Уравнение движения электропривода и его анализ. Понятие о положении направления отсчета величин

  • Тепловые режимы работы электропривода. Расчет и выбор мощности электродвигателей для кратковременного режима работы.
  • Расчет нагрузочных диаграмм и тахограмм.
  • Способы проверки двигателей на нагрев и перегрузочную способность, пересчет мощность двигателей на стандартную пв.
  • Расчет и выбор мощности двигателей при длительном режиме работы
  • Продолжительность включения (пв). Пересчет мощности двигателя на стандартную пв. Проверка двигателя на нагрев и перегрузочную способность.
  • Механические характеристики двигателей постоянного тока последовательного возбуждения.
  • Способы торможения двигателей постоянного тока последовательного возбуждения.
  • Способы регулирования скорости двигателей постоянного тока независимого возбуждения.
  • Способы регулирования скорости двигателей постоянного тока независимого возбуждения.
  • Основные показатели регулирования скорости электродвигателей. Способы регулирования скорости электродвигателей постоянного тока последовательного возбуждения.
  • Расчет тормозных сопротивлений двигателя постоянного тока независимого возбуждения (rдт, rп).
  • Расчет пусковых сопротивлений в приводах с двигателями постоянного тока последовательного возбуждения.
  • Расчет пусковых сопротивлений в приводах с двигателями постоянного тока независимого возбуждения.
  • Регулирование скорости двигателей постоянного тока независимого возбуждения при шунтировании обмотки якоря и включении последовательного сопротивления.
  • Каскадные схемы включения ад. Регулирование скорости асинхронных двигателей в системе авк.
  • Расчет ступени противовключения для асинхронного двигателя.
  • Торможение асинхронного двигателя противовключением.
  • Регулирование скорости асинхронных двигателей.
  • Расчет пусковых сопротивлений асинхронных двигателей.
  • Регулирование скорости электродвигателей в системе г-д. Механические характеристики системы г-д. Диапазоны регулирования.
  • Динамическое торможение электродвигателей постоянного и переменного тока. Расчет механических характеристик.
  • Регулирование скорости путем шунтирования обмотки якоря.
  • Расчет и выбор основного электрооборудования вентильного электропривода.
  • Механические характеристики вентильного электропривода.
  • Основные характеристики вентильного электропривода. Расчет сквозных (регулировочных) характеристик тиристорных преобразователей.
  • Выпрямительный и инверторный режим работы тиристорного электропривода постоянного тока.
  • Управление выпрямленным напряжением в системе тп-д.
  • Регулирование скорости двигателей в системе тп-д. Расчет механических характеристик.
  • Регулирование выпрямленного напряжения в системе тп-д.
  • Энергетические характеристики системы тп-д
  • Системы тпч-ад
  • Регулирование скорости в системе тпч-ад
  • Регулирование скорости в системе тпч-сд.
  • Переходные процессы при пуске двигателя
  • Механические характеристики синхронных двигателей. Пуск в ход и торможение синхронных двигателей.
  • Особенности пуска синхронных двигателей. Разновидности схем пуска синхронных двигателей.
  • Литература
    1. Основное уравнение движения электропривода.

    Для электромеханической системы в любой момент времени должно выполняться условие баланса мощностей:

    где
    - мощность, отдаваемая двигателем на вал;

    - мощность статических сил сопротивления;

    - динамическая мощность, идет на изменение кинетической энергии
    в процессах, когда изменяется скорость двигателя.

    В свою очередь уравнение для кинетической энергии запишется:

    Или для динамической мощности:

    Если именяются во времени, то получим:

    Приравняв значения мощностей, получим:

    Эта зависимость является уравнением движения электропривода. Для большинства механизмов
    . Тогда уравнение примет вид:

    Проанализируем это уравнение:

    Основное уравнение движения электропривода является основой всех инженерных расчетов. На его основе производится расчет, например, диаграммы двигателя, выбирается двигатель, рассчитываются пусковые моменты и токи, оценивается динамика электропривода.

    1. Основные понятия об устойчивости электропривода.

    Устойчивость электропривода определяется при сравнении механической характеристики двигателя и механической характеристики исполнительного механизма (
    и
    ). Рассмотрим на примере АД.

    Рассмотрим для трех механических характеристик исполнительных механизмов:


    В этом режиме двигатель преодолевает момент нагрузки и момент механических потерь. Режим работы устойчивый.


    В таком режиме мы имеем две точки пересечения (2 и 3). Устойчивой является скорость . Потому, что небольшое отклонение скорости компенсируется изменением момента противоположного знака (wMилиwM).

    Для точки 3 wM.

    1. Определение времени пуска и торможения электропривода

    Время пуска можно определить исходя из основного уравнения движения электропривода:

    .

    Выделим из этого уравнения составляющую времени:

    ;

    Проинтегрировав это выражение получим:

    .

    Данным уравнением определяется время нарастания скорости от 0 до конечной (установившейся).

    Время торможения может быть вычислено по следующей формуле:

    1. Тепловые режимы работы электропривода. Особенности расчета и выбора мощности электродвигателей в различных тепловых режимах.

    Режим работы электрической машины – это установленный порядок чередования периодов, характеризуемых величиной и продолжительностью нагрузки, отключений, торможения, пуска и реверса во время ее работы.

    1. Продолжительный режим S 1 – когда при неизменной номинальной нагрузке
    работа двигателя продолжается так долго, что температура перегрева всех его частей успевает достигнуть установившихся значений
    . Различают продолжительный режимнеизменной нагрузкой (рисунок 1) и сизменяющейся нагрузкой (рисунок 2).

    2. Кратковременный режим S 2 – когда периоды неизменной номинальной нагрузки чередуются с периодами отключения двигателя (рисунок 3). При этом периоды работы двигателянастолько кратковременны, что температуры нагрева всех частей двигателя не достигает установившихся значений, а периоды отключения двигателя настолько продолжительны, что все части двигателя успевают охладиться до температуры окружающей среды. Стандартом установлены длительность периодов нагрузки 10, 30, 60 и 90 минут. В условном обозначении кратковременного режима указывается продолжительность периода нагрузки, напримерS2 – 30 мин.

    3. Повторно-кратковременный режим S3 – когда кратковременные периоды работы двигателячередуются с периодами отключения двигателя, причем за период работыпревышение температуры не успевает достигнуть установившихся значений, а за время паузы части двигателя не успевают охладиться до температуры окружающей среды. Общее время работы в повторно-кратковременном режиме разделяются на периодически повторяющиеся циклы продолжительностью
    .

    При повторно-кратковременном режиме работы график нагревания двигателя имеет вид пилообразной кривой (рисунок 4). При достижении двигателем установившегося значения температуры перегрева, соответству­ющего повторно-кратковременному режиму
    ,температура перегрева двигателя продолжает колебаться от
    до
    . При этом
    меньше установившейся температуры перегрева, которая наступила бы, если режим работы двигателя был продолжитель­ным (
    <
    ).

    Повторно-кратковременный режим характеризуется относительной продол­ жительностью включения:
    .
    Действующим стандартом преду­смотрены номинальные повторно-кратковременные режимы с ПВ 15, 25, 40 и 60 % (для продолжительного ре­жима ПВ=100%). В условном обозна­чении повторно-кратковременного ре­жима указывают величину ПВ, напри­мер, S3-40%.

    При выборе двигателя, в паспорте которого, указана мощность при ПВ=100% пересчет следует делать по формуле:

    .

    Рассмотренные три номинальных режима считаются основными. Также стандартом предусмотрены дополнительные режимы:

      повторно-кратковременный режим S4 с частыми пусками, с числом включений в час 30, 60, 120 или 240;

      повторно-кратковременный режим S5 с частыми пусками и электрическим торможением в конце каждого цикла;

      перемещающийся режим S6 с частыми реверсами и электрическим торможением;

      перемещающийся режим S7 с частыми пусками, реверсами и электрическим торможением;

      перемещающийся режим S8 с двумя и более разными частотами вращения;

    Рисунок 1 Рисунок 2


    Рисунок3 Рисунок 4

    "

    Механическая часть электропривода представляет собой систему твёрдых тел, движение которых определяется механическими связями между телами. Если заданы соотношения между скоростями отдельных элементов, то уравнение движения электропривода имеет дифференциальную форму. Наиболее общей формой записи уравнений движения являются уравнения движения в обобщенных координатах (уравнения Лагранжа):

    W k – запас кинетической энергии системы, выраженный через обобщенные координаты q i и обобщенные скорости ;

    Q i – обобщенная сила, определяемая суммой работ δA i всех действующих сил на возможном перемещении .

    Уравнение Лагранжа можно представить в другом виде:

    (2.20)

    Здесь L – функция Лагранжа, представляющая собой разность кинетической и потенциальной энергий системы:

    L = W k W n .

    Число уравнений равно числу степеней свободы системы и определяется числом переменных – обобщенных координат, определяющих положение системы.

    Запишем уравнения Лагранжа для упругой системы (рис. 2.9).



    Рис. 2.9. Расчетная схема двухмассовой механической части.


    Функция Лагранжа в этом случае имеет вид

    Для определения обобщенной силы необходимо вычислить элементарную работу всех приведённых к первой массе моментов на возможном перемещении:

    Следовательно, т.к. обобщенная сила определяется суммой элементарных работ δA 1 на участке δφ 1 , то для определения величины получим:

    Аналогично, для определения имеем:

    Подставив выражение для функции Лагранжа в (2.20), получим:

    Обозначив , получим:

    (2.21)

    Примем механическую связь между первой и второй массами абсолютно жёсткой, т.е. (рис. 2.10).

    Рис. 2.10. Двухмассовая жесткая механическая система.


    Тогда и второе уравнение системы примет вид:

    Подставив его в первое уравнение системы, получим:

    (2.22)

    Это уравнение иногда называют основным уравнением движения электропривода. С его помощью можно по известному электромагнитному моменту двигателя М, моменту сопротивления и суммарному моменту инерции оценить среднее значение ускорения электропривода, рассчитать время, за которое двигатель достигнет заданной скорости, и решить другие задачи, если влияние упругих связей в механической системе существенно.

    Рассмотрим механическую систему с нелинейными кинематическими связями типа кривошипно-шатунных, кулисных и других подобных механизмов (рис. 2.11). Радиус приведения в них является переменной величиной, зависящей от положения механизма: .



    Рис. 2.11. Механическая система с нелинейными кинематическими связями


    Представим рассматриваемую систему в виде двухмассовой, первая масса вращается со скоростью ω и имеет момент инерции , а вторая движется с линейной скоростью V и представляет суммарную массу m элементов, жёстко и линейно связанных с рабочим органом механизма.

    Связь между линейными скоростями ω и V нелинейная, причём . Для получения уравнения движения такой системы без учёта упругих связей воспользуемся уравнением Лагранжа (2.19), приняв в качестве обобщенной координаты угол φ. Определим обобщенную силу:

    Суммарный момент сопротивления от сил, воздействующих на линейно связанные с двигателем массы; приведённый к валу двигателя;

    F C – результирующая всех сил, приложенная к рабочему органу механизма и линейно связанным с ним элементам;

    – возможное бесконечно малое перемещение массы m .

    Нетрудно видеть, что

    Радиус приведения.

    Момент статической нагрузки механизма содержит пульсирующую составляющую нагрузки, изменяющуюся в функции угла поворота φ:

    Запас кинетической энергии системы:

    Здесь - суммарный приведённый к валу двигателя момент инерции системы.

    Левую часть уравнения Лагранжа (2.19) можно записать в виде:

    Таким образом, уравнение движения жёсткого приведённого звена имеет вид:

    (2.23)

    Оно является нелинейным с переменными коэффициентами.

    Для жёсткого линейного механического звена уравнение статического режима работы электропривода соответствует и имеет вид:

    Если при движении то имеет место или динамический переходный процесс, или принуждённое движение системы с периодически изменяющейся скоростью.

    В механических системах с нелинейными кинематическими связями статические режимы работы отсутствуют. Если и ω=const, в таких системах имеет место установившийся динамический процесс движения. Он обусловлен тем, что массы, движущиеся линейно, совершают возвратно-поступательное движение, и их скорости и ускорения являются переменными величинами.

    С энергетической точки зрения различают двигательные и тормозные режимы работы электропривода. Двигательный режим соответствует прямому направлению передачи механической энергии к рабочему органу механизма. В электроприводах с активной нагрузкой, а также в переходных процессах в электроприводе, когда происходит замедление движения механической системы, происходит обратная передача механической энергии от рабочего органа механизма к двигателю.

    Когда момент, развиваемый двигателем, равен моменту сопротивления исполнительного органа, скорость привода постоянна.

    Однако во многих случаях привод ускоряется или замедляется, т.е. работает в переходном режиме.

    Переходным режимом электропривода называют режим работы при переходе от одного установившегося состояния к другому, когда изменяются скорость, момент и ток.

    Причинами возникновения переходных режимов в электроприводах является изменение нагрузки, связанное с производственным процессом, либо воздействие на электропривод при управлении им, т.е. пуск, торможение, изменение направления вращения и т.п., а также нарушение работы системы электроснабжения.

    Уравнение движения электропривода должно учитывать все моменты, действующие в переходных режимах.

    В общем виде уравнение движения электропривода может быть записано следующим образом :

    При положительной скорости уравнение движения электропривода имеет вид

    Уравнение (2.10) показывает, что развиваемый двигателем вращающий момент уравновешивается моментом сопротивления и динамическим моментом . В уравнениях (2.9) и (2.10) принято, что момент инерции привода является постоянным, что справедливо для значительного числа исполнительных органов.

    Из анализа уравнения (2.10) видно:

    1) при > , , т.е. имеет место ускорение привода;

    2) при < , , т.е. имеет место замедление привода (очевидно, замедление привода может быть и при отрицательном значении момента двигателя);

    3) при = , ; в данном случае привод работает в установившемся режиме.

    Динамический момент (правая часть уравнения моментов) проявляется только во время переходных режимов, когда изменяется скорость привода. При ускорении привода этот момент направлен против движения, а при торможении он поддерживает движение.

    3.Понятие о статической устойчивости работы привода.

    Под статической устойчивостью, вообще говоря, понимают способность системы самостоятельно восстановить исходный режим работы при малом возмущении. Статическая устойчивость является необходимым условием существования установившегося режима работы системы, но отнюдь не предопределяет способности системы продолжать работу при резких наруше­ниях режима, например при коротких замыканиях.

    Рис3.1 – Изменение мощности при приращениях угла.

    Итак, точка а и, любая другая точка на возрастающей части синусои­дальной характеристики мощности отвечают статически устойчивым режи­мам и, наоборот, все точки падающей части характеристики - статически неустойчивым. Отсюда вытекает следующий формальный признак статической устойчивости рассмотренной простейшей системы: при­ращения угла и мощности генератора Р должны иметь один и тот же знак, т. е. или, переходя к пределу:



    Она положительна при < 90° (рис. 3.3). В этой области и возможны устойчивые установившиеся режимы работы системы. Критическим с точки зрения устойчивости в рассматриваемых условиях (при чисто индуктивной связи генератора с шинами приемной системы) является значение угла = 90°, когда достигается максимум характеристики мощности.

    8.1.ОСНОВНЫЕ ПОНЯТИЯ И ОПРЕДЕЛЕНИЯ

    Oпределение: Электропривод предназначен для приведения в движение различных машин и механизмов. Он состоят из электрического двигателя, аппаратуры управления и передаточных звеньев от двигателя к рабочей машине. Привод бывает групповым, индивидуальным и многодвигательным.

    В первом случае один двигатель приводит в движение несколько машин, а во втором каждая машина снабжена своим двигателем.
    Многодвигательный привод - это группа двигателей одной машины, где каждый двигатель приводит в движение отдельный механизм.
    Из основных требований, предъявляемых к электроприводу, следует отметить следующие:
    1. Электродвигатель должен обладать такой мощностью, чтобы он передавал не только статическую нагрузку, но и кратковременные перегрузки.
    2. Аппаратура управления должна обеспечить все требования производственного процесса машины, включая регулирование частоты вращения, реверсирование и др.

    8.2.УРАВНЕНИЕ ДВИЖЕНИЯ ЭЛЕКТРОПРИВОДА

    При работе электропривода вращающий момент электродвигателя должен уравновешивать статический момент сопротивления рабочей машины, а также динамиче-ский момент, обусловленный инерцией движущихся масс. Уравнение моментов электропривода можно записать в виде:

    где М - вращающий момент электродвигателя;
    М с - статический момент сопротивления;
    М дин - динамический момент.

    Динамический или инерционный момент, как известно из механики, равен:

    где j - момент инерции движущихся масс, приведенный к валу двигателя, кг/м 2 ;
    w - угловая частота вращения вала двигателя, с -1 .

    Выражая угловую частоту вращения w через число оборотов n, получим:

    Уравнение моментов электропривода можно записать в другом виде:

    Если n = const, то М дин = 0, тогда М = М с.

    8.3.ВЫБОР МОЩНОСТИ ЭЛЕКТРОДВИГАТЕЛЯ

    От правильного выбора мощности электродвигателя зависят технико-экономические показатели электропривода (себестоимость, габариты, экономичность, надежность в эксплуатации и др.).
    Если нагрузка на электродвигатель стабильная, то определение его мощности ограничивается лишь выбором по каталогу:

    где Р н - мощность выбираемого двигателя,
    Р нагр - мощность нагрузки.
    Если же нагрузка на электродвигатель переменная, то необходимо иметь график нагрузки I = f(t).
    Плавную кривую заменяют ступенчатой линией, полагая, что за время t1 в двигателе течет ток I1, за время t2 - ток I2 и. т.д. (рис. 8.3.1).

    Изменяющийся ток заменяют эквивалентным ему током I э, который за время одного цикла работы t ц производит одинаковое, тепловое действие с током, изменяющимся ступенями. Тогда:

    а эквивалентный ток
    Номинальный ток электродвигателя должен быть равным или больше эквивалентного, т.е.
    Поскольку почти у всех двигателей вращающий момент прямо пропорционален току нагрузки М ~ I н, то можно записать и выражение для эквивалентного вращающего момента:

    Учитывая, что мощность Р = Мw , электродвигатель можно выбирать также по эквивалентной мощности:

    При повторно-кратковременном режиме двигатель за период работы не успевает нагреться до установившейся температуры, а за время перерыва в работе не охлаждается до температуры окружающей среды (рис. 8.3.2).

    Для этого режима вводится понятие относительной продолжительности включения (ПВ). Она равна отношению суммы рабочего времени ко времени цикла tц, со-стоящего из времени работы и времени паузы t о:

    Чем больше ПВ, тем меньше номинальная мощность при, равных габаритах. Следовательно, двигатель, рассчитанный на работу в течение 25% времени цикла при номинальной мощности, нельзя оставлять под нагрузкой 60% времени цикла при той же мощности. Электродвигатели строятся для стандартных ПВ - 15, 25, 40, 60%, причем ПВ - 25%; принимается за номинальную. Двигатель рассчитывается на повторно кратковременный режим, если продолжительность цикла не превышает 10 мин. Если расчетные значения ПВ отличаются от стандартных, то при выборе мощности двигателя Рэ следует вносить поправку:

    8.4.ЭЛЕКТРИЧЕСКИЕ АППАРАТЫ И ЭЛЕМЕНТЫ

    Самым простым и распространенным аппаратом для включения и отключения электрических цепей является рубильник.
    Разновидностью рубильника является переключатель, способный перекоммутировать схему, например, при реверсировании или переключении обмоток двигателя со "звезды" на "треугольник".
    Рубильник состоит из контактного ножа и двух губок, смонтированных на изолированном основании. Одна из губок является шарнирной. По количеству контактных ножей рубильники бывают одно-, двух- и трёхполюсными. Управление рубильником осуществляется изолированной ручкой, объединяющей контактные ножи.
    Иногда при управлении, электродвигателями или другими исполнительными механизмами используются пакетные выключатели . Это малогабаритный отключающий аппарат, как правило, круглой формы (рис. 8.4.1.). В неподвижные кольца 5 из изоляционного материала вмонтированы контакты 3. Внутри колец размещаются подвижные диски 8 с контактными пластинами, закрепленными на оси 7. В крышке 6 помещено пружинное приспособление, с помощью которого достигается быстрое замыкание и размыкание контактов, независимо от скорости поворота ручки 1.
    Выключатель собирается и крепится к крышке с помощью скобы 4 и шпилек 2.
    Для управления двигателями с фазным ротором требуется большое число переключений, необходимых для ввода или вывода дополнительных сопротивлений.

    Эту операцию выполняют контроллеры , которые различают на барабанные и кулачковые (рис. 8.4.2).
    Подвижные контакты барабанного контроллера, имеющие форму сегментов 4, крепятся на валу 5. Неподвижные контакты 3 размещаются на вертикальной рейке 2 и к ним присоединяются внешние цепи. Контактные сегменты соединяются друг с другом по определенной схеме, и, кроме того, они имеют разную длину дуги.
    При повороте вала контроллера сегменты поочередно входят в соприкосновение с неподвижными контактами, и осуществляется включение или отключение цепи.

    Вал контроллера снабжается фиксатором 1, обеспечивающим ему несколько фиксированных положений.
    Кулачковые контроллеры совершеннее барабанных. На валу 5 крепятся диски фасонного профиля 6, которые воздействуют своей боковой поверхностью на ролик контактного рычага 7, определяя тем самым замкнутое или разомкнутое положение контактов 4 и 3.
    Переключения в силовых цепях с помощью контроллеров требует от оператора значительных физических усилий. Поэтому в установках с частыми переключениями для этой цели используются контакторы .
    Принцип действия их основан на использовании в управлении силовыми контактами электромагнитной системы. Конструкция контактора приведена на рис. 8.4.3.

    На изолированной плите 1 жестко укреплен неподвижный силовой контакт 2. На рычаге 3 шарнирно прикрепленном к плите имеется подвижный силовой контакт 4.
    Для управления силовыми контактами на плите смонтирована магнитная система, состоящая из сердечника 5 с катушкой 6 и якоря 7, прикрепленного к рычагу 3. Токоподвод к подвижному контакту осуществляется гибким проводником 8.
    При подключении к сети катушки 6 произойдет магнитное притяжение сердечником 5 якоря 7 и замыкание силовых контактов 2 и 4. Для разрыва силовой цепи отключают катушку 6, и якорь под собственным весом отпадает от сердечника.
    Помимо силовых контактов, в аппарате имеется ряд блокировочных 9, назначение которых будет показано ниже.
    Электрическая цепь катушки электромагнита является вспомогательной или управляющей.
    Для управления его применяются кнопки управления. Кнопки бывают одноцепные и двухцепные с замыкающими и размыкающими контактами. В большинстве случаев кнопки делаются с самовозвратом, т.е. при снятии механического давления их контакты возвращаются в исходное положение. На рис. 8.4.4 показана конструкция кнопки с двумя парами контактов: замыкающими и размыкающими.

    Для защиты электродвигателя от перегрузки в контактор монтируются два тепловых реле (на две фазы). В этом случае контактор называется магнитным пускателем.
    Основной деталью теплового реле (рис. 8.4.5) является биметаллическая пластинка 1, состоящая из двух сплавов с различными коэффициентами расширения.

    Пластинка одним концом жестко прикреплена к основанию прибора, а другим упирается в защелку 2, которая под действием пружины 3 стремится повернуться против часовой стрелки. Рядом с биметаллической пластинкой помещается нагреватель 4, включаемый последовательно с двигателем. Когда по силовой цепи потечет большой ток, то температура нагревателя повысится. Биметаллическая пластина прогнется кверху и освободит защелку 2. Под действием пружины 3 защелка поворачивается и через изоляционную пластину 5 размыкает контакты 6 в цепи управления пускателем. Возврат реле возможен только после остывании пластины 1. Он осуществляется нажатием кнопки 7.
    Для защиты электроустановок от перегрузок используются также плавкие предохранители. Это неуправляемый аппарат, в котором перегрузка вызывает перегорание плавной вставки, изготовленной из легкоплавкого материала. Предохранители бывает пробчатыми и трубчатыми (рис. 8. 4.6).

    Существуют также и управляемые аппараты, защищающие электрооборудование от перегрузок. К ним относится реле максимального тока (рис. 8.4.7).
    Катушка реле 1 рассчитана на протекание тока в силовой цепи. Для этого она имеет обмотку, изготовленную из провода достаточного поперечного сечения.
    При токе, на который настроено реле, произойдет притяжение якоря 2 к сердечнику 3 катушки и с помощью контактного мостика 4 размыкаются контакты 5 в цепи управления магнитного пускателя. Это реле само прервет электроснабжение установки от источника тока.

    Нередко встречаются случаи, когда необходимо отключить электроустановку от сети, если уровень напряжения достиг, значения меньше допустимого. Для этой цели используется реле минимального напряжения. Его конструкция напоминает любое электромагнитное реле, но срабатывание здесь происходит при понижении намагниченности катушки и отпадания от нее якоря с контактной системой.
    Особое место в схемах защиты электрических установок занимает реле времени . Существуют как электромеханические, так и электронные реле времени.
    Рассмотрим конструкцию реле времени типа ЭВ (рис. 8.4.8.).

    Основным узлом реле является часовой механизм 2, запускаемый электромагнитной системой 1. Катушка реле включается в силовую цепь и при ее срабатывании часовой механизм вводится в действие. По истечении определенного отрезка времени замкнутся контакты реле и электроустановка отключится от сети. Реле позволяет осуществлять его настройку на различные режимы его работы.
    В последние годы получили распространение приборы, в которых электромагнитная и контактная системы объединены в одно целое. Это так называемые герконы (рис. 8.4.9).

    В герметизированной колбе, заполненной инертным газом, впаяны две или три контактные пластины из пермалоя. Сами контакты (из золота или серебра) находятся на свободных концах пластин. При приближении к геркону постоянного магнита или катушки с током произойдет замыкание или размыкание контактов.
    В связи с развитием радиоэлектроники системы автоматического управления пополнились рядом бесконтактных логических элементов . Передачу и преобразование информации от датчика к исполнительному органу можно осуществлять просто, если различать два уровня (две величины) сигнала, каждый из которых может соответствовать, например, символам 0 и 1 или понятиям истинности "да" и "нет". В этом случае сигнал в любой момент времени имеет один из двух возможных значений и называется двоичным сигналом.

    8.5.ПРИНЦИПЫ И СХЕМЫ АВТОМАТИЧЕСКОГО УПРАВЛЕНИЯ

    8.5.1. ПРИНЦИПЫ УПРАВЛЕНИЯ

    Принцип автоматического управления заключается в том, что без участия человека осуществляется строгое и последовательное выполнение операций по включению, отключению электрооборудования, а также соблюдение заданного режима его работы.
    Различают два вида управления: полуавтоматическое и автоматическое. При полуавтоматическом управлении оператор осуществляет первоначальный пуск объекта (нажатие кнопки, поворот ручки и т.д.). В дальнейшем его функции сводятся лишь к наблюдению за ходом процесса. При автоматическом управлении даже начальный импульс по включению установки посылают датчик или реле. Установка полностью работает в автоматическом режиме по заданной программе.
    Программное устройство может быть выполнено как на основе электромеханических элементов, так и с помощью логических схем.

    8.5.2. СХЕМЫ УПРАВЛЕНИЯ

    Приведем несколько часто встречающихся на практике схем управления электродвигателями.
    Самой простой из них является схема управления асинхронным трехфазным двигателем с помощью магнитного искателя.
    При нажатии кнопки "пуск" подключается к сети катушка электромагнита. Подвижный якорь придет в соприкосновение с сердечником катушки и своим движением замкнет силовые контакты, подающие трехфазное напряжение на электродвигатель. Одновременно с силовыми, замкнутся и блокировочные контакты, которые зашунти-руют кнопку "пуск", что позволяет ее отпустить. При нажатии кнопки "стоп" разрывается цепь питания катушки электромагнита и якорь, освободившись, отпадает, разомк-нув при этом силовые контакты. Электродвигатель остановится.
    Защита электродвигателя от длительной перегрузки здесь обеспечивается двумя тепловыми реле РТ, включенными в две фазы. Отключающие контакты тепловых реле РТ1 и РТ2 введены в цепь питания катушки электромагнита.

    Для реверсивного управления двигателем применяется схема с двумя магнитными пускателями (рис. 8.5.2.2.).
    Один магнитный пускатель коммутирует схему включения двигателя на прямое вращение, а другой - на обратное.
    Кнопки "вперед" и "назад" подключают соответственно свои катушки, а кнопка "стоп" и отключающие контакты теплового реле включены в общую цепь управления.

    Когда момент, развиваемый двигателем, равен моменту сопротивления исполнительного органа, скорость привода постоянна.

    Однако во многих случаях привод ускоряется или замедляется, т.е. работает в переходном режиме.

    Переходным режимом электропривода называют режим работы при переходе от одного установившегося состояния к другому, когда изменяются скорость, момент и ток.

    Причинами возникновения переходных режимов в электроприводах является изменение нагрузки, связанное с производственным процессом, либо воздействие на электропривод при управлении им, т.е. пуск, торможение, изменение направления вращения и т.п., а также нарушение работы системы электроснабжения.

    Уравнение движения электропривода должно учитывать все моменты, действующие в переходных режимах.

    В общем виде уравнение движения электропривода может быть записано следующим образом :

    При положительной скорости уравнение движения электропривода имеет вид

    . (2.10)

    Уравнение (2.10) показывает, что развиваемый двигателем вращающий момент уравновешивается моментом сопротивления и динамическим моментом . В уравнениях (2.9) и (2.10) принято, что момент инерции привода является постоянным, что справедливо для значительного числа исполнительных органов.

    Из анализа уравнения (2.10) видно:

    1) при > , , т.е. имеет место ускорение привода;

    2) при < , , т.е. имеет место замедление привода (очевидно, замедление привода может быть и при отрицательном значении момента двигателя);

    3) при = , ; в данном случае привод работает в установившемся режиме.

    Динамический момент (правая часть уравнения моментов) проявляется только во время переходных режимов, когда изменяется скорость привода. При ускорении привода этот момент направлен против движения, а при торможении он поддерживает движение.

    2.5. Установившееся движение и устойчивость
    установившегося движения электропривода

    Имея механическую характеристику двигателя и исполнительного органа, нетрудно определить выполнимость условия установившегося движения . Для этого совместим в одном и том же квадранте эти характеристики. Факт пересечения этих характеристик говорит о возможности совместной работы двигателя и исполнительного органа, а точка их пересечения является точкой установившегося движения, так как в этой точке и .

    На рисунке 2.4 показаны механические характеристики вентилятора (кривая 1) и двигателя независимого возбуждения (прямая 2). Точка А является точкой установившегося движения, а ее координаты – координатами установившегося движения вентилятора.

    Рис. 2.4. Определение параметров установившегося движения

    Для полного анализа установившегося движения необходимо определить, является ли это движение устойчивым. Устойчивым будет такое установившееся движение, которое, будучи выведенным из установившегося режима каким-то внешним возмущением, возвращается в этот режим после исчезновения возмущения .

    Для определения устойчивости движения удобно пользоваться механическими характеристиками.

    Необходимым и достаточным условием устойчивости установившегося движения является противоположность знаков приращения скорости и возникающего при этом динамического момента, т.е.

    Оценим в качестве примера (рис. 2.5) устойчивость движения электропривода. Установившееся движение возможно с двумя скоростями: в точке 1 и в точке 2, в которых . Определим, устойчиво ли движение в обеих точках.

    Рис. 2.5. Определение устойчивости механического движения

    Точка 1. Предположим, что под действием кратковременного возмущения скорость увеличилась до значения , после чего воздействие исчезло. По механической характеристике АД скорости будет соответствовать момент .

    В результате этого динамический момент =станет отрицательным, и привод начнет тормозиться до скорости , при которой .

    Если возмущение вызовет снижение скорости до значения , то мо­­-
    мент АД возрастет до значения , динамический момент
    = станет положительным, и скорость увеличится до прежнего значения . Таким образом, движение в точке1 со скоростью является устойчивым.

    При проведении аналогичного анализа можно сделать вывод о неустойчивости движения электропривода в точке 2со скоростью .

    Устойчивость или неустойчивость движения может быть определена и аналитически с помощью понятия жесткости механических характеристик АД и исполнительного органа: . Условие устойчивости :

    или . (2.12)

    Для рассматриваемого примера , поэтому устойчивость определяется знаком жесткости характеристики АД: для точки 1 движение устойчиво, а для точки 2 и движение неустойчиво.

    Отметим, что в соответствии с уравнением (2.10) при определенной жесткости устойчивая работа электропривода возможна и при положительной жесткости механической характеристики АД, в частности, на так называемом нерабочем участке характеристики АД.

    2.6. Неустановившееся движение электропривода
    при постоянном динамическом моменте

    Неустановившееся механическое движение электропривода возникает во всех случаях, когда момент двигателя отличается от момента нагрузки, т.е. когда .

    Рассмотрение неустановившегося движения электропривода имеет своей основной целью получение зависимостей во времени выходных механических координат электропривода – момента , скорости и положение вала двигателя . Кроме того, часто требуется определить время неустановившегося движения (переходного процесса) электродвигателя. Отметим, что законы изменения моментов двигателя и нагрузки должны быть предварительно заданы.

    Рассмотрим неустановившееся движение при постоянном динамическом моменте во время пуска электродвигателя. Предполагается, что во время пуска электродвигателя и , но .

    Решая уравнение механического движения электропривода, получаем следующую зависимость :

    ; (2.13)

    Уравнение (2.14) получено с учетом равенств и .

    Полагая в уравнении (2.13) и , находим время изменения скорости от до

    . (2.15)

    Характеристики , , представлены на рисунке 2.6.

    Рис. 2.6. Характеристики , ,
    при пуске ЭД

    В уравнениях (2.13), (2.14) и (2.15) момент принят равным среднему моменту при пуске двигателя, поэтому полученные выше аналитические соотношения используют только при выполнении различных приближенных расчетов в электроприводе. В частности, неустановившееся движение может быть рассмотрено при торможении и реверсе электропривода, или при переходе с одной характеристики на другую.

    2.7. Неустановившееся движение электропривода
    при линейной зависимости моментов двигателя
    и исполнительного органа от скорости

    Рассматриваемый вид движения является весьма распространенным.

    На рисунке 2.7 представлены механические характеристики ЭД и ИО при пуске электродвигателя.

    Рис. 2.7. Механические характеристики ЭД и ИО при пуске электродвигателя

    Механические характеристики ЭД и ИО можно выразить аналитически следующими уравнениями:

    В уравнениях (2.16) и (2.17) и – коэффициенты жесткости механических характеристик ЭД и ИО.

    Подставляя выше приведенные уравнения в уравнение механического движения электропривода, получаем следующие уравнения для зависимостей , , .

    где – электромеханическая постоянная времени в секундах, учитывающая механическую инерционность привода и влияющая на время пуска электропривода.

    Полученные выражения (2.18)–(2.20) могут использоваться для анализа переходных процессов различного вида, но в каждом конкретном случае должна быть определена электромеханическая постоянная времени , а также начальные и конечные значения координат , , , . В частном случае, когда и , эти величины могут быть определены по формулам:

    ; (2.21)

    ; , (2.22)

    где– это время, в течение которого электропривод запускается до скорости при . Тогда . Так как обычно момент двигателя при пуске изменяется, то на практике время пуска в секундах определяют по выражению , или по следующему выражению: .

    Зависимости , приведены на рисунке 2.8.

    Рис. 2.8. Зависимости ,
    при пуске электродвигателя

    2.8. Неустановившееся движение электропривода
    при произвольной зависимости динамического момента
    от скорости

    При определении ; ; при сложных зависимостях
    момента двигателя и момента сопротивления от скорости, пользуются численным методом Эйлера. Суть его в том, что в уравнении движения электропривода дифференциалы переменных и заменяются малыми приращениями
    и .

    Покажем использование метода Эйлера на примере пуска асинхронным электродвигателем центробежного насоса. Механические характеристики ЭД
    и центробежного насоса приведены на рис. 2.9 .

    Рис. 2.9. Механические характеристики ЭД и ИО

    1. Ось скорости разбивают на малые и равные участки ω.

    2. На каждом участке определяют средние моменты и т.д., и т.д.

    3. Затем составляется таблица 2.1 и по ней определяют зависимости .

    Таблица 2.1

    ω 1 =∆ω 1 t 1 =∆t 1
    ω 2 =ω 1 +∆ω 2 t 2 = t 1 +∆t 2
    ω 3 =ω 2 +∆ω 3 t 3 =t 2 +∆t 3
    ω n М д n t n

    ; и т.д.– угловые скорости ЭД и ИО; .

    Коробки скоростей или механические вариаторы могут быть громоздкими (сложными). Их применение уменьшает надежность и КПД электропривода. Поэтому на практике в основном применяют электрический способ регулирования, воздействуя на параметры электродвигателя или источника питания. Этот способ имеет лучшие технико-экономические показатели. Однако на некоторых металлообрабатывающих станках применяют смешанный способ регулирования.

    В теории электропривода механические, электрические и магнитные переменные, характеризующие работу двигателя, – скорость, ускорение, положение вала, момент, ток, магнитный поток и т.д. – часто называют координатами . Поэтому управление движением исполнительного органа электрическим способом осуществляется за счет регулирования координат (переменных) электродвигателя.

    Существенно отметить, что регулирование координат электропривода должно осуществляться для управления как установившимся, так и неустановившимся движением исполнительного органа.

    Типичным примером регулирования переменных может служить ЭП пассажирского лифта. При пуске и останове кабины для обеспечения комфортности пассажиров ускорение и замедление ее движения не должно быть выше допустимого уровня. Перед остановкой скорость кабины должна снижаться, т.е. она должна регулироваться. И, наконец, кабина с заданной точностью должна останавливаться на требуемом этаже, т.е. необходимо обеспечивать заданное положение (позиционирование) кабины лифта.

    Пользуясь рассмотренным примером, отметим то важное обстоятельство, что часто электропривод должен обеспечить регулирование одновременно нескольких координат: скорости, ускорения и положения исполнительного органа.

    При изготовлении бумаги, тканей, кабельных изделий, различных пленок, прокатке металлов требуется обеспечение определенного натяжения этих материалов, что также осуществляется с помощью ЭП. Регулирования координат требуют и многие другие рабочие машины и механизмы: подъемные краны, металлообрабатывающие станки, транспортеры, насосные агрегаты, роботы и манипуляторы и т.д.