Роторно поршневой двигатель ванкеля. Строение роторного двигателя

Основные типы двигателей внутреннего сгорания и паровые машины имеют один общий недостаток. Он состоит в том, что возвратно-поступательное перемещение требует преобразования во вращательное движение. Это, в свою очередь, обуславливает низкую производительность, а также достаточно высокую изнашиваемость деталей механизма, включенных в различные типы двигателей.

Довольно много людей задумывались о том, чтобы создать такой мотор, в котором подвижные элементы только вращались. Однако решить эту задачу удалось только одному человеку. Феликс Ванкель – механик-самоучка — стал изобретателем роторно-поршневого двигателя. За свою жизнь этот человек не получил ни какой-либо специальности, ни высшего образования. Рассмотрим далее подробнее роторно-поршневой двигатель Ванкеля.

Краткая биография изобретателя

Феликс Г. Ванкель родился в 1902 году, 13 августа, в небольшом городке Лар (Германия). В Первую Мировую отец будущего изобретателя погиб. Из-за этого Ванкелю пришлось бросить учебу в гимназии и устроиться помощником продавца в лавке по продаже книг при издательстве. Благодаря этому он пристрастился к чтению. Феликс изучал технические характеристики двигателей, автомобилестроение, механику самостоятельно. Знания он черпал из книг, которые продавались в лавке. Считается, что реализованная позднее схема двигателя Ванкеля (точнее, идея ее создания) посетила во сне. Неизвестно, правда это или нет, но точно можно сказать, что изобретатель обладал незаурядными способностями, тягой к механике и своеобразным

Плюсы и минусы

Преобразуемое движение возвратно-поступательного характера полностью отсутствует в роторном двигателе. Образование давления происходит в тех камерах, которые создаются с помощью выпуклых поверхностей ротора треугольной формы и различными частями корпуса. Вращательные движения ротор осуществляет помощью сгорания. Это способно привести к снижению вибрации и увеличить скорость вращения. Благодаря повышению эффективности, которое обусловлено таким образом, роторный двигатель имеет размеры намного меньше, чем обычный поршневой двигатель эквивалентной мощности.

Роторный двигатель имеет один главный из всех своих компонентов. Эта важная составляющая называется треугольным ротором, который совершает вращательные движения внутри статора. Все три вершины ротора, благодаря этому вращению, имеют постоянную связь с внутренней стеной корпуса. С помощью этого контакта образуются камеры сгорания, или три объема замкнутого типа с газом. Когда происходят вращательные движения ротора внутри корпуса, то объем всех трех образованных камер сгорания все время меняется, напоминая действия обычного насоса. Все три боковых поверхности ротора работают, как поршень.

Внутри у ротора является шестерня небольшого размера с внешними зубьями, которая прикреплена к корпусу. Шестерня, которая больше по диаметру, соединена с данной неподвижной шестерней, что задает саму траекторию вращательных движений ротора внутри корпуса. Зубы в большей шестерни внутренние.

По той причине, что вместе с выходным валом ротор связан эксцентрично, вращение вала происходит наподобие того, как ручка будет вращать коленвал. Выходной вал станет делать оборот три раза за каждый из оборотов ротора.

Роторный двигатель имеет такое преимущество, как небольшая масса. Самый основной из блоков роторного двигателя обладает небольшими размерами и массой. При этом управляемость и характеристики такого двигателя будут лучше. Меньше масса у него получается за счет того, что необходимость в коленвале, шатунах и поршнях просто отсутствует.

Роторный двигатель обладает такими размерами, которые гораздо меньше обычного двигателя соответствующей мощности. Благодаря меньшим размерам двигателя, управляемость будет гораздо лучше, а также сама машина станет просторнее, как для пассажиров, так и для водителя.

Все из частей роторного двигателя осуществляют непрерывные вращательные движения в одном и том же направлении. Изменение их движения происходит так же, как в поршней традиционного двигателя. Роторные двигатели внутренне сбалансированы. Это ведет к снижению самого уровня вибрации. Мощность роторного двигателя кажется намного более гладким и равномерным образом.

Двигатель Ванкеля имеет выпуклый специальный ротор с тремя гранями, который можно назвать его сердцем. Этот ротор совершает вращательные движения внутри цилиндрической поверхности статора. Роторный двигатель «Мазда» является первым в мире роторным двигателем, который был разработан специально для производства серийного характера. Данной разработке было положено начало еще в 1963 году.

Что это такое РПД?


В классическом четырехтактным двигателем одно и то же цилиндр используется для различных операций — впрыск, сжатие, сжигание и выпуска. В роторном же двигателе каждый процесс выполняется в отдельном отсеке камеры. Эффект мало чем отличается от разделения цилиндра на четыре отсека для каждой из операций.
В поршневом двигателе давление возникает при сгорании смеси заставляет поршни двигаться вперед и назад в своих цилиндрах. Шатуны и коленчатый вал преобразуют этот толкательной движение во вращательное, необходимое для движения автомобиля.
В роторном двигателя нет прямолинейного движения которое надо было бы переводить во вращательное. Давление образуется в одном из отсеков камеры заставляя ротор вращаться, это снижает вибрацию и повышает потенциальную величину оборотов двигателя. В результате всего большая эффективность, и меньшие размеры при той же мощности, что и обычного поршневого двигателя.

Как работает РПД?

Функцию поршня в РПД выполняет трьохвершинний ротор, преобразующий силу давления газов во вращательное движение эксцентрикового вала. Движение ротора относительно статора (наружного корпуса) обеспечивается парой шестерен, одна из которых жестко закреплена на роторе, а вторая на боковой крышке статора. Сама шестерня неподвижно закреплена на корпусе двигателя. С ней в зацеплении находится шестерня ротора из зубчатым колесом как бы обкатывается вокруг нее.
Вал вращается в подшипниках, размещенных на корпусе, и имеет цилиндрический эксцентрик, на котором вращается ротор. Взаимодействие этих шестерен обеспечивает целесообразное движение ротора относительно корпуса, в результате которого образуются три разобщенных камеры переменного объема. Передаточное отношение шестерен 2: 3, поэтому за один оборот эксцентрикового вала ротор возвращается на 120 градусов, а за полный оборот ротора в каждой из камер происходит полный четырехтактный цикл.

Газообмен регулируется вершиной ротора при прохождении ее через впускной и выпускной окно. Такая конструкция позволяет осуществлять 4-тактный цикла без применения специального механизма газораспределения.

Герметизация камер обеспечивается радиальными и торцевыми уплотнительными пластинами, прижимаются к цилиндру центробежными силами, давлением газа и ленточными пружинами. Крутящий момент получается в результате действия газовых сил через ротор на эксцентрик вала Смесеобразование, воспаление, смазка, охлаждение, запуск — принципиально такие же, как и у обычного поршневого двигателя внутреннего сгорания

Смесеобразование

В теории в РПД применяют несколько разновидностей смесеобразования: внешнее и внутреннее, на основе жидких, твердых, газообразных видов топлива.
Касательно твердых видов топлива стоит отметить, что их первоначально газифицируют в газогенераторах, так как они приводят к повышенному золообразованию в цилиндрах. Поэтому большее распространение на практике получили газообразные и жидкие топлива.
Сам механизм образования смеси в двигателях Ванкеля будет зависеть от вида применяемого топлива.
При использовании газообразного топлива его смешение с воздухом происходит в специальном отсеке на входе в двигатель. Горючая смесь в цилиндры поступает в готовом виде.

Из жидкого топлива смесь приготавливается следующим образом:

  1. Воздух смешивается с жидким топливом перед поступлением в цилиндры, куда поступает горючая смесь.
  2. В цилиндры двигателя жидкое топливо и воздух поступают по отдельности, и уже внутри цилиндра происходит их смешивание. Рабочая смесь получается при соприкосновении их с остаточными газами.

Соответственно, топливно-воздушная смесь может готовиться вне цилиндров или внутри их. От этого идет разделение двигателей с внутренним или внешним образованием смеси.

Технические характеристики роторно-поршневого двигателя

параметры ВАЗ-4132 ВАЗ-415
число секций 2 2
Рабочий объем камеры двигателя, куб.см 1,308 1,308
степень сжатия 9,4 9,4
Номинальная мощность, кВт (л.с.) / мин-1 103 (140) / 6000 103 (140) / 6000
Максимальный крутящий момент, Н * м (кгс * м) / мин-1 186 (19) / 4500 186 (19) / 4500
Минимальная частота вращения эксцентрикового вала на холостом ходу, мин-1 1000 900

Масса двигателя, кг

Габаритные размеры, мм

Расход масла в% от расхода топлива

Ресурс двигателя до первого капитального ремонта, тыс. Км

назначение

ВАЗ-21059/21079

ВАЗ-2108/2109/21099/2115/2110

выпускаются модели

двигатель РПД

Время разгона 0-100, сек

Максимальная скорость, км \ ч

КПД роторно-поршневой конструкции

Не смотря на ряд недоработок, проведенные исследования показали, что общий КПД двигателя Ванкеля довольно-таки высокий по современным меркам. Его значение составляет 40 – 45%. Для сравнения, у поршневых двигателей внутреннего сгорания КПД составляет 25%, у современных турбодизелей – около 40%. Самый высокий КПД у поршневых дизельных двигателей составляет 50%. До настоящего времени ученые продолжают работу по изысканию резервов для повышения КПД двигателей.

Итоговый КПД работы мотора состоит из трех основных частей:


Исследования в этой области показывают, что только 75% горючего сгорает в полном объеме. Есть мнение, что данная проблема решается путем разделения процессов сгорания и расширения газов. Необходимо предусмотреть обустройство специальных камер при оптимальных условиях. Горение должно происходить в замкнутом объеме, при условии нарастания температурных показателей и давления, расширительный процесс должен происходить при невысоких показателях температур.

  1. КПД механический (характеризует работу, результатом которой стало образование переданного потребителю крутящего момента главной оси).

Порядка 10% работы мотора расходуется на приведение в движение вспомогательных узлов и механизмов. Исправить данную недоработку можно путем внесения изменений в устройство двигателя: когда главный движущийся рабочий элемент не прикасается к неподвижному корпусу. Постоянное плечо крутящего момента должно присутствовать на всем пути следования основного рабочего элемента.

  1. Термическая эффективность (показатель, отражающий количество тепловой энергии, образованной от сжигания горючего, преобразующейся в полезную работу).

На практике 65% полученной тепловой энергии улетучивается с отработанными газами во внешнюю среду. Ряд исследований показал, что можно добиться повышения показателей термической эффективности в том случае, когда конструкция мотора позволяла бы осуществлять сгорание горючего в теплоизолированной камере, чтобы с самого начала достигались максимальные показатели температуры, а в конце эта температура понижалась до минимальных значений путем включения паровой фазы.

Роторно-поршневой двигатель Ванкеля

Автомобильная индустрия постоянно развивается. Неудивительно, что появляются альтернативные технологии, которые тем мне менее редко появляются в массовом производстве. Именно к таким можно причислить роторные двигатели.

Важно! Бурный толчок в развитии автомобилестроения дало изобретение двигателя внутреннего сгорания. Как результат машины стали ездить на жидком топливе, и началась бензиновая эра.

Машины с роторным двигателем

Роторно-поршневой двигатель был изобретён компанией NSU. Создателем аппарата стал Вальтер Фройде. Тем не менее данное устройство в научных кругах носит имя другого учёного, а именно Ванкеля.

Дело в том что над этим проектом работал дуэт инженеров. Но основная роль в создании устройства принадлежала именно Фройде. В то время как он трудился над роторной технологией, Ванкель работал над другим проектом, который закончился ничем.

Тем не менее в результате подковёрных игр теперь мы все знаем этот аппарат как роторный двигатель Ванкеля. Первая рабочая модель была собрана в 1957 году. Автомобилем первоиспытателем стал NSU Spider. В то время он смог развить скорость в сто пятьдесят километров. Мощность мотора «Паука» составляла 57 л. с.

«Паук» с роторным двигателем выпускался с 1964 по 1967 год. Но массовым так и не стал. Тем не менее автопроизводители не поставили крест на этой технологии. Мало того, они выпустили ещё одну модель — NSU Ro-80, и она стала настоящим прорывом. Большую роль сыграл правильный маркетинг.

Обратите внимание на название. Уже в нём содержится указание на то, что машина оснащена роторным двигателем. Пожалуй, результатом этого успеха стала установка данных моторов, на такие известные автомобили, как:

  • Citroen GS Birotor,
  • Mercedes-Benz С111,
  • Chevrolet Corvette,
  • ВАЗ 21018.

Больше всего популярности роторные двигатели получили в стране «Восходящего солнца». Японская компания Mazda пошла на рисковый по тем временам шаг и стала производить автомобили с использованием данной технологии.

Первой ласточкой от компании «Мазда» стала машина Cosmo Sport. Нельзя сказать, что она снискала огромную популярность, но свою аудиторию она нашла. Тем не менее это был лишь первый шаг выхода роторных двигателей на японский рынок, а вскоре, и на мировой.

Японские инженеры не просто не отчаялись, а наоборот, стали работать с утроенной силой. Результатом их трудов стала серия, которую с благоговением вспоминают все уличные гонщика в любой стране мира — Rotor-eXperiment или сокращённо RX.

В рамках этой серии было выпущено несколько легендарных моделей, среди которых Mazda RX-7. Сказать, что эта машина с роторным двигателем была популярна, всё равно что промолчать. Миллионы фанатов уличных гонок начинали именно с неё. При относительно низкой цене, она имела просто невероятные технические характеристики:

  • разгон до сотни — 5,3 секунды;
  • максимальная скорость — 250 километров в час;
  • мощность — 250—280 лошадиных сил в зависимости от модификации.

Машина является настоящим произведением искусства, она легка и манёвренна, а её двигатель вызывает восхищение. При описанных выше характеристиках он имеет объём всего в 1,3 литра. В нём две секции, а рабочее напряжение 13В.

Внимание! Mazda RX-7 выпускалась с 1978 по 2002. За это время было произведено около миллиона машин с роторными двигателями.

К сожалению, последняя модель этой серии была выпущена в 2008 году. Mazda RX8 завершила легендарную линейку. Собственно на этом историю роторного двигателя в массовом производстве можно считать завершённой.

Принцип работы

Многие автомобильные эксперты считают, что конструкцию обычного поршневого аппарата нужно оставить в далёком прошлом. Тем не менее миллионам машин нужна достойная замена, может ли им стать роторный двигатель, давайте разберёмся.

Принцип работы роторного двигателя базируется на давлении, которое создаётся при сжигании топлива. Основной частью конструкции является ротор, который отвечает за создание движений нужной частоты. В результате энергия передаётся на сцепление. Ротор выталкивает её, передавая на колёса.

Ротор имеет форму треугольника. Материалом конструкции служит легированная сталь. Деталь находится в овальном корпусе, в котором, собственно, и происходит вращение, а также ряд важных для выработки энергии процессов:

  • сжатие смеси,
  • впрыск топлива,
  • создание искры,
  • подача кислорода,
  • слив отработанного сырья.

Главная особенность устройства роторного двигателя заключается в том, что ротор имеет крайне необычную схему передвижения. Результатом подобного конструкторского решения являются три полностью изолированные друг от друга ячейки.

Внимание! В каждой ячейки происходит определённый процесс.

В первую ячейку поступает воздушно-топливная смесь. В полости происходит перемешивание. Дальше ротор перемещает полученную субстанцию в следующий отсек. Именно здесь проходит сжатие и воспламенение.

В третьей ячейке удаляется использованное топливо. Слаженная работа трёх отсеков как раз и даёт ту удивительную производительность, которая была продемонстрирована на примере автомобилей из серии RX.

Но главный секрет устройства кроется совсем в другом. Дело в том, что эти процессы не возникают один за другим, они происходят моментально. Как результат всего за один оборот проходит три такта.

Выше была представлена схема работы базового роторного мотора. Многие производители стараются модернизировать технологию, чтобы добиться больше производительности. Некоторым это удаётся, другие же терпят поражение.

Японским инженерам удалось добиться успеха. Уже упомянутые выше двигатели «Мазда» имеют до трёх роторов. Во сколько в таком случае возрастёт производительность, вы можете себе представить.

Приведём наглядный пример. Возьмём обычный мотор РПД с двумя роторами и найдём ближайший аналог — шестицилиндровый двигатель внутреннего сгорания. Если же добавить в конструкцию ещё одни ротор, то разрыв будет и вовсе колоссальным — 12 цилиндров.

Виды роторных двигателей

Множество автокомпаний бралось за производство роторных двигателей. Неудивительно, что было создано много модификаций, каждая из которых имеет свои особенности:

  1. Роторный двигатель с разнонаправленным движением. Ротор здесь не вращается, а как бы качается вокруг своей оси. Процесс сжатия происходит между лопатками мотора.
  2. Пульсирующе-вращательный роторный двигатель. Внутри корпуса два ротора. Сжатие проходит между лопастями этих двух элементов, когда они сближаются и удаляются.
  3. Роторный двигатель с уплотнительной заслонкой — данная конструкция до сих пор широко задействуется в пневматических моторах. Для роторных двигателей внутреннего сгорания существенно переделывается камера, в которой проходит воспламенение.
  4. Роторный двигатель, работающий за счёт вращательных движений. Считается, что именно эта конструкция является наиболее технически совершенной. Здесь нет деталей, которые совершают возвратно-поступательные движения. Поэтому роторные двигатели такого типа легко достигают 10 000 оборотов в минуту.
  5. Планетарно-вращательный роторный двигатель — самая первая модификация, изобретённая двумя инженерами.

Как видите, наука не стоит на месте, немалое количество видов роторных моторов позволят надеяться на дальнейшее развитие технологии в отдалённом будущем.

Достоинства и недостатки роторного двигателя

Как видите, роторные моторы пользовались определённой популярностью в своё время. Мало того, действительно, легендарные машины были оснащены моторами такого класса. Чтобы понять, почему данный аппарат устанавливался на передовые модели японских машин, нужно узнать все его достоинства и недостатки.

Достоинства

С предыстории, представленной ранее, вы уже знаете, что роторный двигатель в своё время привлёк большое внимание производителей моторов, на то было несколько причин:

  1. Повышенная компактность конструкции.
  2. Малый вес.
  3. РПД хорошо сбалансирован и создаёт при работе минимум вибраций.
  4. Количество запчастей в моторе на порядок меньше, чем в поршневом аналоге.
  5. РПД обладает высокими динамическими качествами

Самое же главное достоинство РПД — высокая удельная мощность. Авто с роторным двигателем может разогнаться до 100 километров без переключения на высокие передачи при сохранении большого количества оборотов.

Важно! Использование роторного двигателя позволяет добиться повышенной устойчивости автомобиля на дороге благодаря идеальной развесовке.

Недостатки

Вот и пришло время больше узнать, почему, несмотря на все преимущества, большинство производителей перестали устанавливать роторные двигатели на свои автомобили. К недостаткам РПД причисляют:

  1. Повышенный расход топлива при работе на низких оборотах. В самых требовательных к ресурсам машинам он может достигать 20—25 литров на 100 километров пробега.
  2. Сложность в изготовлении. На первый взгляд конструкция роторного двигателя намного проще, чем у поршневого. Но дьявол кроется именно в деталях. Их изготовить крайне непросто. Геометрическая точность каждой запчасти должна быть на идеальном уровне, иначе ротор не сможет пройти эпитрохоидальную кривую с должным результатом. РПД требует при своём изготовлении высокоточное оборудование, которое стоит немалых денег.
  3. Роторный двигатель часто перегревается. Это связано с необычным строением камеры сгорания. К сожалению, даже спустя много лет инженерам не удалось исправить данный дефект. Избыток энергии, вырабатываемой при сгорании топлива нагревает цилиндр. Это сильно изнашивает мотор и сокращает срок его эксплуатации.
  4. Также роторный двигатель страдает перепадами давления. Результат подобного эффекта быстрый износ уплотнителей. Ресурс работы одного качественно собранного РПД лежит в диапазоне от 100 до 150 тысяч километров пробега. После прохождения данного рубежа без капитального ремонта уже не обойтись.
  5. Сложная процедура смены масла. Потребление роторным двигателем масла на 1000 километров составляет 600 миллилитров. Чтобы детали получали надлежащую смазку масло необходимо менять один раз на 5000 км. Если же этого не сделать, то становится крайне вероятным серьёзное повреждение ключевых узлов агрегата.

Как видите, несмотря на выдающиеся преимущества РПД имеет ряд весомых недостатков. Тем не менее конструкторские подразделения в ведущих автомобильных фирмах до сих пор пытаются модернизировать эту технологию, и кто знает, возможно, однажды, у них это получится.

Итоги

Роторные двигатели имеют множество весомых преимуществ, они хорошо сбалансированы, позволяют быстро наращивать обороты и обеспечивают набор скорости до 100 км за 4—7 секунд. Но есть у роторных моторов и недостатки, главный из которых маленький срок эксплуатации.

С изобретением двигателя внутреннего сгорания прогресс в развитии автомобилестроения шагнул далеко вперед. Несмотря на то, что общее устройство ДВС оставалось одинаковым, данные агрегаты постоянно усовершенствовались. Наряду с этими моторами появлялись более прогрессивные агрегаты роторного типа. Но почему они так и не получили широкого распространения в автомобильном мире? Ответ на этот вопрос мы рассмотрим в статье.

История возникновения агрегата

Двигатель роторного типа был сконструирован и испытан разработчиками Феликсом Ванкелем и Вальтером Фройде в 1957 году. Первый автомобиль, на который был установлен данный агрегат, - спорткар NSU «Спайдер». Исследования показали, что при мощности мотора в 57 лошадиных сил данная машина имела возможность разогнаться до колоссальных 150 километров в час. Производство автомобилей «Спайдер» в комплектации с 57-сильным роторным двигателем длилось около 3-х лет.

После этого данным типом двигателей стали оснащать автомобиль NSU Ro-80. Впоследствии роторные моторы устанавливались на «Ситроены», «Мерседесы», ВАЗы и «Шевроле».

Одним из самых распространенных автомобилей с роторным двигателем является японский спорткар «Мазда» модели Cosmo Sport. Также японцы стали оснащать данным мотором модель RX. Принцип работы роторного двигателя («Мазда» RX) заключался в постоянном вращении ротора с переменой тактов работы. Но об этом немного позже.

В нынешнее время японский автопроизводитель не занимается серийным выпуском машин с роторными двигателями. Последней моделью, на которую ставился такой мотор, стала «Мазда» RX8 модификации Spirit R. Однако в 2012 году производство данной версии автомобиля было прекращено.

Устройство и принцип работы

Какой имеет роторный двигатель принцип функционирования? Данный тип моторов отличается 4-тактным циклом действия, как и на классическом ДВС. Однако принцип работы роторно-поршневого двигателя немного отличается от такового у обычных поршневых.

В чем главная особенность данного мотора? Роторный двигатель Стирлинга имеет в своей конструкции не 2, не 4 и не 8 поршней, а всего один. Называется он ротором. Вращается данный элемент в цилиндре специальной формы. Ротор насаживается на вал и соединяется с зубчатым колесом. Последнее имеет шестеренчатое сцепление со стартером. Вращение элемента происходит по эпитрохоидальной кривой. То есть лопасти ротора попеременно перекрывают камеру цилиндра. В последней происходит сгорание топлива. Принцип работы роторного двигателя («Мазда» Cosmo Sport в том числе) заключается в том, что за один оборот механизм толкает три лепестка жестких кругов. В то время как деталь вращается в корпусе, три отсека внутри меняют свой размер. Благодаря изменению размеров в камерах создается определенное давление.

Фазы работы

Как действует роторный двигатель? Принцип работы (gif-изображения и схему РПД вы можете увидеть ниже) данного мотора заключается в следующем. Функционирование двигателя состоит из четырех повторяющихся циклов, а именно:

  1. Подачи топлива. Это первая фаза работы двигателя. Она происходит в тот момент, когда вершина ротора находится на уровне отверстия подачи. Когда камера открыта для основного отсека, ее объем приближается к минимуму. Как только ротор вращается мимо нее, в отсек попадает топливно-воздушная смесь. После этого камера снова становится закрытой.
  2. Сжатия . Когда ротор продолжает свое движение, пространство в отсеке уменьшается. Таким образом, происходит сжатие смеси из воздуха и топлива. Как только механизм проходит отсек со свечей зажигания, объем камеры снова уменьшается. В этот момент происходит воспламенение смеси.
  3. Воспламенения . Зачастую роторный двигатель (ВАЗ-21018 в том числе) имеет несколько свечей зажигания. Это обусловлено большой длиной камеры сгорания. Как только свеча воспламеняет горючую смесь, уровень давления внутри увеличивается в десятки раз. Таким образом, ротор снова приводится в действие. Далее давление в камере и количество газов продолжают расти. В этот момент происходит перемещение ротора и создание крутящего момента. Так продолжается до тех пор, пока механизм не пройдет выхлопной отсек.
  4. Выпуска газов. Когда ротор проходит данный отсек, газ под высоким давлением начинает свободно перемещаться в выхлопную трубу. При этом движение механизма не прекращается. Ротор стабильно вращается до тех пор, пока объем камеры сгорания снова не упадет до минимума. К этому времени из мотора выдавится оставшееся количество отработавших газов.

Именно такой имеет роторный двигатель принцип работы. ВАЗ-2108, на который также монтировался РПД, как и японская «Мазда», отличался тихой работой мотора и высокими динамическими характеристиками. Но в серийное производство данная модификация так и не была запущена. Итак, мы выяснили, какой имеет роторный двигатель принцип работы.

Недостатки и преимущества

Не зря данный мотор привлек внимание столь многих автопроизводителей. Его особый принцип работы и конструкция имеют целый ряд преимуществ по сравнению с другими типами ДВС.

Итак, какие имеет роторный двигатель плюсы и минусы? Начнем с явных преимуществ. Во-первых, роторный двигатель имеет наиболее сбалансированную конструкцию, а потому практически не вызывает высоких вибраций при работе. Во-вторых, данный мотор имеет более легкий вес и большую компактность, а потому его установка особо актуальна для производителей спорткаров. Кроме того, небольшой вес агрегата дал возможность конструкторам добиться идеальной развесовки нагрузок по осям. Таким образом, автомобиль с данным двигателем становился более устойчивым и маневренным на дороге.

Ну и, конечно же, простора конструкции. Несмотря на то же самое количество тактов работы, устройство данного двигателя гораздо проще, чем у поршневого аналога. Для создания роторного мотора требовалось минимальное количество узлов и механизмов.

Однако главный козырь данного двигателя заключается не в массе и низких вибрациях, а в высоком КПД. Благодаря особому принципу работы роторный мотор имел большую мощность и коэффициент полезного действия.

Теперь о недостатках. Их оказалось намного больше, чем преимуществ. Основная причина, по которой производители отказывались покупать такие моторы, заключалась в их высоком расходе топлива. В среднем на сто километров такой агрегат тратил до 20 литров горючего, а это, согласитесь, немалый расход по сегодняшним меркам.

Сложность производства деталей

Кроме того, стоит отметить высокую стоимость производства деталей данного двигателя, которая объяснялась сложностью изготовления ротора. Для того чтобы данный механизм правильно прошел эпитрохоидальную кривую, нужна высокая геометрическая точность (для цилиндра в том числе). Поэтому при изготовлении роторных двигателей невозможно обойтись без специализированного дорогостоящего оборудования и особых знаний в технической области. Соответственно, все эти затраты заранее закладываются в цену автомобиля.

Перегревы и высокие нагрузки

Также из-за особой конструкции данный агрегат был часто подвержен перегреву. Вся проблема заключалась в линзовидной форме камеры сгорания.

В отличие от нее, классические ДВС имеют сферическую конструкцию камеры. Топливо, которое сгорает в линзовидном механизме, превращается в тепловую энергию, расходуемую не только на рабочий ход, но и на нагрев самого цилиндра. В конечном итоге частое «закипание» агрегата приводит к быстрому износу и выходу его из строя.

Ресурс

Не только цилиндр терпит большие нагрузки. Исследования показали, что при работе ротора значительная часть нагрузок ложится на уплотнители, расположенные между форсунками механизмов. Они подвергаются постоянному перепаду давления, потому максимальный ресурс двигателя составляет не более 100-150 тысяч километров.

После этого мотору требуется капитальный ремонт, стоимость которого порой равносильна покупке нового агрегата.

Расход масла

Также роторный двигатель очень требователен к обслуживанию.

Расход масла у него составляет более 500 миллилитров на 1 тысячу километров, что заставляет заливать жидкость каждые 4-5 тыс. километров пробега. Если вовремя не произвести замену, мотор попросту выйдет из строя. То есть к вопросу обслуживания роторного двигателя нужно подходить более ответственно, иначе малейшая ошибка чревата дорогостоящим ремонтом агрегата.

Разновидности

На данный момент существует пять разновидностей данных типов агрегатов:

Роторный двигатель (ВАЗ-21018-2108)

История создание ВАЗовских роторных ДВС датируется 1974 годом. Именно тогда было создано первое конструкторское бюро РПД. Однако первый разработанный нашими инженерами двигатель имел схожую конструкцию с мотором Ванкеля, который укомплектовывался на импортные седаны NSU Ro80. Советский аналог получил название ВАЗ-311. Это самый первый советский роторный двигатель. Принцип работы на ВАЗовских автомобилях данного мотора имеет одинаковый алгоритм действия РПД Ванкеля.

Первым автомобилем, на который стали устанавливать данные двигатели, стал ВАЗ модификации 21018. Машина практически ничем не отличалась от своего «предка» - модели 2101 - за исключением используемого ДВС. Под капотом новинки стоял односекционный РПД мощностью в 70 лошадиных сил. Однако в результате исследований на всех 50 образцах моделей были обнаружены многочисленные поломки мотора, которые заставили Волжский завод отказаться от применения данного типа ДВС на своих автомобилях на ближайшие несколько лет.

Основная причина неисправностей отечественного РПД заключалась в ненадежных уплотнениях. Однако советские конструкторы решили спасти данный проект, презентовав миру новый 2-секционный роторный двигатель ВАЗ-411. Впоследствии был разработан ДВС марки ВАЗ-413. Основные их различия заключались в мощности. Первый экземпляр развивал до 120 лошадиных сил, второй - порядка 140. Однако в серию данные агрегаты снова не вошли. Завод принял решение ставить их только на служебные автомобили, использовавшиеся в ГАИ и КГБ.

Моторы для авиации, «восьмерок» и «девяток»

В последующие годы разработчики пытались создать роторный мотор для отечественной малой авиации, однако все попытки оказались безрезультатными. В итоге конструкторы снова занялись разработкой двигателей для легковых (теперь уже переднеприводных) автомобилей ВАЗ серии 8 и 9. В отличие от своих предшественников новоразработанные моторы ВАЗ-414 и 415 являлись универсальными и могли использоваться на заднеприводных моделях авто типа «Волга», «Москвич» и так далее.

Характеристики РПД ВАЗ-414

Впервые данный двигатель появился на «девятках» лишь в 1992 году. По сравнению со своими «предками» данный мотор имел следующие преимущества:

  • Высокую удельную мощность, которая давала возможность машине набрать «сотню» всего за 8-9 секунд.
  • Большой коэффициент полезного действия. С одного литра сгоревшего топлива удавалось получить до 110 лошадиных сил мощности (и это без какой-либо форсировки и дополнительной расточки блока цилиндров).
  • Высокий потенциал для форсирования. При правильной настройке можно было увеличить мощность двигателя на несколько десятков лошадиных сил.
  • Высокооборотистость мотора. Такой двигатель способен был работать даже при 10 000 об./мин. При таких нагрузках мог функционировать только роторный двигатель. Принцип работы классических ДВС не позволяет их эксплуатировать долго на высоких оборотах.
  • Относительно малый расход топлива. Если прежние экземпляры «съедали» на «сотню» порядка 18-20 литров топлива, то данный агрегат потреблял всего 14-15 в среднем режиме эксплуатации.

Сегодняшняя ситуация с РПД на Волжском автозаводе

Все вышеописанные двигатели не получили большой популярности, и вскоре их производство было свернуто. В дальнейшем Волжский автозавод пока не планирует возрождать разработку роторных двигателей. Так что РПД ВАЗ-414 так и останется скомканным клочком бумаги в истории отечественного машиностроения.

Итак, мы выяснили, какой имеет роторный двигатель принцип работы и устройство.

Паровые машины и двигатели внутреннего сгорания обладают одним общим недостатком - возвратно-поступательное движение поршня должно быть преобразовано во вращательное движение колёс. Отсюда и заведомо низкий КПД, и высокая изнашиваемость элементов механизма. Многим хотелось построить двигатель внутреннего сгорания так, чтобы все подвижные части в нём только вращались - как это происходит в электромоторах.

Однако задача оказалась не простой, успешно решить её удалось только механику-самоучке, который за всю свою жизнь так и не получил ни высшего образования, ни даже рабочей специальности.


Феликс Генрих Ванкель (Felix Heinrich Wankel, 1902–1988) родился 13 августа 1902 года в небольшом немецком городке Лар. Во время Первой мировой войны погиб отец Феликса, из-за чего будущему изобретателю пришлось бросить гимназию и пойти работать учеником продавца в книжной лавке при издательстве. Благодаря этой работе Ванкель пристрастился к чтению книг, по которым он самостоятельно изучал технические дисциплины, механику и автомобилестроение.
Существует легенда, что решение задачи пришло семнадцатилетнему Феликсу во сне. Правда это или нет - неизвестно. Зато очевидно, что Феликс обладал весьма незаурядными способностями к механике и «незамыленным» взглядом на вещи. Он понял, как все четыре цикла работы обычного двигателя внутреннего сгорания (впрыск, сжатие, сгорание, выхлоп) можно осуществить при вращении.
Довольно быстро Ванкель пришёл к первой конструкции двигателя, и в 1924 году он организовал небольшую мастерскую, которая также служила и импровизированной «лабораторией». Здесь Феликс и начал проводить первые серьёзные исследования в области роторно-поршневых ДВС.
С 1921 года Ванкель был активным членом НСДАП. Он выступал за партийные идеалы, был основателем всегерманского военного юношеского объединения и юнгфюрером различных организаций. В 1932 году он вышел из партии, обвинив одного из своих бывших коллег в политической коррупции. Однако по встречному обвинению ему самому пришлось провести в тюрьме шесть месяцев. Освободившись из заключения благодаря заступничеству Вильгельма Кепплера (Wilhelm Keppler), он продолжил работы над двигателем. В 1934 он создал первый опытный образец и получил на него патент. Он сконструировал новые клапаны и камеры сгорания для своего мотора, создал несколько различных его вариантов, разработал классификацию кинематических схем различных роторно-поршневых машин.



В 1936 году прототип двигателя Ванкеля заинтересовал BMW - Феликс получил деньги и собственную лабораторию в Линдау для разработки опытных авиадвигателей.
Впрочем, до самого разгрома фашистской Германии ни один двигатель Ванкеля в серию не пошёл. Возможно, на доведение конструкции до ума и создания массового производства требовалось слишком много времени.
После войны лаборатория была закрыта, оборудование вывезено во Францию, а Феликс остался без работы (сказалось былое членство в национал-социалистической партии). Однако вскоре Ванкель всё же получил должность инженера-конструктора в компании NSU Motorenwerke AG, являющейся одним из старейших производителей мотоциклов и автомобилей.
В 1957 году совместными усилиями Феликса Ванкеля и ведущего инженера NSU Вальтера Фрёде (Walter Froede) роторно-поршневой двигатель впервые был установлен на автомобиль NSU Prinz. Первоначальная конструкция оказалась далека от совершенства: даже для замены свечей требовалось разбирать почти весь «движок», надёжность оставляла желать лучшего, а про экономичность на данном этапе разработки и вовсе говорить было грешно. В результате испытаний в серию пошёл всё же автомобиль с традиционным ДВС. Тем не менее первый роторно-поршневой двигатель DKM-54 доказал свою принципиальную работоспособность, открыл направления для дальнейшей доводки и продемонстрировал колоссальный потенциал «роторников».
Таким образом, новый тип ДВС получил, наконец, свою путёвку в жизнь. В дальнейшем его ждёт ещё немало усовершенствований и доработок. Но перспективы роторно-поршневого двигателя настолько привлекательны, что инженеров уже ничто не могло остановить в деле доведения конструкции до эксплуатационного совершенства.



Прежде чем разбирать достоинства и недостатки роторно-поршневых ДВС, стоит всё-таки подробней рассмотреть их конструкцию.
В центре ротора проделано круглое отверстие, изнутри покрытое зубцами как у шестерёнки. В это отверстие вставлен вращающийся вал меньшего диаметра, также с зубцами, что обеспечивает отсутствие проскальзывания между ним и ротором. Отношения диаметров отверстия и вала подобраны так, чтобы вершины треугольника двигались по одной и той же замкнутой кривой, которая называется «эпитрохоида», - искусство Ванкеля как инженера заключалось в том, чтобы сначала понять, что это возможно, а потом всё точно рассчитать. В итоге, поршень, имеющий форму треугольника Рело, отсекает в камере, повторяющей форму найденной Ванкелем кривой, три камеры переменного объёма и положения.
Конструкция роторно-поршневого ДВС позволяет реализовать любой четырехтактный цикл без применения специального механизма газораспределения. Благодаря этому факту «роторник» оказывается значительно проще обычного четырёхтактного поршневого двигателя, в котором в среднем почти на тысячу деталей больше.
Герметизация рабочих камер в роторно-поршневом ДВС обеспечивается радиальными и торцевыми уплотнительными пластинами, прижимаемыми к «цилиндру» ленточными пружинами, а также центробежными силами и давлением газа.
Ещё одна его техническая особенность - это высокая «производительность труда». За один полный оборот ротора (то есть за цикл «впрыск, сжатие, воспламенение, выхлоп»), выходной вал совершает три полных оборота. В обычном поршневом двигателе таких результатов можно добиться только используя шестицилиндровый ДВС.



После первой же успешной демонстрации роторного ДВС в 1957 году крупнейшие автогиганты стали проявлять к разработке повышенный интерес. Сначала лицензию на двигатель, получивший неформальное название «ванкель», купила корпорация Curtiss-Wright, через год, Daimler-Benz, MAN, Friedrich Krupp и Mazda. Всего за весьма короткий промежуток времени лицензии на новую технологию приобрели около ста компаний во всём мире, включая таких монстров как Rolls-Royce, Porsche, BMW и Ford.Такой интерес к «ванкелю» столь крупных игроков автомобильного рынка объясняется его большим потенциалом и значительными достоинствами - в роторно-поршневом двигателе на 40% меньше деталей, он проще в ремонте и производстве.


К тому же «ванкель» почти в два раза компактней и легче традиционного поршневого ДВС, что в свою очередь улучшает управляемость автомобиля, облегчает оптимальное расположение трансмиссии и позволяет сделать более просторный и удобный салон.


Картинка кликабельна:

Роторно-поршневой двигатель развивает высокую мощность при довольно скромном расходе топлива. Например, современный «ванкель» объёмом всего 1300 смі развивает мощность в 220 л.с., а с турбокомпрессором - все 350. Ещё один пример - миниатюрный двигатель OSMG 1400 весом 335 г (рабочий объем 5 смі) развивает мощность в 1,27 л.с. Фактически, эта кроха на 27% сильнее лошади.
Ещё одно важное преимущество - низкий уровень шумов и вибраций. Роторно-поршневой двигатель отлично уравновешен механически, кроме того масса движущихся частей (и их количество) в нём значительно меньше, благодаря чему «ванкель» работает гораздо тише и не вибрирует.
И, наконец, роторно-поршневой двигатель отличается великолепными динамическими характеристиками. На низкой передаче можно без особой нагрузки на движок разогнать автомобиль до 100 км/ч на высоких оборотах двигателя. Кроме того, сама конструкция «ванкеля» за счёт отсутствия механизма преобразования возвратно-поступательного движения во вращательное, способна выдержать большие обороты, чем традиционный ДВС.




После вышедшего в 1964 году NSU Spyder последовали легендарная модель NSU Ro 80 (в мире до сих пор существует множество клубов владельцев этих машин), Citroen M35 (1970), Mercedes C-111 (1969), Corvette XP (1973). Но единственным массовым производителем стала японская Mazda, выпускавшая с 1967 года порой по 2-3 новые модели с РПД. Роторные двигатели ставили на катера, снегоходы и легкие самолеты. Конец эйфории пришел в 1973 году, в разгар нефтяного кризиса. Тут-то и проявился основной недостаток роторных двигателей - неэкономичность. За исключением Mazda, все автопроизводители свернули роторные программы, а у японской компании продажи по Америке сократились со 104960 проданных машин в 1973 году до 61192 - в 1974-м. Наряду с неоспоримыми достоинствами, «ванкель» также обладал и целым рядом очень серьёзных недостатков. Во-первых, долговечность. Один из первых прототипов роторно-поршневых двигателей на испытаниях выработал свой ресурс всего за два часа. Следующий, более успешный DKM-54 уже выдержал сто часов, но этого для нормальной эксплуатации автомобиля всё равно было недостаточно. Основная проблема крылась в неравномерном износе внутренней поверхности рабочей камеры. На ней в процессе эксплуатации появлялись поперечные борозды, которые получили говорящее имя «метки дьявола».


В компании Mazda после приобретения лицензии на «ванкель» был сформирован целый отдел, занимавшийся усовершенствованием роторно-поршневого двигателя. Довольно скоро выяснилось, что при вращении треугольного ротора, заглушки на его вершинах начинают вибрировать, в результате чего и образуются «метки дьявола».
В настоящее время проблему надежности и долговечности окончательно решили, применив высококачественные износостойкие покрытия, в том числе керамические.
Другая серьезная проблема - повышенная токсичность выхлопа «ванкеля». По сравнению с обычным поршневым ДВС «роторник» выделяет в атмосферу меньше окислов азота, но гораздо больше углеводородов, за счёт неполного сгорания топлива. Довольно быстро инженеры Mazda, уверовавшие в блестящее будущее «ванкеля», нашли простое и эффективное решение и этой проблемы. Они создали так называемый термальный реактор, в котором остатки углеводородов в выхлопных газах просто «дожигались». Первым автомобилем, реализовавшим такую схему, стал Mazda R100, также называемый Familia Presto Rotary, выпущенный в 1968 году. Эта машина, одна из немногих, сразу прошла весьма жёсткие экологические требования, выдвинутые США в 1970 году для импортируемых авто.
Следующая проблема роторно-поршневых двигателей частично вытекает из предыдущей. Это экономичность. Расход топлива стандартного «ванкеля» из-за неполного сгорания смеси существенно выше, чем у стандартного ДВС. И снова инженеры Mazda принялись за работу. При помощи целого комплекса мер, включающих переработку термореактора и карбюратора, добавление теплообменника в выхлопную систему, разработку каталитического конвертера и внедрение новой системы зажигания, компания добилась снижения потребления топлива на 40%. В результате этого несомненного успеха в 1978 году был выпущен спортивный автомобиль Mazda RX-7.



Стоит отметить, что в это время во всём мире машины с роторно-поршневыми двигателями выпускала только Mazda и… АвтоВАЗ.
Именно в провальном 1974 году советское правительство создает на Волжском автозаводе специальное конструкторское бюро РПД (СКБ РПД) - социалистическая экономика непредсказуема. В Тольятти начались работы по строительству цехов для серийного производства «ванкелей». Поскольку ВАЗ изначально планировался как простой копировальщик западных технологий (в частности, фиатовских), заводскими специалистами было принято решение воспроизводить двигатель Mazda, напрочь откинув все десятилетние наработки отечественных двигателестроительных институтов.
Советские чиновники довольно долго вели переговоры с Феликсом Ванкелем на предмет покупки лицензий, причем некоторые из них проходили прямо в Москве. Денег, правда, не нашли, и поэтому воспользоваться некоторыми фирменными технологиями не удалось. В 1976 году заработал первый волжский односекционный двигатель ВАЗ-311 мощностью 65 л.с., еще пять лет ушло на доводку конструкции, после чего была выпущена опытная партия в 50 штук роторных «единичек» ВАЗ-21018, мгновенно разошедшихся среди работников ВАЗа. Тут же выяснилось, что двигатель только внешне напоминал японский - сыпаться он стал очень даже по-советски. Руководство завода было вынуждено за полгода заменить все двигатели на серийные поршневые, сократить на половину штат СКБ РПД и приостановить строительство цехов. Спасение отечественного роторного двигателестроения пришло от спецслужб: их не очень интересовал расход топлива и ресурс двигателя, зато сильно - динамические характеристики. Тут же из двух двигателей ВАЗ-311 был сделан двухсекционный РПД мощностью 120 л.с., который стал устанавливаться на «спецединичку» - ВАЗ-21019. Именно этой модели, получившей неофициальное название «Аркан», мы обязаны бесчисленным количеством баек про милицейские «Запорожцы», догоняющие навороченные «Мерседесы», а многие стражи порядка - орденами и медалями. До 90-х годов внешне непритязательный «Аркан» действительно легко догонял все машины. Помимо ВАЗ-21019 на АвтоВАЗе также выпускаются малые партии автомобилей ВАЗ-2105, -2107, -2108, -2109, -21099. Максимальная скорость роторной «восьмерки» составляет около 210 км/ч, а до сотни она разгоняется всего за 8 секунд.
Оживший на спецзаказах СКБ РПД стал делать двигатели для водного и автоспорта, где машины с роторными двигателями стали настолько часто завоевывать призовые места, что спортивные чиновники были вынуждены запретить применение РПД.
В 1987 году умер руководитель СКБ РПД Борис Поспелов и на общем собрании был выбран Владимир Шнякин - человек, пришедший в автомобилестроение из авиации и недолюбливающий наземный транспорт. Главным направлением СКБ РПД становится создание двигателей для авиации. Это была первая стратегическая ошибка: самолетов у нас выпускается несоизмеримо меньше автомобилей, а завод живет с проданных двигателей.
Второй ошибкой стала ориентация в сохранившемся производстве автомобильных РПД на маломощные двигатели ВАЗ-1185 в 42 л.с. для «Оки», хотя более прожорливые, но более динамичные роторные двигатели так и просятся на самые быстроходные отечественные машины - например, на «восьмерки». Те же японцы устанавливают «ванкели» только на спортивные модели. В итоге на российских дорогах оказалось всего несколько роторных микролитражек «Ока». В 1998 году был наконец-то подготовлен гражданский вариант двухцилиндрового роторного 1,3-литрового двигателя ВАЗ-415, который стали устанавливать на ВАЗ-2105, 2107, 2108 и 2109.



В мае 1998 г был омологирован кольцевой ВАЗ-110 «РПД-спорт» (190 л. с., 8500 об/мин, 960 кг, 240 км/ч). Увы, дальше одного-единственного образца, чаще демонстрируемого на выставках, чем стартующего в гонках, дело не пошло. 110-я была самой мощной в пелотоне, но откровенно сырая конструкция всякий раз не давала ей продемонстрировать весь свой потенциал. Однако обидней всего то, что на «ВАЗе» быстро охладели к роторному направлению, а уникальную «Ладу» переделали в ралли-кар с обычным ДВС.


Так почему же все ведущие производители автомобилей ещё не пересели на «ванкели»? Дело в том, что для производства роторно-поршневых двигателей требуется, во-первых, отточенная технология со множеством самых разнообразных нюансов и далеко не каждая компания готова пройти путь той же Mazda, попутно наступая на многочисленные «грабли». А во-вторых, нужны специальные высокоточные станки, способные вытачивать поверхности, описанные такой хитрой кривой как эпитрохоида.


Mazda RX-7 - это один из первых автомобилей, на котором ставился роторно-поршневой двигатель Ванкеля. За всю историю Mazda RX-7 было четыре поколения. Первое поколение с 1978 по 1985 год. Второе поколение - с 1985 по 1991. Третье поколение - с 1992 по 1999. Последнее, четвёртое поколение - с 1999 по 2002 год. Первое поколение RX-7 появилось в 1978 году. Оно имело среднемоторную компоновку и оснащалось роторным двигателем мощностью всего 130 л. с.


В настоящее время только Mazda занимается серьёзными исследованиями в области роторно-поршневых двигателей, постепенно совершенствуя их конструкцию, и большая часть подводных камней в этой области уже пройдена. «Ванкели» вполне соответствуют мировым стандартам по уровню токсичности выхлопа, потреблению топлива и надёжности. Для современных станков поверхности описанные эпитрохоидой не являются проблемой (как не являются проблемой и куда более сложные кривые), новые конструкционные материалы позволяют увеличить срок службы роторно-поршневого двигателя, а его стоимость уже сейчас оказывается ниже, чем у стандартного ДВС за счёт меньшего количества используемых деталей.
Как и NSU, Mazda в 60-е гг. была небольшой компанией с ограниченными техническими и финансовыми ресурсами. Основу ее модельного ряда составляли развозные грузовички да семейные малолитражки. Поэтому нет ничего удивительного, что спорт-купеMazda 110S Cosmo (982 см куб., 110 л. с., 185 км/ч) создавалось более 6 лет и оказалось весьма капризным и дорогим. Да и подпорченная NSU Ro80 репутация не способствовала ажиотажу (в 1967–1972 гг. нашли своих владельцев только 1175 «космосов»), но мировой интерес к 110S способствовал увеличению продаж всей остальной продукции фирмы!
Чтобы доказать, что РПД столь же надежен (его превосходство в мощности уже стало для всех очевидным), Mazda чуть ли не впервые в жизни приняла участие в соревнованиях, причем выбрала самую трудную и продолжительную гонку – 84-часовой Marathon De La Route, проходивший на Нюрбургринге. Как экипажу из Бельгии удалось занять 4-е место (вторая машина сошла с дистанции за три часа до финиша из-за заклинивших тормозов), уступив только «выросшим» на «Нордшляйфе» Porsche 911, похоже, так и останется загадкой.


Мастерская Ванкеля в Линдау


Хотя с тех пор японские «роторники» стали завсегдатаями гоночных трасс, крупного успеха в Европе им пришлось ждать 16 лет. В 1984-м британцы на RX-7 выиграли престижную суточную гонку в Спа-Франкошамп. А вот в США, на главном рынке «семерки», ее гоночная карьера складывалась куда успешнее: с момента дебюта в чемпионате IMSA GT в 1978 году и по 1992-й она выиграла в своем классе более сотни этапов, причем с 1982 по 1992 гг. первенствовала в главной гонке серии – 24 hours of Daytona.
В ралли у «Мазд» все шло не так гладко. Как это часто бывало с японскими командами (Toyota, Datsun, Mitsubishi), они выступали только на отдельных этапах раллийного чемпионата мира (Новая Зеландия, Великобритания, Греция, Швеция), интересующих в первую очередь маркетинговые отделы концернов. Национальных титулов хватало: так, в 1975–1980 гг. Род Миллен выиграл целых пять в Новой Зеландии и США. А вот в WRC успехи были исключительно локальными: лучшее, что показали RX-7, – 3-е и 6-е места в греческом «Акрополисе» 1985 года.
Ну а самым громким успехом Mazda вообще и РПД в частности стала победа ее спортпрототипа 787B (2612 см куб., 700 л. с., 607 Нм, 377 км/ч) в Ле Мане в 1991 году. Причем одолеть заводскиеPorsche, Peugeot и Jaguar помогли не только быстрые пилоты и конкурентоспособная техника: свою роль сыграла и настойчивость японских менеджеров, регулярно «выбивавших» для роторников всевозможные послабления в регламенте. Так, накануне победы 787-го организаторы гонки согласились компенсировать прожорливость «роторников» 170-килограммовым (830 против 1000) снижением массы. Парадокс заключался в том, что, в отличие от бензиновых моторов, «аппетит» РПД при дальнейшей форсировке рос куда более скромными темпами, чем у обычных поршневых моторов, и 787-й оказался экономичней своих основных конкурентов!


Это был шок. Mercedes, который журнал Stern за консерватизм называл не иначе как «производитель авто для 50-летних господ в шляпах», в 1969 году презентовал супер-кар, поражавший воображение даже цветом. Вызывающая ярко-оранжевая окраска, подчеркнуто клиновидная форма, среднемоторная компоновка, двери «крыло чайки» и сверхмощный трехсекционный РПД (3600 см куб., 280 л. с., 260 км/час) – для консервативного Mercedes это было нечто!


А поскольку в компании не строили концептов, все считали, что у С111 только один путь: мелкосерийная (омологационная) сборка и большое гоночное будущее, ведь с 1966 года ФИА допустила РПД к официальным соревнованиям. И в штаб-квартиру Mercedes посыпались чеки с просьбой вписать нужную сумму за право обладать С111. Штутгартцы же еще больше подогрели интерес к «эске», в 1970 г. представив вторую генерацию купе с еще более фантастическим дизайном, 4-секционным ротором и умопомрачительными характеристиками (4800 см куб., 350 л. с., 300 км/час). Для доводки Mercedes построил пять макетов, которые дневали и ночевали на Хокенхаймринге и Нюрбургринге, готовясь установить серию рекордов скорости. Пресса смаковала предстоящую «битву титанов» между роторным Mercedes, атмосферным Ferrari и наддувным Porsche в чемпионате мира по гонкам на выносливость. Увы, возвращение в большой спорт не состоялось. Во-первых, С111 был очень дорогим даже для Mercedes, во- вторых, немцы не могли пустить в продажу столь сырую конструкцию. А после карибского нефтяного кризиса они вообще прикрыли проект, сосредоточившись на дизельных двигателях. Ими и оборудовали последние версии C111, установившие несколько мировых рекордов.


Не имеющий законченного технического образования, под конец жизни Феликс Ванкель достиг мирового признания в области двигателестроения и уплотнительной техники, завоевав массу наград и титулов. Его именем названы улицы и площади немецких городов (Felix-Wankel-Strasse, Felix-Wankel-Ring). Помимо двигателей, Ванкель разработал новую концепцию скоростных судов и самостоятельно построил несколько лодок.


Самое интересное, что роторный двигатель, который сделал его миллионером и принес ему всемирную славу, Ванкель не любил, считая его «гадким утенком». Реальные работающие РПД были сделаны по так называемой «концепции ККМ», предусматривающей планетарное вращение ротора и требующей введения внешних противовесов. Немалую роль сыграл и тот факт, что эту схему предложил не Ванкель, а инженер NSU Вальтер Фройде. Сам же Ванкель до последних дней считал идеальной схему двигателя «с вращающимися поршнями без неравномерно вращающихся частей» (Drehkolbenmasine - DKM), концептуально гораздо более красивую, но технически сложную, требующую, в частности, установки свечей зажигания на вращающемся роторе. Тем не менее, роторные двигатели во всем мире связывают именно с именем Ванкеля, поскольку все, кто близко знал изобрателя, в один голос утверждают, что что без неуемной энергии немецкого инженера мир так и не увидел бы этого удивительного устройства. Фелик Ванкель ушел из жизни в 1988 году.
Любопытна история с Mercedes 350 SL. Ванкель очень хотел иметь роторный Mercedes С-111. Но фирма Mercedes не пошла ему навстречу. Тогда изобретатель взял серийный 350 SL, выкинул оттуда «родной» двигатель и установил ротор от С-111, который был легче прежнего 8-цилиндрового на 60 кг, но развивал существенно большую мощность (320 л.с. при 6500 об/мин). В 1972 году, когда инженерный гений закончил работу над своим очередным чудом, он мог бы сидеть за рулем самого быстрого на тот момент «Мерседеса» SL-класса. Ирония заключалась в том, что водительские права Ванкель до конца жизни так и не получил.


Возрождением интереса к РПД мы обязаны новому двигателю Mazda Renesis (от RE - Rotary Engine - и Genesis). За прошедшее десятилетие японским инженерам удалось решить все основные проблемы РПД - токсичность выхлопа и неэкономичность. По сравнению с предшественником, удалось сократить потребление масла на 50%, бензина на 40% и довести выброс вредных окисей до норм, соответствующих Euro IV. Двухцилиндровый двигатель объемом всего 1,3 л выдает мощность в 250 л.с. и занимает гораздо меньше места в двигательном отсеке.
Специально под новый двигатель был разработан автомобиль Mazda RX-8, который, по словам брэнд-менеджера Mazda Motor Europe Мартина Бринка, создавался по новой концепции - автомобиль «строился» вокруг двигателя. В итоге развесовка по осям RX-8 идеальна - 50 на 50. Использование уникальной формы и маленьких размеров двигателя позволило поместить центр тяжести очень низко. «RX-8 не явяляется гоночным монстром, но это лучшая в управлении машина, которую я когда-либо водил», - с восторгом рассказывал Popular Mechanics Мартин Бринк.
Бочка меда…
Вне всяких сомнений, с первого взгляда роторно-поршневой двигатель имеет массу преимуществ перед традиционными двигателями внутреннего сгорания:
- Меньшим на 30-40% количеством деталей;
- Меньшими в 2-3 раза габаритами и массой, по сравнению с соответствующим по мощности стандартным ДВС;
- Плавная характеристика крутящего момента во всем диапазоне оборотов;
- Отсутствие кривошипно-шатунного механизма, а, следовательно, гораздо меньший уровень вибрации и шума;
- Высокий уровень оборотов (до 15000 об/мин!).
Ложка дегтя…
Казалось бы, если «Ванкель» имеет такие превосходства над поршневым двигателем, то кому нужны эти громоздкие, тяжелые, гремящие и вибрирующие поршневые двигатели? Но, как это часто бывает, на практике все далеко не так шоколадно. Ни одно гениальное изобретение, выйдя за порог лаборатории, отправлялось в корзину с пометкой «для мусора». Серийное производство нашло не на один камень, а на целую россыпь гранита:
- Отработка процесса сгорания в камере неблагоприятной формы;
- Обеспечение герметичности уплотнений;
- Обеспечение работы без коробления корпуса в условиях неравномерного нагрева;
- Низкий термический КПД ввиду того, что камера сгорания РПД намного больше, чем у традиционного ДВС;
- Высокий расход топлива;
- Высокая токсичность газообразных продуктов сгорания;
- Узкая зона температур для работы РПД: при низких температурах мощность двигателя резко падает, при высоких - быстрый износ уплотнений ротора.

Единственная на данный момент выпускаемая в промышленном масштабе модель мотора роторного типа — это двигатель Ванкеля. Его относят роторным разновидностям движков, имеющим планетарное круговое движение основного рабочего элемента. Благодаря такой конструктивной компоновке, решение может похвастаться предельно простым техническим устройством, но не характеризуется оптимальностью в способах организации рабочего процесса и потому обладает своими неотъемлемыми и серьезными недостатками.

Двигатель Ванкеля роторный представлен во множестве вариаций, но, по сути, они различны между собой разве что численностью роторных граней и соответствующей формой внутренних поверхностей корпуса.

В общих чертах рассмотрим конструктивные особенности данного решения и углубимся немного в историю его создания и область использования.

История решений такого типа стартует в 1943 году. Именно тогда изобретателем Майларом была предложена первая аналогичная схема. После спустя некоторое время было подано еще ряд патентов на движки такой схемы. Также и разработчиком немецкой фирмы NSU. Но основным минусом, от которого страдал роторно поршневой двигатель Ванкеля, была система из уплотнений, расположенная между ребер на стыках соседствующих граней элемента треугольного типа и поверхностями неподвижных корпусных частей. Для решения столь трудной задачи подключился Феликс Ванкель, специализирующийся на уплотнениях. После, за счет своей устремленности и инженерному складу ума он возглавил разрабатывающую группу. И уже к 57-у году в недрах немецкой лаборатории был собран первый вариант, оснащенный основным вращающимся элементом треугольного типа и рабочей капсульной камерой, где вращательный элемент был намертво закреплен, в то время как вращение осуществлялось корпусом.

Куда более практичная вариация характеризовалась неподвижной рабочей камерой, в которой осуществлялось вращение треугольника. Такой вариант дебютировал годом позднее. К ноябрю 59-го года прошлого столетия фирмой были объявлены работы по созданию функционального решения роторного типа. За кратчайшие сроки множеством компаний по всему миру была приобретена лицензия на эту разработку, и из сотни фирм, около трети были из Японии.

Решение оказалось довольно компактным, мощным, с малым числом деталей. Европейские салоны пополнились машинами с роторными вариациями движков, но, увы, они обладали малым вращающим ресурсом, стремительным потреблением топлива и токсичным выхлопом.

Из-за нефтяного кризиса семидесятых попытки улучшить разработку до нужного уровня были свернуты. Лишь японской Маздой все также продолжались работы в этой области. Также трудился и ВАЗ, поскольку топливо в стране был очень дешевым, а мощные, хотя и с низким ресурсом, моторы были нужны силовым министерствам.

Но спустя тридцать лет ВАЗ закрыл производство и только Мазда до сих пор серийно запускает транспорт с моторами роторного типа. На данный момент выпускается лишь одна модель с таким решением – это Мазда RX-8.

После небольшого экскурса в историю стоит подробно остановиться на достоинствах и недостатках.

Высокая мощность, почти вдвое превышающая показатели поршневых вариаций с четырьмя тактами. Массы неравномерно движущихся элементов в нем сравнительно ниже, чем в случае поршневых вариаций, и амплитуда движения значительно ниже. Это возможно из-за того, что в поршневых решениях происходят возвратно-поступательные движения, в то время как в рассматриваемом типе применяются планетарной схемы.

На большую мощность влияет и то, что она выдается в течение троих четвертей при каждом обороте вала. Для сравнения, одноцилиндровый поршневой мотор даёт мощность лишь на протяжении четверти каждого из оборотов. Потому за единицу объема камеры сжигания берется куда больше мощности.

При объёмах камеры в тысячу триста сантиметров, у RX-8 в плане мощности, достигается показатель двести пятьдесят лошадиных сил. У предшественника, а именно у RX-7, с аналогичным объемом, но с турбиной было триста пятьдесят лошадиных сил. Потому особыми чертами автомобиля становится отличная динамика: при низких передачах можно без лишних нагрузок на мотор разогнать транспортное средство до сотни на больших оборотах движка.

Рассматриваемый тип движка куда проще уравновешивается механически и избавляется от вибрации, что способствует повышению комфортности лёгкого транспортного средства;

По части размеров рассматриваемый тип движка в полтора-два раза меньше по сравнению с равными по мощности поршневыми моторами. Число деталей меньше примерно на сорок процентов.

Недостатки двигателя

Небольшая длительность рабочего хода роторных граней. Хоть данный показатель нельзя в чистую сравнивать с другими вариантами из-за разных типов хода поршней и вращающегося элемента, у рассматриваемой разновидности данный показатель примерно на 20% меньше. Тут имеется один существенный нюанс — у поршневых решений происходит линейное увеличение объемов, которое аналогично направлению расстояния от ВМТ до НМТ. Но вот в случае рассматриваемого типа агрегатов данное действие происходит сложнее и лишь отрезок траектории передвижения оказывается непосредственно линией хода.

Потому решение характеризуется меньшей топливной эффективностью, нежели у поршневых вариаций. Потому малая длительность способствует очень высокой температуре выходящих газов – рабочим газам не удается во время передать большую часть давления треугольнику, поскольку выполняется открытие окна выхлопа и горячие массы с еще не прекратившимся горением объемных фрагментов выходят по выхлопной трубе. Потому их температура крайне высокая.

Сложность формы камеры горения. У данной камеры серповидная форма и солидная область, где газов контактируют со стенами и ротором. Потому крупная тепловая доля приходится на нагрев элементов движка, а это уменьшает коэффициент полезного действия тепла, но при этом возрастает нагрев движка. Также такие формы камеры приводят к ухудшенному смесеобразованию и замедленному горению рабочих смесей. Потому на движке RX-8 ставят две зажигательные свечи на одну роторную секцию. Такие свойства негативно влияют и на термодинамический коэффициент полезного действия.

Малый вращательный момент. Дабы снималось вращение с работающего ротора, вращательный центр которого непрерывным образом выполняет вращение планетарного типа, в данном моторе применяют на основном валу диски с цилиндровым расположением. Проще говоря — это все является элементами преобразователя. То есть, решение рассматриваемого типа так и не смогло в полной мере избавиться от основного минуса поршневых вариаций, а именно КШМ.

Хоть он и являет собой облегченный вариант, но основные минусы этого механизма: пульсация вращающего момента, малые размеры плеча основного элемента также присутствуют и в рассматриваемом типе.

Именно потому вариация с одной секцией не эффективен, и их нужно увеличивать до двух или трех секций, с целью получения приемлемых характеристик работы, еще рекомендуется устанавливать на вале и маховое колесо.

Кроме присутствия в движке рассматриваемого типа механизма преобразователя, на недостаточный для такого мотора вращающий момент может повлиять и тот нюанс, что кинематические схемы в таких решениях устроены слишком мало рационально в плане восприятия поверхностью вращающегося элемента давления рабочих расширительных масс. Потому только определенная часть давления, а это порядка одной трети – пере компилируется в рабочее вращение элемента, тем самым создавая вращающий момент.

Наличие вибраций внутри корпуса. Проблема в том, что рассматриваемый в статье тип систем подразумевает неравномерное по массе движение. То есть во время вращения массовый центр агрегата выполняет непрерывное передвижение вращательного типа вокруг массового центра, а радиус этого движения соответствует цилиндровому плечу основного моторного вала. Потому на движковый корпус внутри влияет вращающийся постоянным образом силовой вектор, соответствующий силе центробежного типа, появляющейся на находящемся во вращении элементе. То есть он в процессе вращения на также находящемся в движении цилиндрическому валу характеризуется неизбежными и выраженными элементами движения колебательного типа.

Что и является причиной неизбежных вибраций.

Низкая устойчивость к износу в торце уплотнений радиального типа по углам вращающегося треугольника. Поскольку к ним поступает существенная нагрузка радиального типа, свойственная из-за того, что таков двигатель Ванкеля принцип работы.

Высокая вероятность прорыва газовых масс с высоким давлением из зоны одного такта работы в другой такт. Причина кроется в том, что роторный ребровой контакт уплотнителя и стенок камеры сжигания выполняется по единой линии небольшой толщины. Также имеется вероятность прорыва по гнездам, в которые устанавливают свечи, в момент прохода ребра основного вращающегося элемента.

Сложность смазочной системы вращающегося элемента. Как пример, в уже ранее упомянутой модели японского производителя особыми форсунками впрыскивается масло в камеры сжигания, дабы трущиеся в процессе вращения о стенки камеры ребер смазывались. За счет этого усиливается выхлопная токсичность и параллельно с этим повышает необходимость движка в качественном масле.

Также, во время высоких оборотов повышаются запросы к смазке поверхности цилиндрического типа цилиндрического элемента основного вала, вокруг которого осуществляется вращение, и которое занято снятием главного усилия с вращающегося элемента, также переводя во вращательное движение вала. Из-за этих двух технических трудностей, разрешить которые довольно проблематично, проявлялась недостаточная смазка в случае высоких оборотов наиболее загруженных трением элементов движка, а значит, резким образом уменьшался движущий ресурс движка. Из-за этого недостаточного решения выходит очень малый ресурс движков рассматриваемого типа, которые были выпущены отечественным АвтоВАЗом.

Большая требовательность к точности выполнения элементов со сложной формой делают таков движок трудным в производстве. Для его производства требуется высокоточное и дорогое оборудование - станки, способные выполнить рабочую камеру с криволинейной поверхностью.

Если говорить о вращающемся элементе, то у него так же имеется форма треугольника, у которого выпуклые поверхности.

Сделав выводы из всего вышеописанного можно отметить, что рассматриваемый тип обладает не только выраженными преимуществами, но и большим количеством фактически непреодолимых минусов, не позволяющих ему победить поршневые вариации. Однако такая перспектива всерьез обсуждалось сорок или пятьдесят лет назад, и аналитические обзоры пестрили мнениями, что уже к началу девяностых годов прошлого столетия роторные решения разнообразных типов будут доминировать на автомобильном рынке.

Однако, даже с учётом негативных сторон и технических проблем, такое решение смогло неплохо себя зарекомендовать в техническом плане и даже вырвать свою долю на рынке, поскольку минусы конкурентного решения – поршневого мотора с КШМ еще серьёзнее сказываются на работе. И это с учётом того, что поршневой движок долгое время пытались улучшить.

Одним из самых проблематичных моментов при выполнении любого роторного движка — это воссоздание эффективной уплотняющей системы, необходимой для создания замкнутого объёма в рабочих камерах рассматриваемого типа решений. Пока что в схемах это считается одним из главных препятствий. Тут предстоит выполнить сложную в изготовлении уплотнительную систему.

Дабы набить руку и набраться положительного опыта в данном занятии, можно попробовать выполнить компактный рабочий вариант решения рассматриваемого типа непосредственно с «нуля».

Ориентировочный показатель мощности одной из роторных секцией будет находиться в районе сорока лошадиных. А значит, движок рассматриваемого типа, скажем, с двумя секциями, достигнет показателя в восемьдесят лошадиных сил. И так далее по схожему принципу.

В целом, изготовление такого типа решений всегда идет с оптимальным ритмом, при том что можно и вовсе отказаться от сторонних элементов. Как правило, корпусная часть таких решений выполняется из конструкционной стали легированного типа, подвергнутой упрочнению термохимического типа и стойкой к высоким температурам.

Как вариант, оптимальной твердостью поверхностного слоя можно подобрать показатель в районе семидесяти HRC. По части глубины, термически упроченный слой находится в районе полтора миллиметров. Аналогичным образом обрабатываются и до того же показателя твердости и устойчивости к износам уплотнения радиального и торцевого типа.

Такое решение обладает воздушным охлаждением, а смазочное масло будет поступать к камере сжатия посредством двух специальных форсунок. То есть, в данном случае не потребуется смешивать масло и бензин, как это бывает в двухтактных вариациях.

Движок рассматриваемого типа ставят на токарный станок, где он в течение нескольких часов подвергается обкатке без воздействиями температуры. Таким образом, можно оценить эффективность уплотнений и герметичность выполняемых секций как достаточно приемлемую.

Впоследствии можно измерить уровень давления, который наблюдается в зоне сжатия.