) 2 .

Эти формы различаются по своей плотности и гидратации. Если батарея разряжена, то на положительном электроде есть обе эти формы гидроксида никеля. Когда Ni-Cd аккумулятор заряжается, то форма?-Ni(OH) 2 превращается в?-NiOOH. При этом кристаллическая решетка вещества несколько изменяется. На заключительной стадии зарядки происходит образование?-NiOOH. Количество фаз? и? гидроксида никеля будет зависеть от конкретных условий заряда.

Фаза? интенсивно образуется при большой скорости зарядки или при перезаряде. В результате образования?-NiOOH происходит коренная перестройка структуры оксидов. Для сравнения, плотность фазы? составляет 4,15, а фазы?-3,85 гр./см 3 . По этой причине при перезаряде Ni-Cd аккумулятора происходит изменение объем активной массы положительного электрода. Электрохимические свойства? и? также отличаются. Для формы?-NiOOH заряд проходит менее эффективно и коэффициент использования по току в этом случае меньше формы?. Форма? также имеет меньший разрядный потенциал и саморазряд в два раза меньший, чем для?.

Процессы на отрицательном электроде

На отрицательном электроде никель-кадмиевой батареи протекают следующие реакции:

При заряде

Cd(OH) 2 + 2e ? ? Cd + 2OH ?

При разряде

Cd + 2OH ? ? Cd(OH) 2 + 2e ?

Ёмкость кадмиевого электрода в никель-кадмиевых батареях превышает ёмкость положительного электрода примерно на 20-70 процентов. По этой причине считается, что потенциал отрицательного электрода при заряде-разряде, остается неизменным.

Общие процессы в Ni-Cd аккумуляторе

В никель-кадмиевой батарее протекают следующие реакции:

При заряде

2Ni(OH) 2 + Cd(OH) 2 ? 2NiOOH + Cd + 2H 2 O

При разряде

2NiOOH + Cd + 2H 2 O ? 2Ni(OH) 2 + Cd(OH) 2

В процессе перезаряда на положительном электроде протекает следующая реакция:

2OH ? ? 1/2O2 + H 2 O + 2e ?

То есть, выделяется кислород, который через сепаратор доходит до отрицательного электрода и там с его участием идет следующая реакция:

1/2O2 + Cd + H 2 O ? Cd(OH) 2

В результате происходит замкнутая реакция по кислороду. Это стабилизирует давление в никель-кадмиевом аккумуляторе при перезаряде. Величина давления в батарее в значительной степени зависит от скорости транспортировки кислорода между положительным и отрицательным электродами. В процессе перезаряда на отрицательном кадмиевом электроде может выделяться водород:

H 2 O + e ? ? OH ? + 1/2H 2

Затем он окисляется на положительном электроде. Реакция выглядит так:

NiOOH + 1/2H 2 ? Ni(OH) 2

Образование водорода в герметичном аккумуляторе – это опасный процесс. Если скорость его поглощения будет низкой, то это может привести к его накоплению. А это уже взрывоопасно. Поэтому в герметичных никель-кадмиевых аккумуляторах емкость кадмиевого электрода делают значительно больше, чем положительного.

Ёмкость такой герметичной батареи определяется именно значением ёмкости оксидно-никелевого электрода.

Характеристики никель-кадмиевых аккумуляторов (Ni-Cd)

Номинальное напряжение никель-кадмиевых герметичных аккумуляторов составляет 1,2 вольта. Заряд током 1/10 от ёмкости происходит за 16 часов. Замер ёмкости Ni-Cd аккумулятора производится при разряде током 2/10 от номинальной ёмкости до напряжения один вольт.

На изображении ниже можно видеть разрядные характеристики никель-кадмиевых аккумуляторов при различных режимах разряда.

На графиках ниже можно посмотреть зависимость разрядной ёмкости от нагрузочного тока и температуры.

Саморазряд никель-кадмиевых аккумуляторов зависит в основном от термодинамической неустойчивости электрода из оксида-гидроксида никеля. Влияние тока утечки между электродами на саморазряд небольшое. Но постепенно увеличивается со временем эксплуатации батареи. Тепловыделение в Ni-Cd аккумуляторах во многом зависит от степени заряженности. После того, как аккумулятор набрал 70 процентов емкости, активизируется процесс выделения кислорода. В результате из-за ионизации кислорода на отрицательных электродах происходит разогрев аккумулятора. По окончании зарядки температура в Ni-Cd аккумуляторе поднимается на 10-15 градусов Цельсия. Если заряд осуществляется в ускоренном режиме, то увеличение температуры может составлять 40-45 градусов Цельсия.

После отключения от заряда потенциал положительного (оксидно-никелевого) электрода уменьшается и происходит постепенное выравнивание заряда глубинного и поверхностного слоя. Через некоторое время интенсивность саморазряда снижается. У различных серий Ni-Cd аккумуляторов саморазряд и стабилизации остаточной емкости могут значительно различаться. Саморазряд, помимо снижения ёмкости, ещё приводит к понижению напряжения на 0,03-0,05 вольта. Это явление объясняется постепенным выравниванием заряда в глубине и на поверхности электрода. Кроме того, влияние оказывает частичная пассивация активной массы.

Хранение никель-кадмиевых аккумуляторов (равно, как и свинцово-кислотных) при низкой температуре снижает саморазряд. При 20 градусах Цельсия саморазряд в два раза больше, чем при 0.

На следующем изображении показан график изменения потери емкости для никель-кадмиевых аккумуляторов при различных температурах.

Чтобы компенсировать саморазряд при хранении аккумулятора, можно поставить его на подзарядку малым током. Обычно величина тока подзаряда составляет 0,03-0,05 от ёмкости. Но конкретное значение оговаривается производителем аккумулятора. Способность выдерживать длительный перезаряд у разная у никель-кадмиевых аккумуляторов различной конструкции. Дисковые щелочные никель-кадмиевые аккумуляторы, которые имеют ламельные электроды большой толщины, к перезаряду приспособлены меньше всего. Но есть и такие конструкции, которые способны без последствий выдержать перезаряд несколько месяцев.

Что касается энергетических характеристик Ni-Cd аккумуляторов, то они также различаются в зависимости от разновидностей батареи.

Дисковые никель-кадмиевые аккумуляторы с 2 электродами имеют удельные энергетические характеристики 15-18 Вт-ч на килограмм и 35-45 Вт-ч на литр. Та же разновидность, но с 4 электродами имеет удельные энергетические характеристики в два раза больше. Для цилиндрических Ni-Cd аккумуляторов эти величины составляют 45 Вт-ч на килограмм и 130 Вт-ч на литр.

Что влияет на разряд Ni-Cd аккумуляторов?

Разрядные характеристики конкретных моделей зависят от следующих характеристик:

  • толщина, структура, внутреннее сопротивление электродов;
  • плотность сборки групп электродов;
  • характеристики сепаратора (толщина и структура);
  • объем электролита;
  • специфические особенности конструкции батареи.

Дисковые Ni-Cd аккумуляторы с прессованными электродами большой толщины используются в условиях продолжительного разряда. В этом случае происходит постепенное снижение ёмкости и напряжения до 1,1 вольта. При разряде до 1 вольта ёмкости остаётся около 5-10 процентов от номинала. Такие аккумуляторные батареи демонстрируют значительное снижение разрядного напряжения и теряемой емкости Ni-Cd аккумуляторов при возрастании тока разряда до величины 0,2*C. Объясняется это тем, что активная масса не имеет возможности равномерно разряжаться на разной глубине электродов.

Для аккумуляторных батарей, работающих в режиме разряда средней интенсивности, делаются электроды меньшей толщины, и увеличивается их число до 4. В результате ток разряда возрастает до 0,6 от ёмкости.

Есть еще, так называемые, короткоразрядные аккумуляторы. В них установлены металлокерамические электроды с малым внутренним сопротивлением. Эти модели имеют самые высокие энергетические показатели среди других разновидностей никель-кадмиевых аккумуляторов. У них напряжение при разряде держится выше 1,2 вольта до того момента, пока они не исчерпают 90 процентов ёмкости батареи. Эти аккумуляторы могут использоваться при разрядке большими значениями тока (3-5С).

Стоит отметить ещё цилиндрические батареи с рулонными электродами. Эти современные аккумуляторы могут разряжаться длительное время током 7-10С. На графиках разряда, представленных выше можно видеть, что температура ОС оказывает существенное влияние на характеристики никель-кадмиевых аккумуляторов. Наибольшее значение ёмкости аккумулятор имеет при 20 градусах Цельсия. При повышении температуры она практически не меняется. Но при понижении до 0 градусов емкость падает тем быстрее, чем больше величина тока разряда. Это понижение ёмкости связано с уменьшением разрядного напряжения, которое вызвано ростом поляризационного и омического сопротивления. Сопротивление возрастает из-за малого объема электролита.

Так, что состав щелочи (электролита) и её концентрация существенно отражаются на характеристиках аккумулятора. От этого зависит температура образования солей, кристаллогидратов, льда и прочих элементов.

Если электролит замерз, то разряд вообще исключен. Нижнее значение рабочей температуры Ni-Cd аккумуляторов в большинстве случаев составляет минус 20 градусов Цельсия. Для некоторых видов батарей состав электролита корректируется, и нижняя граница температурного диапазона расширяется до минус 40 градусов Цельсия.

Что влияет на заряд Ni-Cd аккумуляторов?

При зарядке герметичного никель-кадмиевого аккумулятора важным является ограничение перезаряда. При перезарядке увеличивается давления внутри батареи из-за выделения кислорода. Так, что эффективность использования тока падает по мере приближения к 100-ной зарядке.

На изображении ниже можно посмотреть графики характеризующие зависимость ёмкости при разряде цилиндрического аккумулятора.

Зарядку Ni-Cd аккумуляторов допускается проводить в температурном диапазоне 0-40 градусов Цельсия. Рекомендуемый интервал 10-30 градусов. Поглощение кислорода на кадмиевом электроде замедляется при снижении температуры, что приводит к росту давления. Если температура выше рекомендуемой, то растёт потенциал и на положительном оксидно-никелевом электрода кислород начинает выделяться очень рано. При равной температуре кислород выделяется тем активнее, чем больше ток заряда. При это скорость поглощения кислорода почти не изменяется. У эта величина зависит от конструкции батареи, а точнее, от транспортировки кислорода от положительного к кадмиевому отрицательному электроду. На это влияет плотность компоновки, толщины, структура электродов, а также материала сепаратора и объема электролита.

Чем меньше толщина электродов и чем выше плотность их компоновки, тем эффективнее будет проходить процесс заряда. Цилиндрические аккумуляторы с рулонными электродами являются наиболее эффективными в этом плане. Для них эффективность заряда при изменении тока от 0,1 до 1С почти не меняется. Стандартным производители называют режим зарядки, в результате которого батарея с напряжением 1 вольт полностью заряжается за 16 часов током 0,1 от ёмкости. Некоторые модели при заряде в таком режиме требуют 14 часов. Конкретные показатели уже зависят от конструктивных особенностей и объема активной массы.

Все вышесказанное справедливо для гальваностатического заряда. Это заряд при постоянном значении силы тока. Но заряд может также вестись с плавным или ступенчатым снижением силы тока на заключительной стадии зарядки. Тогда на начальном этапе ток может устанавливаться гораздо выше стандартного значения 0,1 от ёмкости. Часто бывает реальная необходимость в увеличении скорости зарядки. Проблему решают с использованием аккумуляторов, характеристики которых позволяют эффективно принимать заряд током высокой плотности. Ток поддерживается постоянным на протяжении всего процесса зарядки. Также совершенствуются системы контроля, которые не допускают перезаряд батареи.

Цилиндрические никель-кадмиевые аккумуляторы обычно заряжаются в следующих режимах:

  • 6-7 часов током 0,2 от ёмкости;
  • 3-4 часа током 0,3 от ёмкости.

При ускорении не рекомендуется допускать перезаряд больше 120-140 процентов. Тогда будет обеспечена ёмкость не меньше номинала. Ni-Cd аккумуляторы для работы в ускоренных режимах заряжаются ещё быстрее (примерно около одного часа). Однако в последнем случае нужен контроль напряжения и температуры. Иначе, из-за быстрого роста давления, может начаться процесс деградации аккумуляторов.

После того, как заряд закончен в герметичном аккумуляторе еще продолжается выделение кислорода из-за окисления гидроксильных ионов на положительном электроде. За счет процесса саморазряда уменьшается потенциал, и процесс выделения кислорода постепенно уменьшается и становится равным поглощению его на кадмиевом электроде. Тогда давление уменьшается. О том, детально разобрано по указанной ссылке.

Эксплуатация никель-кадмиевых аккумуляторов (Ni-Cd)

Постепенно при эксплуатации никель-кадмиевых аккумуляторов в них происходят изменениями, оказывающие влияние на работоспособность. Эти изменения вызывают постепенное падение напряжения аккумулятора и снижение его разрядной емкости.

Какие факторы приводят к отказу в работе Ni-Cd аккумуляторов:

  • Уменьшение рабочей поверхности электродов;
  • потеря активной массы электродов;
  • изменение состава и объема щелочного электролита, а также его перераспределение в батарее;
  • возникновение утечек по проводникам, вызванные ростом дендритов кадмия;
  • процессы, которые связаны с необратимым расходом воды и кислорода;
  • распад органических веществ.

Изменения в положительном электроде (оксидно-никелевый)

После определенного, достаточно большого, количества циклов происходит изменение плотности активной массы положительного электрода. Возникает, так называемое, набухание оксидно-никелевого электрода. Кроме того, уменьшается его прочность. В результате снижается качество контакта активной массы с основой электрода. Как следствие, падает электрическая проводимость электрода и уменьшается ёмкость аккумулятора.

Уменьшение прочности положительного электрода вызывается в основном из-за регулярном перезаряда. Как говорилось выше, это сопровождается выделением кислорода в герметичном корпусе аккумулятора. В батареях с электродами из металлокерамики эти изменения наблюдаются в значительно меньшей степени. При эксплуатации никель-кадмиевых аккумуляторов наблюдается увеличение кристаллов активной массы. Это приводит к уменьшению рабочей поверхности электродов и падению ёмкости.

Изменения в отрицательном электроде (кадмиевый)

На кадмиевом электроде основным процессом, вызывающим его деградацию, является миграция активной массы. У отработавшего длительное время Ni-Cd аккумулятора активную массу отрицательного электрода можно найти как в сепараторе, так и на положительном электроде. В результате наблюдается потеря активной массы, а также блокировка поверхностного слоя отрицательного электрода.

Это ухудшает доступ щелочного электролита вглубь электрода. В результате растет внутреннее сопротивление аккумулятора. Миграция активной массы и нарастание дендритов сквозь сепаратор до положительного электрода вызывает короткие замыкания и нарастание саморазряда. Как и в оксидно-никелевом электроде, так и в кадмиевом укрупняются кристаллы, и набухает активная масса.

Срок службы никель-кадмиевого аккумулятора сокращают и другие необратимые процессы. В частности, из-за высокого окислительного потенциала положительного электрода, на нём окисляются органические примеси. Это специальные стабилизирующие и активирующие добавки в этом типе аккумуляторов. Металлокерамическая основа электрода при своем окислении потребляет воду и выделяет гидроксид никеля (Ni(OH) 2).

Увеличение давления в никель-кадмиевом аккумуляторе также оказывает пагубное влияние на состояние аккумулятора. Когда снижается ёмкость кадмиевого электрода, то меняется баланс ёмкостей положительных и отрицательных пластин. В результате создаются условия для выделения водорода. При малой скорости рекомбинации водород начинает скапливаться и возникает угроза резкого увеличения давления. Такая картина часто наблюдается при быстром заряде. У призматических и дисковых моделей Ni-Cd аккумуляторов при повышенном давлении корпус может деформироваться. Герметичность может сохраниться, но плотности сборки нарушается, растет внутреннее сопротивление батареи и снижается разрядное напряжение.

Стоит помнить, что водород также скапливается при постоянной разрядке батареи до 0 вольт. Кроме того, внутри аккумулятора есть азот, попадающий туда при герметизации. Так, что внутри еще происходит восстановление нитратов, находящихся в электролите. Это также вызывает увеличение давления. У щелочных никель-кадмиевых аккумуляторов имеется аварийный клапан, чтобы сбросить давление. Но делается это однократно, поскольку при этом происходит необратимые изменения в химическом элементе.

Свой вклад в падение работоспособности Ni-Cd аккумулятора вносит и щелочной электролит. Точнее изменение его состава и объема. В результате изменения структуры и набухания электродов происходит отбор электролита. В результате растет внутреннее сопротивление батареи. Состав электролита постепенно меняется. По сравнению с первоначальным состоянием может значительно увеличится объем карбонатов. Электропроводность электролита падает, и параметры батареи при разряде ухудшаются. Особенно это становится заметно при низких температурах.

Как влияет эксплуатация и температура на процесс деградации

Одним из наиболее важных факторов, оказывающих воздействие на процесс деградации никель-кадмиевого аккумулятора является температура. При повышении температуры на каждые десять градусов химические процессы ускоряются в два-четыре раза.

Влияние температуры становится еще более заметным при увеличении тока заряда, поскольку это приводит к нагреву батареи при перезаряде. Уменьшение ёмкости кадмиевого электролита при низкой температуре будет превышать снижение ёмкости положительного электрода. Это накладывает некоторые ограничения на использование аккумуляторов в северных регионах. В такой ситуации при заряде растёт скорость выделения водорода.

На процесс деградации никель-кадмиевых аккумуляторов большое влияние оказывает характер эксплуатации. Что сюда входит:

  • глубина и режим разряда;
  • режим зарядки;
  • временной интервал м/у зарядом и разрядом (если циклирование непрерывное);
  • периоды хранения и эксплуатации.

На графике ниже можно видеть длительность работы аккумулятора в циклах в зависимости от глубины разряда.

Нужно отметить, что Ni-Cd аккумуляторы имеют достаточно высокую стойкость к случайному перезаряду. Если переразряд происходит нечасто, то водород легко рекомбинируется. При устранении поляризации напряжение батареи восстанавливается.

При постоянной подзарядке никель-кадмиевых аккумуляторов нужно обеспечить ток, равный 0,03-0,05 от номинальной ёмкости. Если батарея постоянно эксплуатируется в таком режиме, то помимо величины тока влияет и температура ОС. Когда температура повышается, то увеличивается образование кислорода. Это ускоряет деградацию аккумулятора. С целью функционирования с непрерывной подзарядкой (температура 50-55 градусов Цельсия) были созданы специальные модели цилиндрических аккумуляторов. Они имеют электроды рулонного типа со сроком эксплуатации, как минимум, 4 года. В этих батареях скорректированный состав электролита и проделана подготовка для ускорения поглощения газов.

Если разряжать Ni-Cd аккумулятор после длительного подзаряда, то его ёмкость будет немного ниже, чем у аккумуляторов, заряженных с нуля. Но это явление временное и ёмкость придёт в норму после нескольких циклов заряд-разряд.

Маркировка щелочных никель-кадмиевых аккумуляторов (Ni-Cd)

Маркировка Ni-Cd аккумуляторов может выглядеть следующим образом:

40 НК, K, L, H; 250 P(П), K

Символы обозначают следующее:

  • 40 - число аккумуляторов в батарее или блоке батареи;
  • НК, К — никель-кадмиевый тип аккумулятора (обозначение НК соответствует ТУ 16-90 ИЛВЕ.563330.001ТУ, обозначение К соответствует МЭК 623, ГОСТ Р МЭК 60623-2002);
  • L, H — тип Ni-Cd аккумулятора в зависимости от режима разряда (L - длительный режим разряда, Н - короткий режим разряда);
  • 250 – значение номинальной емкости (ампер-часы);
  • Р(П) – пластиковое исполнение бака аккумуляторной батареи;
  • К - каркасное исполнение блока аккумуляторов.

Плюсы и минусы никель-кадмиевых аккумуляторов (Ni-Cd)

В заключение кратко напомним преимущества и недостатки никель кадмиевых аккумуляторов.

Плюсы Ni-Cd аккумуляторов

  • Большое число циклов заряд-разряд (больше 1000);
  • Длительной срок хранения вне зависимости от степени заряженности;
  • Быстрый и простой способ заряда;
  • Выдерживают серьёзную нагрузку;
  • Есть возможность работы при низких температурах;
  • Хорошо подходят для жестких условий эксплуатации;
  • Сохраняют ёмкость при низких температурах;
  • Стоят недорого.

Минусы Ni-Cd аккумуляторов

  • Эффект памяти и необходимость работ по его устранению;
  • Достаточно высокая степень саморазряда;
  • Низкая энергетическая плотность по сравнению с другими типами аккумуляторных батарей;
  • Токсичность материалов. Особенно это касается кадмия. В ряде стран запрещено производство и использование таких батарей. Требуется специальное оборудование и технология для их утилизации.

Вот и всё, что на этот момент хотелось рассказать про никель-кадмиевые аккумуляторы. Если у вас есть вопросы или дополнения по теме, то оставляйте их в комментариях.

Опубликовано в

Несмотря на то, что никель-кадмиевые аккумуляторы с этого года запрещены к производству в странах Евросоюза, эти неустанные труженики до сих пор используются во многих недорогих и мощных автономных устройствах (шуруповерты, электробритвы, фонари).

Даже если в инструкции по эксплуатации о типе аккумулятора устройства ничего не сказано, определить то, что именно никель-кадмиевый аккумулятор служит источником тока достаточно просто - чаще всего время зарядки указывается в диапазоне 5-12 часов и присутствует указание на необходимость самостоятельного отключение зарядного по истечению времени заряда.

Для никель-кадмиевых батарей предпочтительнее быстрая импульсная зарядка чем медленная постоянным током. Эти батареи могут выдать большую мощность, что что определяет их выбор для мощных автономных устройств. Никель-кадмиевые батареи единственный тип батарей, который выдерживает полную разрядку при большой нагрузке без каких-либо последствий. Остальные типы батарей требуют неполной разрядки при относительно невысоких мощностных нагрузках.

Никель-кадмиевые батареи не любят длительной зарядки при эпизодической небольшой нагрузке. Периодическая полная разрядка необходима для них как воздух для человека - при отсутствии полной разрядки на электродах образуются большие кристаллы металла (что приводит к проявлению так называемого "эффекта памяти") - аккумулятор скачкообразно теряет свою емкость. Для долгой и эффективной работы NiCd батарей необходимы циклы обслуживания батареи - полная разрядка с последующей полной зарядкой, исходя из большинства рекомендаций - раз в месяц, в крайнем случае раз в 2-3 месяца.

Никель-кадмиевые аккумуляторы являются самыми «дуракоустойчивыми» из современных массовых аккумуляторов - для их использования не требуется даже системы мониторирования параметров аккумулятора, что определяет их использование в недорогих и мощных устройствах.

Зарядка малыми токами за 5-12 часов позволяет обойтись без каких-либо предосторожностей в виде систем контроля заряда-разряда. При перезаряде аккумулятор просто медленно будет терять емкость (на радость производителя). Необходимо помнить об этом при использовании «bad-boy» зарядных устройств (зарядных без механизма автоматического контроля заряда). Поэтому, лучше всего заряжать полностью разряженный аккумулятор и строго соблюдать время зарядки, что позволит сохранить емкость NiCd аккумулятора достаточно долгое время.

При использовании «быстрой» зарядки (со временем заряда менее 5 часов) желательно иметь зарядное устройство с температурным датчиком, поскольку при заряде повышается температура аккумулятора, вместе с температурой растет емкость, с ростом емкости зарядный прибор может перезарядить батарею свыше необходимого уровня, что приводит к еще большему росту температуры (явление «терморазгона» аккумулятора) и, как минимум, к ухудшению параметров батареи. Подобная ситуация существует и при заряде батареи при низких температурах. Температурный датчик позволяет сдвинуть параметры заряда в зависимости от температуры аккумулятора, а также отключить батарею от заряда при превышении скорости роста температуры выше 1 градуса Цельсия в минуту или по достижении температуры батареи в 60 градусов Цельсия что позволяет избежать трагических последствий терморазгона.

В качестве иллюстрации необходимости термодатчика в зарядном могу привести пример двухлетней давности заряда никель-кадмиевой батареи для профессионального шуруповерта на зарядном без термодатчика (на фото - это самое зарядное устройство), позволяющего заряжать батарею ускоренным темпом – за час. В то время была температура в квартире около 30°C, зарядное автоматически должно заряжать аккумулятор до достижения целевого напряжения и автоматически отключаться, что английским по-белому было сказано в инструкции в разделе безопасность. Утром первый аккумулятор из комплекта был заряжен без всяких эксцессов – через 50 минут зарядное отключилось, ближе к вечеру второй аккумулятор при заряде преподнес сюрприз: из-за отсутствия термодатчика в зарядном, батарея вошла в режим терморазгона. Так как заряд был ускоренным проблема была замечена поздно – когда аккумулятор пошел дымом и стал разбрызгивать горячий электролит. Быстро отключенный от сети зарядник удалось спасти. Аккумулятор же еще долго сопел в агонии, пытаясь причинить как можно больше вреда при отходе в мир иной, однако ему это не удалось и вред ограничился стоимостью самого аккумулятора – 15USD. С тех пор зарядное подключается к сети через таймер.

Несмотря на свои недостатки, никель-кадмиевые аккумуляторы до сих пор существуют среди нас. Надеюсь, немного теории и практического опыта, изложенного в статье, позволят читателю получить от никель-кадмиевого аккумулятора своего устройства максимум того, на что он способен.

Copyright © Дмитрий Спицын, 2009.

Канал nespokoyniy рассказал, как восстановить севшую акб, которая установлена на шуруповерте. В нашем случае никель кадмиевый аккумулятор. Купить все нужное для восстановления можно с бесплатной доставкой в этом китайском магазине .
Разобрал коробочки-боксы. Так они выглядят.

Решил восстановить, потому что заряд в никель-кадмиевой акб отсутствует. Причина в том, что несколько банок не набирают емкостей и, соответственно, вся батарея не принимает заряд, работы нет. В батарее 1300 емкость. По одной баночке этим аппаратом пытался зарядить, по очереди. Посмотрел, насколько каждая заряжается. В данном случае, если подписывал верхний банка 1781, 1888, это при том, что норма 1300 написано. На некоторых 68, 73, 50, другие нормально 1340, 1359. Какие-то нормальные, отдельные не берут заряд.

Аккумулятор или любой источник примерно на 12 вольт. На коленках примотал 2 проводка плюс-минус и делаем так называемый старт аккумулятора. На баночку, которая 1.2 вольт, проводками касаемся. Происходит маленький щелчок, на одну секунду, убираем. Делаем так 3-4 раза.
После этого начинаем заряжать по-новому от IMAX B6. В данный момент идет заряд. Видно 1382 уже набрал за примерно 1.5 часа. 1383, 1.76 вольт, процессор решает, сколько вольтаж давать. Сначала программируем, потом задаем. Одна банка 1.2 вольта, заряжается. Та, которая набрала 1387 больше не берет. Изначально предусмотрено 71. Уже, грубо говоря, 1400. После такого старта, короткого касания мощным напряжением, практически 10 кратным. Также здесь, не будем шевелить, могут крокодильчики отцепиться. Так же была банка, указано было 40, набрано 1426 и тому подобное, банка была 80 с чем-то, то есть все набирают больше 1300. Таким образом, планируется прогнать. Еще для этого аккумулятора осталось пару баночек сделать.
Продолжение с 4 минуты на видео о методе восстановления никель-кадмиевого вышедшего из режима работоспособности аккумулятора.

Есть способ .

Три способа отремонтировать аккумулятор шуруповерта

Если у вас вышел из строя аккумулятор шуруповерта, то есть несколько способов его починить.

1. Заменить “дохлую” банку.

Разберем этот способ на примере шуруповерта на12 V, NiCd (никелькадмиевая батарея). Его аккумуляторная батарея внутри имеет 10 банок по 1.2 вольта соединенных последовательно, что на выходе нам дает 12 вольт(1.2*10=12). Емкость всех банок одинаковая, к примеру 1.5 Аh.


При последовательном соединении банок мы имеем на выходе те же 1.5 Аh. Вольтметром замеряем напряжение на каждой банке. Обычно аккумулятор выходит из строя из-за одной банки. У “мертвой” банки напряжение будет ниже всех.


Ее нужно заменить на другую. А где ее взять?Если у вас два “сдохших” аккумулятора, то из двух можно сделать один. Можно спросить у знакомых, у многих есть старые “шурики” в гараже. Можно заказать банку в Китае. Главное чтобы элемент(банка) был полностью идентичен по напряжению и емкости остальным элементам аккумулятора.Покупать банки надо с уже приваренными пластинками, так как паять сами банки не желательно. Припаиваем пластинки между собой как у старых так и у новых элементов.

2 . Полностью заменить все элементы

3. Переделать батарею на литий ионную

Нужно приобрести в Китае высокотоковые литиевые банки нужной емкости, балансировочную плату BMS для их зарядки. Можно купить еще разъем и зарядку для этих банок. Но можно заряжать стандартной зарядкой. Подробно об этой переделке можно прочитать на моем канале.
https://zen.yandex.ru/media/master_dom/

Ремонт акб шуруповерта Makita

Здравствуйте, дорогие читатели. Есть у моего приятеля хороший шуруповерт Makita 6271. “Шурик” классный, хоть и старый, но аккумуляторы уже давно сдохли. Попросил он меня переделать аккумы на литий ионные. Все комплектующие я заказал в Китае, дождался посылок и приступил к переделке.
Из старых “банок” понадобятся только две верхних, на которых сидит клеммная колодка.

Освобождаем корпус и удаляем в нем все пластиковые выступы.

Ставить я решил 3 аккума, типа 18650, балансировочную плату на 20 А и гнездо для зарядки. Аккумуляторы нужны высокотоковые, с током разряда 20 или 30 А.

Скрутил аккумуляторы изолентой и спаял. Паять нужно быстро, не перегревая банку.

Затем припаял необходимые провода к аккумуляторам, следуя схеме на плате.


Провода изначально взял длиннее, чем того требовалось.

После пайки обклеил контакты двухсторонним скотчем.


Гнездо, клеммы и датчик температуры (ТД) соединил следующим образом:


Сам датчик имеет примерно вод такой вид. Его нужно отпаять от минусовой клеммы и припаять к контакту В-, что позволит заряжать батарею родной зарядкой.


Приготовил гнездо для зарядного.


Собрал все элементы, спаял следуя схемам и закрыл корпус.


Гнездо под второе зарядное сделал на всякий случай, цена одного гнезда около 5 рублей.

Если покупать зарядку, то лучше брать с такими параметрами.Все работает, батарея получилась очень легкой. Удачных и вам переделок.