Отчего образуются отложения на стенках двигателя. Отложения в двигателе

Двигатель современного автомобиля достаточно надежен и долговечен, чтобы при грамотной эксплуатации и своевременном техобслуживании "ходить" по 300-400 тыс. км и даже больше. Но как бы ни старались конструкторы и производители, а процессы старения и износа в двигателе неизбежны. Как и образование различных отложений.

Срок эксплуатации современного автомобиля достаточно продолжителен и составляет не менее 10-15 лет. Конечно, за это время весьма вероятны поломки и отказы отдельных деталей и узлов, т.е. резкие, скачкообразные изменения состояния двигателя. Но все же такое случается относительно редко, поскольку носит вероятностный характер. А вот процессы изменения размеров, физических и химических свойств деталей и компонентов происходят пусть медленно, но непрерывно.

Пока такие изменения не вышли за рамки допусков, заложенных конструкторами, потребительские качества двигателя остаются стабильными. Но вот один или несколько параметров оказались за допустимыми пределами.

В работе двигателя сразу возникают нарушения. Нет, об отказах или поломках пока речи нет. Но налицо нарушение работы отдельного компонента, пока еще не приводящее к потере им и, соответственно, двигателем работоспособности.

В отличие от отказов и поломок, относящихся к вероятностным явлениям, описываемые процессы происходят пусть в разной степени, но с абсолютно всеми двигателями. Причем определить, где и в каком месте возникли отклонения, часто намного сложнее, чем установить факт и причину очевидной поломки.

Износ или... отложения?

Начнем с самого неизбежного - износа. С ним приходится мириться, поскольку совсем остановить его нельзя. Хотя замедлить можно - достижения последних лет в материалах и технологии производства двигателей, в разработке моторных масел и фильтров в сочетании с неукоснительным соблюдением правил эксплуатации и обслуживания двигателя дают многочисленные примеры отдаления срока капитального ремонта далеко за 300 тысяч километров.

Получается, что об износе до поры до времени можно и не вспоминать. Поэтому, по крайней мере в течение 100-200 тыс. км пробега, на первый план выходят другие факторы, снижающие реальный срок службы двигателя. И прежде всего это образование различного рода отложений.

Об опасности отложений в системе смазки и картере двигателя, связанных с низким качеством, несоответствием сорта масла или несвоевременной его заменой, мы уже писали (см. "АБС-авто" 3/2000). В то же время отложениям, накапливающимся в топливной системе и впускном коллекторе, камере сгорания, выхлопной системе, не всегда придают значение, считая их чем-то второстепенным. Однако практика показывает, что их влияние на двигатель весьма существенно, а в некоторых случаях - и опасно. Именно об этом и пойдет речь.

Посмотрим на точки и компоненты в конструкции двигателя, в наибольшей степени подверженные накоплению отложений в течение всего срока эксплуатации. Одни из них на работу двигателя практически не влияют либо влияют незначительно. Другие, напротив, вызывают заметные отклонения в работе даже при относительно небольших отложениях. К таким критичным с точки зрения воздействия на двигатель компонентам относятся корпус дроссельной заслонки, тарелки впускных клапанов и, конечно же, форсунки.

Откуда берутся отложения?

Процессы образования отложений и их химический состав весьма различны в разных системах и устройствах. Например, образование отложений в распылительной части форсунок происходит в основном в течение первых 10-20 минут после остановки горячего двигателя, когда форсунки находятся под остаточным давлением топлива. Суть процесса заключается в следующем: пленка топлива, неизбежно остающаяся в зоне седла распылителя, начинает испаряться под действием высокой температуры. Легкие фракции бензина улетучиваются, а более тяжелые образуют слой твердых отложений. Их основным компонентом является углерод.

Отложения на тарелках впускных клапанов имеют более сложный состав. Так, низкокачественное топливо - причина смолистых отложений. Масло, проникающее через изношенные маслосъемные колпачки и зазор между стержнем и втулкой клапана, приводит к отложениям кокса: он образуется в результате высокотемпературного окисления масла, попадающего на горячую тарелку. Кстати, наиболее интенсивно процесс коксования клапанов идет на холостом ходу, движении с малой нагрузкой и при торможении двигателем, когда во впускном коллекторе создается максимальное разрежение.

Моторное масло способствует также загрязнению дроссельной заслонки и каналов регулятора холостого хода, поскольку продукты окисления и загрязнения масла выносятся во впускной коллектор через систему вентиляции картера.

Еще один компонент отложений - сажа. Причина ее образования - сгорание чрезмерно богатой топливовоздушной смеси на режимах холодного пуска, прогрева и ускорения. Попадание сажи в выхлопную систему может постепенно привести к забиванию каналов системы рециркуляции отработавших газов.

У двигателей, длительное время эксплуатирующихся в России, некоторые виды отложений превалируют. Это связано с использованием топлива и масла низкого качества. Именно поэтому двигатель, способный "там" прекрасно работать многие годы, "здесь" сравнительно быстро начинает "капризничать".

Иммунитет к... отложениям?

Нельзя сказать, что конструкторы двигателей забыли об отложениях и просто "умыли руки", переложив эти проблемы на потребителя. Напротив, за последние годы очень многое сделано для выработки двигателями своеобразного "иммунитета" к отложениям. Другими словами, многие узлы и системы у последних моделей двигателей стали малочувствительны к отложениям, т.е. последствия накопления отложений у них сведены к минимуму.

Например, системы топливодозирования уже давно являются адаптивными, т.е. позволяют подстраиваться (правда, в определенных пределах) под внешние условия. А что это за внешние условия? В первую очередь - накопление отложений в распылительной части форсунок. Такой же подход используется теперь в большинстве подсистем холостого хода. Появились и компоненты специальных конструкций - стойкие к отложениям форсунки и дроссельные заслонки с тефлоновым покрытием.

"Иммунитет" к отложениям, обеспечиваемый подобными непростыми и весьма дорогостоящими мероприятиями, сегодня необходим более чем когда-либо. Дело в том, что непрерывно ужесточающиеся требования к токсичности выхлопа, экономичности и удельной мощности прямо ведут к необходимости очень «тонкойЛ настройки двигателя и всех его систем. И получается, что чем современнее двигатель, тем более болезненно он реагирует даже на незначительное количество отложений.

Чем опасны отложения?

Все без исключения отложения объединяет одно - они негативно влияют на работу двигателя. Неудовлетворительные пусковые характеристики, неустойчивая работа на холостом ходу, пропуски воспламенения смеси, «провалыЛ при ускорении, повышенные расход топлива и токсичность выхлопных газов - вот далеко не полный перечень явных симптомов, вызванных появлением «недружественныхЛ образований во впускном тракте двигателя. Но хуже всего то, что эти отложения могут многократно ускорить износ двигателя и даже привести к отказам и поломкам его деталей и компонентов.

В самом деле, какая может быть связь между закоксовыванием форсунок и износом деталей, например, кривошипно-шатунного механизма или цилиндропоршневой группы? Самая прямая: в холодную погоду двигатель пускается не с первого раза, и чем ниже температура, тем больше приходится делать попыток запуска. Ну а каждая такая попытка - это работа сопрягаемых деталей в режиме полусухого или даже сухого трения, эквивалентная с точки зрения износа 20-40, а иногда и 100 км реального пробега.

Как очистить детали от отложений?

Думаем, что подобного примера вполне достаточно, чтобы осознать серьезность проблемы. Как ее можно решить? Первое, что приходит в голову, - просто снять загрязненные компоненты и их очистить химическим или механическим путем. Действительно, такой способ дает наилучшие результаты, но требует слишком много времени. Особенно, когда речь идет о сложных двигателях, в том числе многоцилиндровых. Кроме того, разборка и последующая сборка узлов и систем на современных автомобилях часто требует замены массы прокладок и уплотнительных элементов, которые не всегда лежат под рукой.

Более привлекательна технология безразборной очистки двигателя. Ее основу составляют специальные химические соединения - сольвенты, направленно действующие на конкретные виды отложений. А чтобы удалить отложения в заданной точке, требуется также определенная методика очистки и специальное оборудование. О том, какие сольвенты, методы очистки и оборудование применять в том или другом случае, мы расскажем в наших следующих материалах.

Основные места накопления отложений в двигателях:
1 - корпус дроссельной заслонки и регулятор холостого хода;
2 - впускной коллектор;
3 - топливная рейка;
4 - верхняя часть форсунки;
5 - распылительная часть форсунки;
6 - тарелка впускного клапана;
7 - камера сгорания;
8 - днище поршня;
9 - кислородный датчик;
10 - катализатор;
11 - каналы системы рециркуляций ОГ.

ВЛИЯНИЕ ТЕМПЕРАТУРЫ НА ОТЛОЖЕНИЯ В ДВИГАТЕЛЕ

Исследование отложений в автомобильных двигателях.

Одним из резервов повышения показателей эксплуатационной надежности ДВС является снижение отложений нагаров, лаков и осадков на поверхностях их деталей, контактирующих с моторным маслом. В основе их образования лежат процессы старения масел (окисление углеводородов, входящих в состав масляной основы). Определяющее влияние на процессы окисления масла в двигателях, на образование отложений и эффективность работы ДВС в целом оказывает тепловой режим теплонагруженных деталей.

Ключевые слова: температура, поршень, цилиндр, моторное масло, отложения, нагар, лак, работоспособность, надежность.

Отложения на поверхностях деталей ДВС делятся на три основных вида - нагары, лаки и осадки (шламы).

Нагар - твердые углеродистые вещества, откладывающиеся во время работы двигателя на поверхностях камеры сгорания (КС). При этом отложения нагаров, главным образом, зависят от температурных условий даже при аналогичном составе смеси и одинаковой конструкции деталей двигателей. Нагар оказывает весьма существенное влияние на протекание процесса сгорания топливовоздушной смеси в двигателе и на долговечность его работы. Почти все виды ненормального сгорания (детонационное сгорание, калильное воспламенение и прочие) сопровождаются тем или иным влиянием нагара на поверхностях деталей, образующих КС.

Лак - продукт изменения (окисления) тонких масляных пленок, растекающихся и покрывающих детали цилиндропоршневой группы (ЦПГ) двигателя под действием высоких температур. Наибольший вред для ДВС наносит лакообразование в зоне поршневых колец, вызывая процессы их закоксовывания (залегания с потерей подвижности). Лаки, откладываясь на поверхностях поршня, контактирующих с маслом, нарушают должную теплопередачу через поршень, ухудшают теплоотвод от него.

На количество осадков (шламов), образующихся в ДВС, решающее влияние оказывает качество моторного масла, температурный режим деталей, конструкционные особенности двигателя и условия эксплуатации. Отложения этого типа наиболее характерны для условий зимней эксплуатации, интенсифицируются при частых пусках и остановках двигателя.

Тепловое состояние ДВС оказывает определяющее влияние на процессы образования различных видов отложений, прочностные показатели материалов деталей, выходные эффективные показатели двигателей, процессы изнашивания поверхностей деталей. В этой связи необходимо знать пороговые значения температур деталей ЦПГ, по крайней мере, в характерных точках, превышение которых приводит к указанным ранее негативным по следствиям.

Температурное состояние деталей ЦПГ ДВС целесообразно анализировать по значениям температур в характерных точках, расположение которых показано на рис. 1 . Значения температур в данных точках следует учитывать при производстве, испытаниях и доводке двигателей для оптимизации конструкций деталей, при выборе моторных масел, при сравнении тепловых состояний различных двигателей, при решении целого ряда других технических проблем конструирования и эксплуатации ДВС.

Рис. 1. Характерные точки цилиндра и поршня ДВС при анализе их температурного состояния для дизельных (а) и бензиновых (б) двигателей

Эти значения имеют критические уровни:

1. Максимальное значение температур в точке 1 (в дизельных двигателях - на кромке КС, в бензиновых - в центре донышка поршня) не должно превышать 350С (кратковременно, 380С) для всех серийно применяемых в автомобильном двигателестроении алюминиевых сплавов, иначе происходит оплавление кромок КС в дизелях и, нередко, прогар поршней в бензиновых двигателях. Ко всему прочему высокие температуры огневой поверхности днища поршня вызывают образование нагаров высокой твердости на этой поверхности. В практике двигателестроения это критическое значение температуры удается повышать путем добавления в поршневой сплав кремния, бериллия, циркония, титана и других элементов.

Недопущение превышения критических значений температур в этой точке, равно как и в объемах деталей ДВС, обеспечивается также путем оптимизации их форм и правильной организацией охлаждения. Превышение температурами деталей ЦПГ двигателей допустимых значений обычно является основным сдерживающим фактором для форсирования их по мощности. По температурным уровням следует иметь определенный запас с учетом возможных экстремальных условий эксплуатации.

2. Критическое значение температур в точке 2 поршня - над верхним компрессионным кольцом (ВКК) - 250…260С (кратковременно, до 290С). При превышении этой величины все массовые моторные масла коксуются (происходит интенсивное лакообразование), что приводит к “залеганию” поршневых колец, то есть потере их подвижности, и в результате - к существенному уменьшению компрессии, увеличению расхода моторного масла и др.

3. Предельное максимальное значение температур в точке 3 поршня (точка расположена симметрично по сечению головки поршня на внутренней его стороне) - 220С. При более высоких температурах на внутренней поверхности поршня происходит интенсивное лакообразование. Лаковые отложения, в свою очередь, являются мощным тепловым барьером, препятствующим теплоотводу через масло. Это автоматически приводит к повышению температур во всем объеме поршня, а значит, и на поверхности зеркала цилиндра.

4. Максимально допустимое значение температур в точке 4 (расположена на поверхности цилиндра, напротив места остановки ВКК в ВМТ) - 200С. При его превышении моторное масло разжижается, что приводит к потере стабильности образования масляной пленки на зеркале цилиндра и «сухому» трению колец по зеркалу. Это вызывает интенсификацию молекулярно-механического изнашивания деталей ЦПГ. С другой стороны, известно, что пониженная температура стенок цилиндра (ниже точки росы отработавших газов) способствует ускорению их коррозионно-механического изнашивания . Ухудшается также смесеобразование и уменьшается скорость сгорания топливовоздушной смеси, что снижает эффективность и экономичность работы двигателя, вызывая повышение токсичности отработавших газов. Также следует отметить, что при существенно заниженных температурах поршня и цилиндра сконденсированные водяные пары, проникающие в картерное масло, вызывают интенсивную коагуляцию примесей и гидролиз присадок с образованием осадков - «шламов». Эти осадки, загрязняя масляные каналы, сетки маслоотстойников, масляные фильтры, существенно нарушают нормальную работу смазочной системы.

На интенсивность протекания процессов образования отложений нагаров, лаков и осадков на поверхностях деталей ДВС существенно влияет старение моторных масел при их работе. Старение масел состоит в накоплении примесей (в том числе воды), изменении их физико-химических свойств и окислении углеводородов.

Изменение фракционного состава чистого залитого масла по мере работы двигателя вызывается в основном причинами, изменяющими состав его масляной основы и процентное соотношение присадок по отдельным составляющим (парафиновым, ароматическим, нафтеновым).

К ним относятся:

    процессы термического разложения масла в зонах перегрева (например, в клапанных втулках, зонах верхних поршневых колец, на поверхностях верхних поясов зеркала цилиндров). Такие процессы приводят к окислению наиболее легких фракций масляной основы или даже их частичному выкипанию;

    добавление к углеводородам основы неиспарившегося топлива, попадающего в начальные периоды пусков (или при резком увеличении подачи топлива в цилиндры для осуществления ускорения автомобиля) в маслосборник картера через зону поршневых уплотнений;

    попадание в поддон картера или маслосборник двигателя воды, образующейся при сго-рании топлива в КС цилиндров.

Если система вентиляции картера действует достаточно эффективно, а стенки картера находятся в подогретом состоянии до 90-95°С, вода не конденсируется на них и удаляется в атмосферу системой вентиляции картера. Если температура стенок картера существенно понижена, то попавшая в масло вода будет принимать участие в процессах его окисления. Количество сконденсировавшейся воды при этом может быть весьма значительным . Даже если считать, что только 2% газов могут прорваться через все компрессионные кольца цилиндра, то через картер двигателя с рабочим объемом 2-2,5 л за каждые 1000 км пробега будет прокачиваться по 2 кг воды. Допустим, что 95% воды удаляется системой вентиляции картера, то все равно после пробега в 5000 км на 4,0 л моторного масла будет приходиться около 0,5 л Н2О. Эта вода при работе двигателя преобразуется антиокислительной присадкой, содержащейся в моторном масле, в примеси - кокс и золу.

По указанным ранее причинам необходимо поддерживать при работе двигателя температуру стенок картера достаточно высокой, а в случае необходимости - применять системы смазки с сухим картером и отдельным масляным баком.

Следует отметить, что мероприятия, замедляющие процессы изменения состава масляной основы, существенно замедляют образование нагара, лака и осадков, а также снижают интенсивность изнашивания основных деталей автомобильных двигателей.

Фракционный и химический состав масел может изменяться в достаточно широких
пределах под влиянием различных факторов:

    характера сырья, зависящего от месторождения, свойств нефтяной скважины;

    особенностей технологии изготовления моторных масел;

    особенностей транспортировки и длительности хранения масел.

Для предварительной оценки свойств нефтепродуктов применяют различные лабораторные методы: определение кривой разгонки, температур вспышки, помутнения и застывания, оценку окисляемости в средах с различной агрессивностью и т.п.

В основе старения автомобильного моторного масла лежат процессы окисления, разложения и полимеризации углеводородов, которые сопровождаются процессами загрязнения масла различными примесями (нагаром, пылью, металлическими частичками, водой, топливом и пр.). Процессы старения существенно изменяют физико-химические свойства масла, приводят к появлению в нѐм разнообразных продуктов окисления и износа, ухудшают его эксплуатационные качества. Различают следующие виды окисления масла в двигателях: в толстом слое - в поддоне картера или в масляном баке; в тонком слое -на поверхностях горячих металлических деталей; в туманообразном (капельном) состоянии - в картере, клапанной коробке и т.п. При этом окисление масла в толстом слое даѐт осадки в виде шлама, а в тонком слое - в виде лака.

Окисление углеводородов подчиняется теории перекисей А.Н. Баха и К.О. Энглера, дополненной П.Н. Черножуковым и С.Э. Крейном. Окисление углеводородов, в частности, в моторных маслах ДВС, может идти по двум основным направлениям, представленным на рис. 2, результаты окисления по которым различны. При этом результатом окисления по первому направлению являются кислые продукты (кислоты, оксикислоты, эстолиды и асфальтогенные кислоты), образующие осадки при пониженных температурах; результатом окисления по второму направлению являются нейтральные продукты (карбены, карбоиды, асфальтены и смолы), из которых образуются в различных пропорциях при повышенных температурах или лаки, или нагары.

Рис. 2. Пути окисления углеводородов в нефтяном продукте (например, в моторном масле для ДВС)

В процессах старения масла весьма значительна роль воды, попадающей в масло при конденсации ее паров из картерных газов или другими путями. В результате этого образуются эмульсии, которые впоследствии усиливают окислительную полимеризацию молекул масла. Взаимодействие оксикислот и других продуктов окисления масла с водомасляными эмульсиями вызывает усиленное образование осадков (шламов) в двигателе.

В свою очередь, образовавшиеся частички шлама, если они не будут нейтрализованы присадкой, служат центрами катализации и ускоряют разложение еще не окислившейся части масла. Если при этом не произвести своевременную замену моторного масла, процесс окисления будет происходить по типу цепной реакции с увеличивающейся скоростью, со всеми вытекающими отсюда последствиями.

Решающее влияние на образование нагаров, лаков и осадков на поверхностях деталей ДВС, контактирующих с моторным маслом, оказывает их тепловое состояние. В свою очередь, конструкционные особенности двигателей, условия их эксплуатации, режимы работы и т.д. определяют тепловое состояние двигателей и влияют, таким образом, на процессы образования отложений.

Не менее важное влияние на образование отложений в ДВС оказывают и характеристики применяемого моторного масла. Для каждого конкретного двигателя важно соответствие рекомендованного заводом-изготовителем масла температуре поверхностей деталей, контактирующих с ним.

В данной работе произведен анализ взаимосвязи температур поверхностей поршней двигателей ЗМЗ-402.10 и ЗМЗ-5234.10 и процессов образования на них отложений нагаров и лаков, а также произведена оценка осадкообразования на поверхностях картера и клапанной крышки двигателей при использовании рекомендованного заводом изготовителем моторного масла М 63/12Г1.

Для исследования зависимостей количественных характеристик отложений в двигателях от их теплового состояния и условий работы можно использовать различные методики, например, Л-4 (Англия), 344-Т (США), ПЗВ (СССР) и др. . В частности, по методике 344-Т, являющейся нормативным документом США, состояние «чистого» неизношенного двигателя оценивается в 0 баллов; состояние предельно изношенного и загрязненного двигателя в 10 баллов. Аналогичной методикой оценки лакообразования на поверхностях поршней является отечественная методика ПЗВ (авторы - К.К. Папок, А.П. Зарубин, А.В. Виппер), цветовая шкала которой имеет баллы от 0 (отсутствие лаковых отложений) до 6 (максимальные отложения лака). Для пересчета баллов шкалы ПЗВ в баллы методики 344-Т показания первой необходимо увеличить в полтора раза. Указанная методика аналогична отечественной методике отрицательной оценки отложений ВНИИ НП (10 балльная шкала).

Для экспериментальных исследований использовались по 10 двигателей ЗМЗ-402.10 и ЗМЗ-5234.10 . Эксперименты по исследованию процессов образования отложений проводились совместно с лабораториями испытаний легковых и грузовых автомобилей УКЭР ГАЗ на моторных стендах. В процессе испытаний, кроме прочего, контролировались расходы воздуха и топлива, давление и температура отработавших газов, температура масла и охлаждающей жидкости. При этом на стендах выдерживались режимы: частота вращения коленчатого вала, соответствующая максимальной мощности (100% нагрузки), и, поочередно, в течение 3,5 часов - 70% нагрузки, 50% нагрузки, 40% нагрузки, 25% нагрузки и без нагрузки (при закрытых дроссельных заслонках), т.е. эксперименты проведены по нагрузочным характеристикам двигателей. При этом температура охлаждающей жидкости выдерживалась в интервале 90…92С, температура масла в главной масляной магистрали - 90…95С. После этого двигатели разбирались и производились необходимые замеры.

Предварительно были проведены исследования по изменению физико-химических параметров моторных масел при испытаниях двигателей ЗМЗ-402.10 в составе автомобилей ГАЗ-3110 на автополигоне УКЭР ГАЗ. При этом выдержаны условия: средняя техническая скорость 30…32 км/ч, температура окружающего воздуха 18…26С, пробег до 5000 км. В результате испытаний получено - при увеличении пробегов автомобилей (времени работы двигателей) увеличивалось количество механических примесей и воды в моторных маслах, его коксовое число и зольность, происходили прочие изменения, что представлено в табл. 1

Нагарообразование на поверхностях днищ поршней двигателей ЗМЗ-5234.10 характеризовалось данными, представленными на рис. 3 (для двигателей ЗМЗ-402.10 результаты подобны). Из анализа рисунка следует, что при повышении температур днищ поршней от 100 до 300С толщина (зона существования) нагара уменьшалась с 0,45…0,50 до 0,10…0,15 мм, что объясняется выжиганием нагара при повышении температуры поверхностей двигателей. Твердость же нагара повышалась с 0,5 до 4,0…4,5 баллов по причине спекания нагара при высоких температурах.

Рис. 3. Зависимости нагарообразования на поверхностях днищ поршней двигателей ЗМЗ-5234.10 от их температур:
а - толщина нагара; б - твердость нагара;
символами нанесены усредненные экспериментальные значения

Оценка величин отложений лаков на боковых поверхностях поршней и их внутренних (нерабочих) поверхностях производилась также по десятибалльной шкале, согласно методике 344-Т, используемой во всех ведущих научно-исследовательских учреждениях страны.

Данные по лакообразованию на поверхностях поршней двигателей представлены на рис. 4 (результаты по исследуемым маркам двигателей совпадают). Режимы испытаний указаны ранее и соответствуют режимам при исследованиях нагарообразования на деталях.

Из анализа рисунка следует, что лакообразование на поверхностях поршней двигателей однозначно увеличивается с увеличением температур их поверхностей. На интенсивность лакообразования влияет не только повышение температур поверхностей деталей, но и длительность ее действия, т.е. продолжительность работы двигателей . При этом, однако, процессы лакообразования на рабочих (трущихся) поверхностях поршней существенно замедляются по сравнению с внутренними (нерабочими) поверхностями, вследствие стирания слоя лака в результате трения.

Рис. 4. Зависимости отложений лака на поверхностях поршней двигателей ЗМЗ-5234.10 от их температур:
а - внутренние поверхности; б - боковые поверхности; символами нанесены усредненные экспериментальные значения

Нагаро- и лакообразование на поверхностях деталей существенно интенсифицируется при применении масел групп «Б» и «В», что подтверждено рядом исследований, проведенных авторами на подобных и других типах автомобильных двигателей.

Планомерное увеличение отложений лаков на внутренних (нерабочих) поверхностях поршней вызывает уменьшение теплоотвода в картерное масло при увеличении наработки двигателей. Это вызывает, например, постепенное увеличение уровня теплового состояния двигателей по мере приближения наработки к смене масла при очередном ТО-2 автомобиля.

Образование осадков (шламов) из моторных масел происходит в наибольшей степени на поверхностях картера и клапанной крышки. Результаты исследований осадкообразования в двигателях ЗМЗ-5234.10 представлены на рис. 5 (для двигателей ЗМЗ-402.10 результаты подобны). Осадкообразование на поверхностях указанных ранее деталей оценивалось в зависимости от их температур, для измерения которых были смонтированы термопары (приварены конденсаторной сваркой): на поверхностях картера по 5 штук у каждого двигателя, на поверхностях клапанных крышек - по 3 штуки.

Как следует из рис. 5, при повышении температур поверхностей деталей двигателей осадкообразование на них уменьшается вследствие уменьшения содержания воды в картерном масле, что не противоречит результатам ранее проведенных экспериментов другими исследователями. Во всех двигателях осадкообразование на поверхностях деталей картера оказались больше, чем на поверхностях клапанных крышек.

На моторных маслах групп форсирования «Б» и «В» осадкообразование на деталях ДВС, контактирующих с моторным маслом, происходит интенсивнее, чем на маслах групп форсирования «Г», что подтверждено рядом исследований .

В данной работе исследования отложений на зеркалах цилиндров при эксплуатации двигателей на самых современных маслах не проводилось, однако, можно уверенно предположить, что для исследуемых двигателей они будут не больше, чем при их работе на менее качественных маслах.

Полученные результаты по взаимосвязи изменения температур основных деталей двигателей ЗМЗ-402.10 и ЗМЗ-5234.10 (поршней, цилиндров, клапанных крышек и масляных картеров) и количества отложений позволили выявить закономерности процессов образования нагаров, лаков и осадков на поверхностях указанных деталей. Для этого результаты аппроксимированы функциональными зависимостями методом наименьших квадратов и представлены на рис. 3-5. Полученные закономерности процессов образования отложений на поверхностях деталей автомобильных карбюраторных двигателей должны учитываться и использоваться конструкторами и инженерно-техническими работниками, занимающимися доводкой и эксплуатацией ДВС.

Двигатель автомобиля работает с наибольшей эффективностью лишь при определенных условиях. Оптимальный температурный режим теплонагруженных деталей является одним из таких условий и обеспечивает высокие технические характеристики двигателя с одновременным снижением износов, отложений и, следовательно, повышением показателей его надежности.

Оптимальное тепловое состояние ДВС характеризуется оптимальными температурами поверхностей их теплонагруженных деталей. Анализируя проведенные исследования процессов образования отложений на деталях исследуемых карбюраторных двигателей ЗМЗ и подобные исследования по бензиновым двигателям , можно с достаточной степенью точности определить интервалы оптимальных и опасных температур поверхностей деталей данного класса двигателей. Полученная информация представлена в табл. 2.

При температурах деталей двигателей в опасной низкотемпературной зоне увеличивается толщина нагара на поверхностях деталей, образующих КС, что приводит к возникновению детонационного сгорания топливовоздушных смесей, а также при низких температурах поверхностей деталей двигателей на них увеличивается количество осадков из моторных масел. Все это нарушает нормальную работу двигателей. В свою очередь отложения приводят к перераспределению тепловых потоков, проходящих через поршни, и повышению температур поршней в критических точках - в центре огневой поверхности днища поршня и в канавке ВКК. Температурное поле поршня двигателя ЗМЗ-5234.10 с учетом отложений нагаров и лаков на его поверхностях представлено на рис. 7.

Задача теплопроводности методом конечных элементов решалась с ГУ 1-рода, полученными при термометрировании поршня на режиме номинальной мощности при стендовых испытаниях двигателя. Термоэлектрические эксперименты проводились с тем же поршнем, для которого предварительно выполнены исследования температурного состояния без учета отложений. Эксперименты осуществлялись при идентичных условиях. Предварительно двигатель работал на стенде более 80 часов, после чего наступает стабилизация нагаров и лаков. В результате, температура в центре днища поршня повысилась на 24°С, в зоне канавки ВКК - на 26°С в сравнении с моделью поршня без учета отложений. Значение температуры поверхности поршня над ВКК 238°С входит в опасную высокотемпературную зону (табл. 2). Близко к опасной высокотемпературной зоне и значение температуры в центре днища поршня.

На этапе проектирования и доводки двигателей влияние отложений нагаров на тепловоспринимающих поверхностях поршней и лаков на их поверхностях, контактирующих с моторным маслом, учитывается крайне редко. Это обстоятельство в совокупности с эксплуатацией двигателей в составе АТС при повышенных тепловых нагрузках увеличивает вероятность отказов - прогары поршней, закоксовывание поршневых колец и т.д.

Н.А Кузьмин, В.В. Зеленцов, И.О. Донато

Нижегородский государственный технический университет им. Р.Е. Алексеева, Управление автомагистрали “Москва — Н.Новгород»

Отложения в двигателе

Сувеличением вязкости масла количество осадков в двигателе уменьшается.Отложения в двигателе представляют собой липкие мазеобразные веществаот серокоричневого до чёрного цвета, откладывающиеся во время работы вдвигателе, в картере, в клапанной крышке, в маслосистеме и в фильтрах.В основном, это эмульсия воды в масле, загрязненном различнымипримесями. Попадание воды в масло является одной из основных причинобразования отложений. Состав отложений непостоянен и зависит отусловий, при которых он образуется.


Соотношение веществ, входящих в составосадков, может резко меняться, однако их содержание колеблется вследующих пределах (в вес. %):
- Масло...............................50-85,
- Вода.................................5-35,
- Топливо...........................1-7,
- Оксикислоты....................2-15,
- Асфальтены..................... 0,1-1,5,
- Карбены, карбоиды..........2-10,
- Зола..................................1-7.

Наличиеотложений в двигателе представляет большую опасность. Они могутзакупорить маслопроводные каналы, маслоприемник и фильтр. Если приёмникмасляного насоса и маслопроводы будут забиты осадками, то нарушитсянормальная подача масла, в результате чего может произойти выплавлениевкладышей подшипников, задир шеек коленчатого вала и даже авариядвигателя. Если масляный фильтр забит осадком, то к трущимся деталямпоступает неочищенное загрязнённое масло, вследствие чего резкоповышается износ деталей, возникает опасность пригорания поршневыхколец и т.д. При наличии в двигателе осадка качество нового залитогомасла резко ухудшается. Кроме того отложения могут со временемуплотняться и затвердевать так, что от них трудно очистить детали дажемеханическим способом. Поэтому, чем чаще меняется отработанное масло,тем меньше осадкообразование в двигателе. Также на количество осадков вдвигателе влияет вентиляция картера двигателя, т.к. вентиляция изкартера способствует удалению паров воды и газа, прорывающихся изкамеры сгорания. При плохой вентиляции даже применение самых лучшихсортов бензина и масла не спасает от образования отложений.

Необходимоучитывать температурные факторы: влияние температуры воздуха на входе ввпускной коллектор (карбюратор) - с повышением Т? воздуха на входе,осадкообразование в двигателе уменьшается; влияние температурыохлаждающей жидкости: при высокой температуре охлаждающей жидкостивозможность конденсации паров воды в картере меньше, поэтомуосадкообразование в двигателе меньше. Из других факторов оказываетвлияние фракционность горючего: чем тяжелее фракционный составгорючего, тем большее его количество проникает в картер и приводит кросту отложений. При работе двигателя на этилированных бензинах в масловместе с бензином попадает свинец, соединения которого резко ускоряютосадкообразование, также этому способствует плохое смесеобразование исгорание горючего. Поэтому любые меры, улучшающие смесеобразование исгорание горючего, снижают интенсивность осадкообразования. К этому жеэффекту приводит повышение температуры рабочей смеси. В качестве весьмасущественного фактора, влияющего на появление осадков следует указатьрежим работы двигателя: работа на лёгких режимах наиболее опасна, таккак при этом создаются наиболее благоприятные условия дляосадкообразования. Эксплуатация машины с небольшой скоростью, с малыминагрузками, частыми и длительными остановками, работой двигателя нахолостом ходу приводит к пониженным рабочим температурам в двигателе,более сильному загрязнению картерного масла продуктами неполногосгорания горючего, разжижению масла горючим.

Отложения условно можно разделить на следующие виды:
1. Нарушающие циркуляцию масла вследствие забивания сеткимаслоприемников и маслоподводящих каналов, что приводит к недостаточнойсмазке основных узлов трения.
2. Способствующие преждевременному выходу из строя отдельных деталей:
а) отложения на клапанах, что может привести к прогоранию и/или прогару клапанов;
б) отложения в зоне поршневых колец, вызывающие их закоксовывание;
в) отложения нагара в камере сгорания, которые приводят к потеремощности, неуправляемому (калильному) сгоранию и возникновениюдетонации;
г) образованию твердых осадков в картерах, которые, попадая к трущимся поверхностям, вызывают их быстрый износ.
В зависимости от температурных условий деталей все виды отложений можно разбить на 3 основные группы:
1. Высокотемпературные, основная причина образования которых - недостаточная стабильность и низкие моющие свойства масел.
2. Среднетемпературные.
3. Низкотемпературные, образование которых тесно связано с попаданием в масло воды, сажи и несгоревшего топлива.

Механизмобразования высокотемпературных отложений был рассмотрен выше(Закоксовывание поршневых колец. Работа масла в узле трения). Неменьшую опасность для машины представляют и низкотемпературныеотложения. Наиболее интенсивно низкотемпературные отложения образуютсяв условиях коротких ездок с частыми пусками и остановками (городскойцикл), с увеличением длины пробега автомобиля нарушения, связанные собразованием осадков (особенно низкотемпературных), почти полностьюисчезают. В настоящее время масла с моющими присадками, предназначенныедля тяжелых условий работы, получили широкое распространение. Эти маслаудерживают осадки и продукты загрязнения в мелкодисперсном состоянии иуменьшают опасность их выпадения, сохраняют детали двигателя чистыми впроцессе их эксплуатации.

Механизм образования низкотемпературных отложений можно представить в следующем виде:
1. Значительное загрязнение масла продуктами сгорания топлива главнымобразом наблюдается при работе двигателя на холостом ходу и резкоуменьшается при нагрузке двигателя. Можно предположить, что основнойпричиной столь интенсивного загрязнения масла является чрезмернобогатая топливовоздушная смесь.
2. Работа двигателя на низкотемпературном режиме способствует попаданию водяных паров и горючего в картер двигателя.
3. Для снижения интенсивности загрязнения масла температуру в рубашкеохлаждения и масла в картере необходимо поддерживать равной по меньшеймере 70°С.
4. Недостаточно эффективная вентиляция картера способствует загрязнению масла и не позволяет удалять агрессивные продукты.
5. Низкотемпературные осадки представляют собой жидкую мазеобразнуюмассу, выпадающую из масла после превышения его "несущей способности".Большие нагрузки и частота вращения и, соответственно, более высокиетемпературы способствуют превращению жидких осадков в более твердые илипкие отложения.
6. Работа двигателя на переменном режиме ведетк образованию как низкотемпературных осадков, так и высокотемпературныхотложений в зоне поршневых колец.

Предупреждение загрязнений и образования осадков

Интенсивноеобразование отложений может быть причиной неисправностей и отказов вдвигателе, ходовой части и других элементах автомобиля. Прииспользовании масел с низкими эксплуатационными свойствами вфорсированных установках процессы образования как низкотемпературных,так и высокотемпературных отложений проходят с более высокой скоростью.

В связи с этим полезно знать некоторые рекомендации, позволяющиеуменьшить осадкообразование и тем самым продлить срок службы масел иавтомобиля в целом:
1. Важно, чтобы после запуска двигателятемпературу в системе охлаждения как можно быстрее поднять до 60-70°С.Необходимо обеспечить безупречную работу термостата в соответствующихтемпературных условиях.
2. При низких температурах необходимоустановить шторки у радиатора, чтобы уменьшить охлаждение жидкости.Следует предусмотреть возможность изменения утепления радиатора взависимости от температуры воздуха.
3. Для облегчения испарения топлива, удаления топлива и воды из картера температура масла должна быть не ниже 70°С.
4. Поддоны картера очень быстро охлаждаются, поэтому необходимо егоутеплить или установить специальный щиток, предохраняющий поддонкартера от потока холодного воздуха. Полезно также утеплить и клапаннуюкоробку.
5. Внимательно контролировать работу карбюратора и регулировать его. На богатых смесях осадки образуются более интенсивно.
6. Следует:
а) регулярно проверять работу системы зажигания, так как перебои и разрегулировка ее работы способствуют загрязнению масла;
б) не забывать контролировать состояние свечей, зачищать и регулировать контакты между электродами.
7. Проверять состояние и регулировки топливного насоса высокогодавления и форсунок дизеля, следить за состоянием топливных фильтрующихэлементов.
8. Следует избегать длительной работы двигателя нахолостом ходу или прогрева его в холодную погоду. Трогаться с местанеобходимо сразу же, как только установится давление масла (Прогреватьили не прогревать двигатель). При работе на холостом ходу многиедвигатели не удается прогреть в достаточной степени.
9.Контролировать систему вентиляции картера, периодически очищать ее, впротивном случае наблюдается повышенное загрязнение масла.
10.Проверять работу воздушных фильтров; загрязнение воздухоочистителейприводит к обогащению топливовоздушной смеси и уменьшению полнотысгорания.
11. При замене масло следует сливать сразу после остановки двигателя, пока масло и двигатель еще горячие.
12. Смену масла следует производить в такие сроки, чтобы в нем ненакапливались продукты загрязнения в количестве, опасном с точки зренияосадкообразования. При использовании низкокачественных масел необходимочаще менять масло для удаления продуктов загрязнения до образования ихв опасном количестве.
13. Вместе с заменой моторного масла сменить фильтрующий элемент.
14. Необходимо периодически вскрывать картер двигателя для очисткиподдона картера и сетки маслоприемника, не допуская снижения подачимасла к узлам трения (периодическая, но не запоздалая, промывкадвигателя промывочными маслами или жидкостями позволяет этого недопускать). При работе ДВС на маслах низких групп качества желательноэту операцию производить чаще.
15. При появлении на внутреннейповерхности маслозаливной крышки или на масляном щупе капелек воды илибеловатого (пенного) налета следует проверить состояние прокладкиголовки блока и при необходимости заменить ее, чтобы предотвратитьпопадание воды (охлаждающей жидкости) в масляную систему. Следует иметьввиду, что зимой при частых коротких поездках при охлаждении горячегодвигателя на внутренней стороне клапанной крышки образовываетсяконденсат, образуя на ней эмульсию. Со временем, растворяясь в общемобъеме масла в двигателе, она приводит к более быстрому старению масла.
16. Избегать смешивания/доливки моторных масел различных марок, т.к.нельзя однозначно гарантировать их совместимости. Невозможнопредсказать совместимость пакетов присадок, входящих в состав масел(суммарное содержание может достигать более 20%), поскольку базовыемасла в своем большинстве совместимы. Химические вещества, входящие всостав пакета присадок, могут быть несовместимы между собой.Несовместимость может выражаться по-разному: резкое изменениепрозрачности или потемнение масла после их смешивания, вспенивание;расслоение или выпадение осадка; резкое окисление смеси - образование вдвигателе мазеобразных отложений.

Все примеси, которые попадают в двигатель с посту­пающим для сгорания воздухом, находящиеся в топливе или в масле, а также продукты износа деталей могут участвовать в образовании на них отложений. Количест­во и состав загрязнений зависят от конструкции, техни­ческого состояния, режима работы двигателя, своевре­менности и тщательности проведения технического обслуживания. Но особенно большое влияние на интенсивность образования высокотемпературных отложений оказывает качество сжигаемого топлива и применяемого масла. В стандартах, как на бензин, так и на дизельное топливо нормируются показатели, которые влияют на образование высокотемпературных отложений . Остано­вимся кратко на их рассмотрении.

В бензине и дизельном топливе в растворенном со­стоянии практически всегда содержатся смолистые и смолообразующие соединения, количество которых зависит от вида и состава топлива, технологии его получения и способов очистки. При хранении, особенно в неблагопри­ятных условиях (плохая герметизация резервуаров, на­личие в них осадков и воды, хранение при повышенной температуре), количество смол увеличивается, иногда значительно, тогда топливо темнеет, а в некоторых слу­чаях в нем накапливаются отложения. Более тяжелое по фракционному составу топливо, например дизельное, содержит большее количество смолистых соединений, что приводит к его неполному сгоранию и значительному накоплению нагаров на деталях двигателей.

Содержащиеся в топливе смолы откладываются в топливных баках, на стенках трубопроводов, забивают жиклеры карбюраторных двигателей. Смолистые соеди­нения накапливаются также на горячих стенках впускного коллектора карбюраторных двигателей, на соплах форсунок дизелей, на клапанах и днище поршня, в камере сгорания, в поршневых канавках и др. При большом на­коплении нагаров повышается износ двигателя, ухуд­шается процесс сгорания топлива, увеличивается его расход, а иногда двигатель полностью выходит из строя.

Различают смолы фактические, т. е. находящиеся в топливе в момент их определения в растворенном состо­янии, и смолообразующие вещества - различные нестой­кие соединения, например непредельные углеводороды, которые под действием времени, повышенной температу­ры, кислорода воздуха и других факторов переходят в смолы (их часто называют потенциальными смолами).

Стандартами нормируется содержание фактических смол . Сущность их определения заключается в испарении горячим воздухом определенного количества топлива при повышенной температуре (для бензина 150°С, дизельного топлива 250°С). Остаток, полученный после испарения, указывает на наличие фактических смол, ко­торое оценивают в миллиграммах на 100 мл топлива. Для бензина различных марок оно составляет до 7- 15 мг/100 мл, а для дизельного топлива - до 30-60 мг/100 мл.

Если содержание фактических смол отвечает требова­ниям стандартов, двигатели длительное время работают без повышенного смоло- и нагарообразования. Нередко при эксплуатации техники содержание смол в топливе значительно больше. Доказано, что если оно в два-три раза выше нормы, то моторный ресурс карбюраторного двига­теля снижается на 20-25%, а дизельного - на 40%. Кроме того, при эксплуатации возникают различные не­поладки: зависают клапаны, закоксовываются форсун­ки и т. д.

Склонность бензина к накоплению смолистых веществ (стабильность) оценивают индукционным пери­одом, который характеризует способность бензина со­хранять неизменный состав при правильных условиях перевозки, хранения и использования. Определяют этот показатель в лабораторной установке при искусствен­ном окислении бензина (температура 100°С в атмо­сфере сухого и чистого кислорода при давлении 0,7 МПа (7 кгс/см2). Индукционный период - это время в мину­тах от начала окисления бензина до активного поглоще­ния им кислорода. Для различных марок это значение находится в пределах 600-900 мин, а для бензинов со знаком качества оно составляет 1200 мин. Индукционный период большинства современных марок - не менее 900 мин. Как установлено исследованиями, такой бензин можно хранить до 1,0-1,5 лет, не опасаясь заметного ухудшения качества.

Для карбюраторных двигателей наиболее характер­но накопление смолистых отложений, которые обнару­живаются в бензоотстойниках, на деталях карбюратора. При образовании горючей смеси смолистые соединения не могут испаряться и откладываются во всасывающем трубопроводе и на клапанах. В результате клапан пере­стает закрываться и зависает. Эти смолистые отложения и вызывают различные неполадки в работе топливоподающей аппаратуры и двигателя.

Для дизелей особенно нежелательно отложение ла­ков и нагаров на соплах форсунок, нарушающих, нор­мальный распыл подаваемого топлива, а следовательно, и его сгорание. В стандартах на дизельное топливо кроме фактических смол нормируют коксуемость и золь­ность, повышенное содержание которых вызывает ин­тенсивное образование нагаров.

Большой вред (не только ускоренное образование на­гара, но и быстрый износ деталей топливоподающей ап­паратуры и двигателя в целом) наносят абразивные ме­ханические примеси , попадающие в двигатель с топливом и воздухом. По стандарту в бензине и дизельном топливе наличие механических примесей не допускается. Одна­ко при хранении, транспортировке, приемо-отпускных операциях топливо обычно загрязняется пылью и песком из окружающего воздуха. Даже в чистом по внешнему виду топливе почти всегда содержится какое-то количест­во примесей. Вместе со смолистыми и коксообразующими веществами эти посторонние включения приводят к увеличению высокотемпературных отложений. Кроме то­го, проникающие в двигатель пылинки ускоряют его из­нос.

Если в топливе содержатся абразивные механические примеси, то срок службы насоса высокого давления в за­висимости от загрязненности сокращается в пять-шесть раз. Абразив сокращает срок службы не только топли­воподающей аппаратуры . Когда в камеру сгорания поступает загрязненное топливо, механические примеси проникают в зазоры между поршневыми кольцами и гильзой цилиндра, что ведет к их повышенному износу, и как следствие - к падению мощности, ухудшению эко­номичности, необходимости преждевременного ремонта.

Осадки или маслоотложения в двигателе представляют собой липкие мазеобразные вещества от серокоричневого до черного цвета, откладывающиеся во время работы в двигателе: картере, в клапанной коробке, маслосистеме и на фильтрах. В целом, это эмульсия воды в масле, загрязненном различными примесями. Основной причиной образования отложений является попадание воды в картерное масло. Состав и количество осадков непостоянно и зависит от условий, при которых он образуется. Например, с увеличением вязкости масла количество отложений в двигателе уменьшается.

Наличие отложений не только неприятно, но и представляет большую опасность, так как могут закупорить маслоприемник, маслопроводы, маслопроводные каналы и фильтры. Если они будут забиты осадками, то нарушится нормальная подача масла и может произойти выплавление («проворот») вкладышей подшипников, задир шеек коленвала и даже заклинивание двигателя. Если фильтр забит отложениями, то неочищенное масло, обходя его, поступает к трущимся деталям, вызывая их повышенный износ, пригорание и т.д. Отложения могут со временем уплотниться и затвердетьтак, что от них трудно очистить детали даже механическим способом. При сильных маслоотложениях в двигателе качество свежезалитого моторного масла очень быстро ухудшается. Поэтому, чем чаще меняется отработанное масло в двигателе, тем меньше осадкообразование.

Наиболее сильно на отложения в двигателе влияют: вентиляция картера, температура входящего во впускной коллектор воздуха, температура охлаждающей жидкости, фракционный состав топлива. Вентиляция картера способствует удалению газов, прорывающихся из камер сгорания, и паров воды. Поэтому, при плохой вентиляции применение даже самого лучшего масла все равно будет приводить к осадкообразованию. С повышением температуры входящего в двигатель воздуха, а также и с повышением температуры охлаждающей жидкости осадкообразование уменьшается, так как возможность для конденсации паров воды в картере уменьшается. Увеличению количества отложений в двигателе способствует плохоесмесеобразование и сгорание топлива, применение этилированного бензина, содержащего свинцовые соединения, а также режим работы двигателя.

Для создания условий, приводящих к увеличению маслоотложений, наиболее опасна работа двигателя на легких режимах. Эксплуатация машины с малыминагрузками, небольшой скоростью, продолжительной работой двигателя на холостом ходу, частыми остановками или непродолжительными поездкамиприводит к разжижению масла горючим и более сильному загрязнению и старению масла.

В процессе работы двигателя масло темнеет из-за:
. Окисления и разложения при контакте моторного масла с продуктами сгорания топлива и нагретыми до высоких температур частями двигателя.

Накапливания продуктов неполного сгорания топлива. По мере увеличения срока службы двигателя и его изнашивания, в связи с увеличением зазоров между сопряженными деталями, прорыв продуктов из камеры сгорания в картер и загрязнение масла увеличиваются. Поэтому в новых двигателях масло темнеет меньше, чем в изношенных. Потемнение масла это также признак того, что оно выполняет свои функции, благодаря содержанию в нем эффективных присадок, масло смывает и удерживает в своем объеме продукты окисления и «грязь», попавшую в двигатель, сохраняя чистыми внутренние поверхности двигателя и защищая их от нагарообразования.

Как часто надо менять масло? Производитель двигателя - единственный, кто вправе это определять. Обычно рекомендуется либо пробег, либо временной интервал (что наступит раньше). Поэтому менять масло следует в соответствии с инструкцией по эксплуатации автомобиля. Производитель исходит при этом из возможности использования масла, качество и характеристики которого минимально соответствует требованиям соответствующих спецификаций. В неблагоприятных условиях эксплуатации, тоже указанных в инструкции, масло следует менять чаще. Российские условия, как правило, неблагоприятные и поэтому масло у нас меняют чаще, чем, например, в Европе.