Устройство ходовой автомобиля. Развал и схождение колес. Тормозные механизмы колес.

Как устроена ходовая часть автомобиля? У большинства легковых автомобилей функцию опоры для двигателя, ходовой части, трансмиссии, механизмов управления, дополнительного оборудования, перевозимого груза, водителя и пассажиров несет на себе их кузов, а не рама, как, например, у мотоциклов, автобусов и грузовиков. Кроме того, кузов заменяет собой все отрицательные электрические провода, являясь основой для всего имеющегося в автомобиле электрооборудования. В составе кузова автомобиля имеются каркас и навесные узлы. А каркас, в свою очередь состоит из днища, передка, задка, штампованных панелей, крыльев и крыши. автомобиля крепится непосредственно на каркасе и состоит из двух подвесок - передней и задней, шины и колеса.

Одним из менее дорогих вариантов возможного сокращения автомобиля является замена существующих пружин более жесткими пружинами с более низкой скоростью движения. Более дорогая версия - это полный набор спортивных пружин и амортизаторов, где обычно можно регулировать жесткость автомобиля и уменьшать его. Однако цена покупки выше, чем при покупке спортивных пружин для существующих оригинальных амортизаторов.

Вы можете уменьшить или поднять автомобиль точно в соответствии с вашими текущими потребностями. Однако стоимость захвата воздушного шасси выше. Что вы получаете с помощью спортивного, опускаемого шасси? Одно из преимуществ заключается в том, что ваш автомобиль будет выглядеть больше, чем есть на самом деле.

Что такое подвеска?

Это ряд устройств, функция которых заключается в связывании между собой колес автомобиля и его кузова. Подвеска призвана преобразовывать, смягчать и поглощать удары от дорожного полотна, которые передаются на кузов. Подвески существуют двух типов: зависимые и независимые. Особенность в том, что она позволяет колесам, которые расположены на общей оси, вне зависимости друг от друга двигаться в вертикальной плоскости. А зависимая подвеска такой возможности не даёт, оба колеса жестко одно с другим связаны.

Заполняя промежуток между крылом и литым колесом, вы можете визуально увеличить его. Вождение с более низким автомобилем благодаря более низкому центру тяжести становится более спортивным, автомобиль будет более стабильным при поворотах и ​​позволит быстрее и веселее проходить сквозь кривые.

Тем не менее, подготовьтесь к большей передаче неравенства в автомобиле, что приводит к более высоким вибрациям и воздействию на дорогах низкого качества, что, конечно же, также страдает от автомобиля. Транспортное средство также подвержено повреждению при пересечении основных неравенств. С уменьшенной машиной существует большая вероятность столкновения или опрокидывания нижнего шасси на шасси или двигателя, чем в автомобиле.

Рассмотрим устройство ходовой части автомобиля поподробнее. Начнем с передней подвески.

Она состоит из:

  • ступицы колеса;
  • тормозного диска;
  • шарового пальца верхней опоры;
  • поворотного кулака;
  • шарового пальца нижней опоры;
  • буфера хода сжатия;
  • пружины подвески;
  • амортизатора;
  • верхнего рычага подвески;
  • нижнего рычага подвески;
  • штанги стабилизатора.

Ходовая часть автомобиля связана с его кузовом посредством таких своих частей, как рессоры и амортизаторы. Задача рессор заключается в смягчении ударов, передающихся на кузов от дороги, но при этом автомобиль начинает раскачиваться и тогда в дело вступают амортизаторы, гасящие собственные колебания подвески. Еще один важный элемент, которым обладает ходовая часть автомобиля, называют В случае, когда машина начинает сильно крениться на борт в повороте, он закручивается и исправляет положение автомобильного кузова. Ходовая автомобиля служит дольше, износ шин уменьшается, а снижается благодаря ещё одной хитрости в её устройстве, а именно, установке колес под определенным углом относительно горизонтальной и вертикальной плоскостей.

Уменьшенные автомобили на красивых алюминиевых колесах выглядят очень хорошо, но мы рекомендуем вам внимательно рассмотреть цель вашего автомобиля и какое спортивное шасси будет для вас лучшим. Если у вас уже есть ваш автомобиль или вы собираетесь редактировать, пришлите нам свои фотографии и напишите нам свой опыт.

Сложные стеки шасси были описаны как стопки бумаги. Но никто не спрашивает: почему важно шасси? И почему мы ставим дорогие шторы с дешевыми амортизаторами? Боеприпасы на лодочных гонщиках на лошадях являются лошадиными силами. Этот феномен также расширил репертуар экспертов по пиву, включив в него такие понятия, как крутящий момент и Ньютон-метры. Но если у вашей машины есть лошади, ньютоновские счетчики или крутящие моменты, это бесполезно на бумаге. Они должны взять их на дорогу, что невозможно без хорошего шасси.

Задняя подвеска. Устройство

Она также бывает как зависимой, так и независимой. Состоит она из:

  • буфера хода сжатия;
  • пружины подвески;
  • резиновых втулок проушин амортизатора;
  • дополнительного буфера сжатия;
  • регулятора давления заднего тормоза;
  • амортизаторов;
  • рычага привода регуляторов давления.

Гашение колебаний производится точно так же, как и для передней.

Тот, кто вытаскивает триста лошадей из цепочки, нуждается в способе вернуть их в ручки. Только несколько водителей едут по всему стаду десять раз в день, но мы начинаем, мы тормозим, и мы поворачиваемся в основном постоянно. Ничто из этого не может быть сделано без каких-либо занавесок во всех углах. Давайте быстро посмотрим, что делают колеса и как делать то, что они делают. Основная цель при проектировании шасси проста - уменьшить воздействие от дороги к телу. Если бы дороги были прямыми в качестве зеркала, шасси не требовалось бы никаких движущихся частей.

Ещё одна часть ходовой - это шины и колеса. На колеса передается от который и приводит в движение транспортное средство. Шины смягчают удары от неровностей трассы благодаря собственной упругости и сжатому воздуху, находящемуся внутри них. Колесо крепится посредством гаек и болтов к ступице и состоит из шины и диска. Шины бывают с камерой и без нее. герметично соединяется с ободом при помощи специального бурта на нем. Составляющие шины - это каркас (корд), боковины, протектор, борта. Основой шины является корд, он делается из капрона, проволоки, стекловолокна и тому подобного. Шины бывают летними, зимними или всесезонными в зависимости от их конструкционного исполнения. Также они делятся на радиальные и диагональные. Радиальные более эластичные, но зато диагональные имеют большую прочность, особенно на боковинах.

Мы могли бы установить колеса прямо к кузову. Обратите внимание, что в соответствии с предыдущими предложениями устранение неравенства является основной задачей шасси, а не единственной задачей. Колеса также нуждаются в сцеплении и сцеплении, чтобы заставить автомобиль ускоряться, тормозить и криволинейно. Но если бы дороги были совершенно ровными, сцепление и трение на сдвиг будут зависеть почти исключительно от используемых шин, и подвижные шарниры не были бы особенно необходимы.

Это очень упрощенный взгляд на мир, но в любом случае это не очень важно. Дороги не прямые, а чехи не особенные. Поэтому инженеры ищут более умные способы отделить тело от дороги. Весь вопрос о строительстве шасси возник за последние сто лет. Подмосковные магнаты давно выкопали грязные наряды и превратились в шаманов в белых халатах. Они высмеивают суперкомпьютеры и ищут Великую Истину между нулями и Числами. Это непросто, они доказывают плохое и даже более тонкие автомобили, которые мы встречаем в двадцать первом веке, как и двадцать лет назад.

Ходовая часть автомобиля включает в себя раму, подвеску, задние и передние мосты, колеса и шины - все агрегаты, так или иначе связанные с рамой или несущей частью кузова. С помощью деталей и механизмов, составляющих ходовую часть автомобиля, его колеса связываются с кузовом, при этом гасятся возникающие в процессе езды колебания, что обеспечивает комфортность поездки. Смысл такого крепления заключается в том, чтобы кузов машины во время езды мог перемещаться относительно колес. При этом устраняются вертикальные, поперечно-угловые и иные колебания и обеспечивается мягкость и плавность хода автомобиля. Существует два вида автомобильных подвесок: зависимая и независимая. В большинстве современных машин используется независимая подвеска, поскольку она обеспечивает больший комфорт и безопасность езды. На автомобиле с зависимой подвеской колеса, расположенные на одной оси, связаны между собой жесткой негнущейся балкой. Когда одно из колес наезжает на какую-либо неровность и по этой причине наклоняется под определенным углом, связанное с ним колесо вынужденно наклоняется на такой же угол.
Каждая подвеска включает в себя упругие элементы, называемые рессорами. Их главной задачей является смягчение колебаний и ударов, передающихся кузову автомобиля. На современных автомобилях используется два типа рессор: пружинные и пластинчатые. Внешне пружинная рессора представляет собой мощную пружину с высокой степенью сопротивляемости. Устройство пластинчатой рессоры сложнее: она состоит из нескольких рядов продольных металлических пластин. Они наложены друг на друга таким образом, что внизу располагается длинная пластина, на ней - покороче, затем - еще короче и сверху - самая короткая пластина. Данная конструкция, выполненная из крепкого металла, обеспечивает, с одной стороны, мощное сопротивление, а с другой - необходимую упругость.
Кроме того, подвеска автомобиля включает в себя гасящие элементы - амортизаторы, задача которых состоит в гашении колебания и раскачивания кузова за счет сопротивления, возникающего при перетекании жидкости через калиброванные отверстия из одной емкости в другую и обратно. В некоторых видах амортизаторов вместо жидкости применяется газ. Соответственно, амортизаторы бывают гидравлическими или газовыми. Амортизатор устанавливается между кузовом автомобиля и колесной осью (балкой). Его элементами являются:
верхняя и нижняя проушина - предназначены для крепления амортизатора соответственно к кузову и колесной оси;
защитный кожух - накрывает верхнюю часть амортизатора;
шток;
цилиндр;
поршень с клапанами.
В состав подвески автомобиля также входит стабилизатор поперечной устойчивости. Назначение этого устройства - уменьшение наклона автомобиля при движении на поворотах, а также повышение его устойчивости и управляемости.
Когда автомобиль выполняет поворот, его кузов с внутренней стороны поворота приподнимается над поверхностью дороги, а с внешней - наоборот, сближается к ней, что создает опасность опрокидывания. Этому препятствует стабилизатор, который, прижавшись к поверхности вместе с автомобилем с одной его стороны, одновременно прижимает другую сторону. Если одно из колес автомобиля наезжает на неровность, то стабилизатор стремится вернуть его в первоначальное положение. Однако от последствий лихачества не спасет ни один стабилизатор: подтверждением этому являются частые случаи опрокидывания автомобилей.

Почему наш мир не будет лучше. Многие говорят, что эти ведьмы ищут идеальный компромисс между комфортом и маневренностью. Это не правильное упрощение, даже самая базовая модель должна учитывать хотя бы еще один фактор, а именно стоимость. Затем мы можем просто заметить, что используемые до сих пор понятия могут сочетать два из этих трех требований. Они удобны и недороги, или динамически способны и недороги, или - редко - удобны и способны, но очень дороги.

Вы можете сделать хорошие компромиссы. Последний был динамично одаренным и удивительно удобным на более высоких скоростях. Но он был на четверть миллиона больше, чем версия. И пари, что большая часть разницы в ценах пошла на амортизаторы. По правильной дороге, по данным британских СМИ, она всегда такая же, как и самая лучшая. По сегодняшним ставкам это тридцать шесть тысяч крон. Даже в Штутгарте они не продают дешевые автомобили, и они могут позволить себе лучшее демпфирование. Все три примера выше сочетают чрезмерное появление слова «глушитель».

34. Назначение, классификация и устройство рам. Тягово-сцепное устройство.

Рама служит для установки и крепления кузова и всех систем, агрегатов и механизмов автомобиля. Рама является одной из ответственных и наиболее металлоем­ких частей автомобиля. Так, масса рамы грузового автомобиля может составлять 10... 15% от его сухой массы, т.е. собственной массы автомобиля без заправки топливом, маслом, охлаждающей и другими рабочими жидкостями, без водительского инструмента и запасного колеса. Рама автомобиля работает в тяжелых условиях и при высоких нагрузках. Рама воспринимает вертикальные нагрузки от массы автомобиля, толкающие и скручивающие усилия, которые воз­никают при движении, а также находится под воздействием ди­намических нагрузок (толчков и ударов) при переезде дорожных неровностей.

Может быть, нам стоит сказать почему. Просто качество амортизаторов и, в некоторой степени, пружин, на самом деле зависит от поведения автомобиля. И они также могут быть удобными. Но наверняка никто из вас не сомневается, что они не идут намного быстрее, чем в мировых районах. Но их демпфер, безусловно, больше, чем вы на самом быстром клио. Наши автомобили могли ездить лучше, если бы у них были лучшие амортизаторы. Но лучше в этом случае значительно дороже, чем мы, наконец, видели. И это то, что производители не могут себе позволить. с хорошей ходовой частью будет намного лучше, но обойдется в пятьдесят, шестьдесят, сто тысяч больше.

К конструкции рамы предъявляются специальные требования, в соответствии с которыми она должна обеспечивать:

Требуемые прочность и надежность в эксплуатации при ми­нимальной массе;

Неизменное взаимное положение агрегатов, механизмов и кузова автомобиля при любых условиях и режимах движения;

Высокую технологичность при производстве и ремонте рамы.

Подскажите, сколько клиентов хотели бы заплатить за них. Таким образом, автомобили остаются с проверенными простыми амортизаторами, которые, естественно, стараются оптимально настраиваться. Лучший компромисс между комфортом и маневренностью позволяет достичь дорогостоящего развития сложных суспензий, производство которых по-прежнему относительно недорого. Почему наш мир плох? Но почему автомобиль нуждается в пружинах, амортизаторах или занавесках вообще? Неравномерная поверхность дороги не пропускает определенное количество энергии на колесо.

На автомобилях применяют рамы различных конструкций.

Лестничная рама состоит из двух лонжеронов, соединенных поперечинами. Лонжероны отштампованы из лис­товой стали и имеют профиль преимущественно закрытого типа. К лонжеронам прикреплены различные кронштейны, предназ­наченные для установки и крепления кузова автомобиля, меха­низмов трансмиссии, передней и задней подвесок, систем управ­ления и т.д. Рама имеет выгибы в вертикальной плоскости в мес­тах расположения передних и задних колес автомобиля. Эти выги­бы обеспечивают большие значения хода колес, снижение центра тяжести автомобиля и повышение его устойчивости при высоких скоростях движения.

Колебательное колесо «ударяет» в воздух со скоростью, которая, в простой форме, зависит только от скорости движения автомобиля и формы неравенства. Независимо от того, сколько групп, которые находятся в контакте с землей, весит столько, сколько они хотят, они будут принимать примерно ту же вертикальную скорость от одного и того же столкновения. Если колесо с кузовом будет компактным целым, то пересечение неравенства даст вертикальную скорость всему автомобилю.

Затем ты прыгнул бы по дороге, как козел, и полетит так же высоко, как соседский мини. Поэтому у настоящих автомобилей есть колеса, движущиеся вертикально, независимо от кузовов. Все неравенство получает всю подвеску-тормозное колесо, которое будет иметь определенную вертикальную скорость. Его связь с телом не является ничтожной даже в спокойном состоянии, но все же намного меньше, чем если бы колесо было прочно соединено с кузовом. Поскольку неподрессоренные части весом порядка десятков килограммов, их вертикальная скорость эквивалентна относительно разумной энергии.

Х-образная лонжеронная рама состоит из корот­кой средней балки трубчатого или коробчатого профиля, перед­ней и задней вилок, выполненных из лонжеронов коробчатого профиля. Передняя вилка предназначена для размещения силово­го агрегата, задняя - заднего моста. В средней части рамы имеются консольные кронштейны для крепления кузова, а вилки рамы снабжены поперечинами для установки передней и задней подвесок. Х-образная рама позволяет увеличить углы поворота управляе­мых колес, уменьшить радиус поворота автомобиля и улучшить его маневренность. Кроме того, рама обеспечивает понижение пола кузова, центра тяжести автомобиля и повышение его устойчиво­сти.

Только необходимый минимум передается на кузов, остальные будут проходить постепенно. Точный ход этих двух фаз определяется настройкой шасси. Поэтапная передача мощности не является таким ударом для тяжелого тела. Согласно формуле ему соответствует определенная вертикальная скорость, которая намного ниже. Часть этой энергии также сорвана в амортизаторе, который превращает его в тепло. В результате велосипед может прыгать ненадолго, но воздействие на кузов мало. Сила пружины затем быстро выталкивает колесо обратно на землю.

Вероятно, вы догадываетесь, что светлее колеса и занавески, тем меньше энергии они проходят по телу. Эти неподдерживаемые массы существенно влияют на характеристики автомобиля. Это не просто комфорт, но если шасси ведет себя хорошо на динамической стороне, ему нужно держать колеса на земле. Это означает, что их можно вернуть на поверхность после каждого большого удара, что облегчает получение легкого колеса.

Периферийная лонжеронная рама имеет наиболь­шее применение на рамных легковых автомобилях. Она состоит из лонжеронов замкнутого (коробчатого) профиля, которые про­ходят по периферии пола кузова автомобиля и создают ему есте­ственный порог. Это увеличивает сопротивление кузова при боко­вых ударах. Рама имеет свободную среднюю часть, позволяющую опустить низко пол кузова, понизить центр тяжести автомобиля и повысить его устойчивость. Для увеличения хода колес автомоби­ля лонжероны рамы имеют выгибы в вертикальной плоскости над передним и задним мостами. Средняя часть рамы расположена ниже этих выгибов.

Вселенная - это не простое место, и полное описание конструкции шасси намного перевешивает пространство, определенное в этой статье. Пожалуйста, возьмите это только как краткое описание окружающего нас мира. В следующий раз мы расскажем вам, что такое заслонки и пружины, где они растут и что они делают.

Для самой конструкции шасси, для которой эта статья началась в первую очередь, мы вернемся к третьему продолжению. Тем не менее, ни одна игра из мира Формулы-1 так легко оценить. Конкуренция, почти неотличимая от телевизионного вещания и необыкновенной личной атмосферы, приносит самый аутентичный опыт в мире быстрых велосипедов. Уникальная связь между симулятором формулы и стратегией управления уже произошла в предыдущей работе. Поэтому великолепная идея, теперь авторы «только» украсили детали, но им удалось улучшить все, что они сделали.

Хребтовая неразборная рама состоит из одной цен­тральной продольной несущей балки, к которой прикреплены поперечины и различные установочные кронштейны. Централь­ная балка рамы обычно трубчатого сечения, внутри нее размеща­ется карданная передача. Рама обладает высокой жесткостью на кручение, а размещение карданной передачи внутри хребтовой трубы рамы обеспечивает компактность конструкции.

Руководство команды обогатило новые функции, не усложняя их без необходимости, и настроило саму поездку, так что она чрезвычайно интересна даже при полностью отключенной электронной помощи. Благодаря основным сходствам эксперты предыдущей работы легче всего познакомиться. Они уже знают, что после изменения курса всей серии игр успех на трассе не может быть без жесткой подготовки и развития гоночного автомобиля. Боксерский бокс так же важен, если не более важен, чем просто борьба на трассе, и он отражает реальный мир автоспорта.

Всадник - это не только тот, кто поворачивает колесо, но и незаменимый источник информации для техников команды, что верно, по крайней мере, со времен технического мага Ники Лауды. Честное обучение снова стало средством сбора аркадных очков, которые являются инвестициями в прогресс всей команды завода. Параллельно с самой гоночной игрой, некоторые неофициальные соревнования стадиона проводятся в научно-техническом совершенствовании. Почитание более сложной аэродинамики, более мощных двигателей, более легкого шасси и большей надежности достигается за счет нескольких различных тренировок в каждом Гран-при.

Раз­борная хребтовая рама имеет центральную несущую балку, ко­торая состоит из картеров отдельных механизмов трансмиссии автомобиля, соединенных между собой специальными патруб­ками. Между картерами и патрубками устанавливаются кронш­тейны для крепления кабины, грузового кузова, двигателя и дру­гих агрегатов и механизмов автомобиля. Разборная хребтовая рама универсальна, так как, изменяя ее длину, можно создавать се­мейство автомобилей с различным числом ведущих мостов и разными базами на одних и тех же унифицированных агрегатах и механизмах. Использование картеров механизмов трансмиссии в качестве несущих частей разъемной хребтовой рамы позволяет снизить на 15... 20 % собственную массу автомобиля и уменьшить его металлоемкость.

Разборная хребтовая рама по сравнению с лонжеронной обла­дает более высокой жесткостью. Поэтому ее обычно применяют для полноприводных грузовых автомобилей, предназначенных для эксплуатации на тяжелых дорогах и в условиях бездорожья. Одна­ко такая рама требует использования высококачественных леги­рованных сталей для изготовления картеров механизмов транс­миссии и соединительных патрубков, а также высокой точности изготовления и сборки в производстве. Кроме того, при техничес­ком обслуживании и ремонте автомобиля с рамой этого типа зат­руднен доступ к механизмам трансмиссии автомобиля и требуется частичная, а иногда и полная разборка рамы.

Рамы автомобилей-самосвалов имеют надрамник (дополнитель­ную укороченную раму), так как самосвалы работают в тяжелых нагрузочных условиях. Надрамник выполняется сварным из штам­пованной листовой стали и устанавливается на раме автомобиля. На надрамнике размещается грузовой кузов самосвала и крепятся устройства подъемного механизма кузова. Он предохраняет раму от чрезмерных динамических нагрузок. Надрамник крепится к раме самосвала с помощью стремянок и болтовых соединений. Между надрамником и рамой устанав­ливаются специальные проставки, которые способствуют рав­номерному распределению нагрузки по всей длине надрамника. Кроме того, проставки смягчают удары при подбрасывании гру­зового кузова самосвала во время движения по неровностям до­роги.

В задней части рамы грузового автомобиля расположено тягово-сцепное устройство, предназначенное для присоединения к автомобилю прицепов, буксируемых автомобилей и т.д. Тягово-сцепное устройство включает в себя крюк с запором и пру­жину или резиновый амортизатор, которые смягчают толчки и удары при движении автомобиля с буксиром по неровной доро­ге, при торможении и трогании с места.

35. Назначение, типы и устройство передних управляемых мостов

Передним управляемым мостом называется поперечная балка с ведомыми управляемыми колесами, к которым не подводится крутящий момент от двигателя. Этот мост не ведущий и служит для поддерживания несущей системы автомобиля и обеспечения его поворота.

Типы передних управляемых мостов. Передние управляемые мосты различных типов широко применяются на легковых, гру­зовых автомобилях и автобусах с колесной формулой 4 х 2, а также на грузовых автомобилях с колесной формулой 6x4.

В зависимости от типа подвески управляемых колес передние мосты автомобилей могут быть неразрезными и разрезными. В неразрезных мостах управляемые колеса непосредственно связаны с балкой моста. В разрезных мостах связь управляемых колес с балкой моста осуществляется через подвеску. Неразрезные мосты применяются на грузовых автомобилях и автобусах при зависимой подвеске колес. Разрезные мосты устанавливаются на легковых автомобилях и автобусах при независимой подвеске колес.

Передний неразрезной мост представляет собой балку с установленными по обоим концам поворотными цапфами. Балка – кованая стальная, обычно двутаврового сечения. Средняя часть балки выгнута вниз для более низкого расположе­ния двигателя и центра тяжести автомобиля с целью повышения его устойчивости. В бобышках балки закреплены неподвижно шкворни, на которых установлены поворотные цапфы. На по­воротных цапфах на подшипниках установлены ступицы с управляемыми колесами. Колеса, поворачиваясь вокруг шкворней, обеспечивают поворот автомобиля. Мост с помощью рессор крепится к раме автомобиля.

Передний разрезной мост представляет собой балку или поперечину с установленной на ней передней независимой подвеской с управляемыми колесами. Поперечина может быть стальная кованая или штампованная из листовой стали. Она жестко связана с кузовом автомобиля и служит одновременно для крепления двигателя. Управляемые колеса со ступицами, установленные на подшипниках на поворотных цапфах, могут поворачиваться вокруг шкворней (шкворневые подвески), закрепленных в стойках подвески или вместе со стойками (бесшкворневые подвески), обеспечивая поворот автомобиля.

36. Установка управляемых колес. Влияние установки колес управляемых мостов на безопасность движения автомобиля, износ шин и расход топлива.

Для создания наименьшего сопротивления движению, уменьшения изнашивания шин и снижения расхода топлива управляемые колеса должны катиться в вертикальных плоскостях, параллельных продольной оси автомобиля. С этой целью управляемые колеса устанавливают на автомобиле с развалом в вертикальной плоскости и со схождением в горизонтальной плоскости.

Углом развала управляемых колес называется угол, заключенный между плоскостью колеса и вертикальной плоскостью, параллельной продольной оси автомобиля. Угол развала считается положительным, если колесо наклонено от автомобиля наружу, и отрицательным при наклоне колеса внутрь.

Угол развала необходим для того, чтобы обеспечить перпендикулярное расположение колес относительно поверхности дороги при деформа­ции деталей моста под действием веса передней части автомобиля. Этот угол уменьшает плечо поворота – расстояние между точкой пересечения продолжения оси шкворня и точкой касания колеса с плоскостью дороги. В результате уменьшается момент, необходимый для поворота управляемых колес, и, следовательно, облегчается поворот автомобиля. Угол развала обеспечивается конструкцией управляемого моста путем наклона поворотного кулака на 0-2°. В процессе эксплуатации угол развала колес изменяется главным образом из-за износа втулок шкворней поворотных кулаков, подшипников ступицы колес и деформации балки переднего моста.

При наличии угла развала колес колесо стремится катиться в сторону от автомобиля по дуге вокруг точки пересечения продолжения его оси с плоскостью дороги. Так как управляемые колеса связаны жесткой балкой моста, то качение колес по расходящимся дугам сопровождалось бы боковым скольжением. Для устранения этого явления колеса устанавливают со схождением, т. е. не параллельно, а под некоторым углом к продольной оси автомобиля.

Угол схождения управляемых колес определяется разностью расстояний между колесами, которые замеряют сзади и спереди по краям ободьев на высоте оси колес. Угол расхождения колес у разных автомобилей от 0°20" до 1°, а разность расстояний между колесами сзади и спереди 2-12 мм. В процессе эксплуатации углы схождения колес могут изменяться из-за износа втулок шкворней поворотных кулаков, шарнирных соединений рулевой трапеции и деформации ее рычагов. Регулировку угла схождения колес производят изменением длины поперечной рулевой тяги.

Установка управляемых колес с одновременным развалом и схождением обеспечивает их прямолинейное качение по дороге без бокового скольжения. Каждому углу развала должен соответствовать определенный угол схождения колес, при котором сила сопротивления движению, расход топлива и износ шин будут минимальными. Обычно оптимальный угол схождения управляемых колес составляет 15-20 % от угла их развала.

37. Назначение, классификация и устройство подвесок.

Подвеской называется совокупность устройств, осуществляющих упругую связь колес с несущей системой автомобиля (рамой или кузовом).

Подвеска служит для обеспечения плавности хода автомобиля и повышения безопасности его движения.

Плавность ходасвойство автомобиля защищать перевозимых людей и грузы от воздействия неровностей дороги. Смягчая толчки и удары от дорожных неровностей, подвеска обеспечивает возможность движения автомобиля без дискомфорта и быстрой утомляемости людей и повреждения грузов.

Подвеска повышает безопасность движения автомобиля, обеспечивая постоянный контакт колес с дорогой и исключая их отрыв от нее.

Подвеска разделяет все массы автомобиля на две части – подрессоренные и неподрессоренные.

Подрессоренные – части, опирающиеся на подвеску: кузов, рама и закрепленные на них механизмы.

Неподрессоренные – части, опирающиеся на дорогу: мосты, колеса, тормозные механизмы.

При движении по неровной дороге подрессоренные части автомобиля колеблются с низкой частотой, а неподрессоренные – с высокой частотой.

Подвеска автомобиля состоит из четырех основных устройств – направляющего, упругого, гасящего и стабилизирующего.

Направляющее устройство подвески направляет движение колеса и определяет характер его перемещения относительно кузова и дороги. Направляющее устройство передает продольные и поперечные силы и их моменты между колесом и кузовом автомобиля.

Упругое устройство подвески смягчает толчки и удары, передаваемые от колеса на кузов автомобиля при наезде на дорожные неровности. Упругое устройство исключает копирование кузовом неровностей дороги и улучшает плавность хода автомобиля.

Гасящее устройство подвески уменьшает колебания кузова и колес автомобиля, возникающие при движении по неровностям дороги и приводит к их затуханию. Гасящее устройство превраща­ет механическую энергию колебаний в тепловую энергию с последующим ее рассеиванием в окружающую среду.

Стабилизирующее устройство подвески уменьшает боковой крен и поперечные угловые колебания кузова автомобиля.

Подвеска обеспечивает движение автомобиля, и ее работа осу­ществляется следующим образом. Крутящий момент, передаваемый от двигателя на ведущие колеса, создает между колесом и дорогой тяговую силу, которая приводит к возникновению на ведущем мосту толкающей силы х. Толкающая сила через направляющее устройство подвески передается на кузов автомобиля и приводит его в движение. При движении по неровностям дороги колесо перемещается в вертикальной плоскости. Упругое устройство подвески деформируется, а кузов и колеса совершают колебания, гасит которые амортизатор. Корпус амортизатора, заполненный амортизаторной жидкостью, прикреплен к балке моста. В корпусе находится поршень с отверстиями и клапанами, шток которого связан с кузовом автомобиля. В процессе колебаний кузова и колес поршень совершает возвратно-поступательное движение. При ходе сжатия (колесо и кузов сближаются) амортизаторная жидкость из полости под поршнем вытесняется в полость над поршнем, а при ходе отдачи (колесо и кузов расходятся) перетекает в обратном направлении. При этом жидкость проходит через отверстия в поршне, прикрываемые клапанами, испытывает сопротивление, и в результате жидкостного трения обеспечивается гашение колебаний кузова и колес автомобиля. Боковой крен и поперечные угловые колебания кузова автомобиля уменьшает стабилизатор поперечной устойчивости, который представляет собой специальное упругое устройство, устанавливаемое поперек автомобиля. Средней частью стабилизатор связан с кузовом, а концами с рычагами подвески. При боковых кренах и поперечных угловых колебаниях кузова концы стабилизатора перемещаются в разные стороны: один опускается, а другой поднимается. Вследствие этого средняя часть стабилизатора закручивается, препятствуя тем самым крену и поперечным угловым колебаниям кузова автомобиля. В то же время стабилизатор не препятствует вертикальным и продольным угловым колебаниям кузова, при которых он свободно поворачивается в своих опорах.

На автомобилях в зависимости от их класса и назначения применяют различные типы подвесок.


подвески

по направляющему устройству

по упругому устройству

по гасящему устройству

по стабилизирующему устройству

зависимые

рессорные

с амортизаторами

со стабилизатором

пружинные

торсионные

независимые

пневматические

без амортизаторов

без стабилизатора

гидропневматические

комбинированные

По направляющему устройству все подвески разделяются на два основных типа - зависимые и независимые.

Зависимой называется подвеска, при которой колеса одного моста связаны между собой жесткой балкой, вследствие чего перемещение одного из колес вызывает перемещение другого колеса. На легковых автомобилях зависимые подвески применяются обычно для задних колес. Они просты по конструкции и в обслуживании, имеют малую стоимость.

Независимой называется подвеска, при которой колеса одного моста не имеют между собой непосредственной связи, подвешены независимо друг от друга и перемещение одного колеса не вызывает перемещения другого колеса.

По направлению движения колес относительно дороги и кузова автомобиля независимые подвески могут быть с перемещением колес в поперечной, продольной и одновременно в продольной и поперечной плоскостях.

Независимые подвески в легковых автомобилях применяются для передних и задних колес. Эти подвески обеспечивают более высокую плавность хода, чем зависимые подвески, но сложнее по конструкции, при обслуживании и более дорогостоящие. Тип подвески автомобиля также определяет и упругое устрой­ство, которое может быть выполнено в виде листовой рессоры, спиральной пружины, торсиона и пневмобаллона. При этом упругость подвески обеспечивается за счет упругих свойств металла, из которого изготовлены рессоры, пружины и торсионы, и сжатия воздуха.

В зависимости от применяемого упругого устройства подвески называются рессорными, пружинными, торсионными, пневматическими, гидропневматическими и комбинированными.

Рессорные подвески в качестве упругого устройства имеют листовые рессоры. Рессора состоит из собранных вместе отдельных листов выгнутой формы. Стальные листы имеют обычно прямоугольное сечение, одинаковую ширину и различную длину. Кривизна листов неодинакова и зависит от их длины. Она увеличивается с умень­шением длины листов, что необходимо для плотного прилегания их друг к другу в собранной рессоре. Вследствие различной кри­визны листов также обеспечивается разгрузка листа рессоры. Взаимное положение листов в собранной рессоре обычно обеспечивается стяжным центровым болтом. Кроме того, листы скреплены хомутами, которые исключают боковой сдвиг одного листа относительно другого и передают нагрузку от листа (разгружают его) на другие листы при обратном прогибе рессоры. Лист, имеющий наибольшую длину, называется коренным. Часто он имеет и наибольшую толщину. С помощью коренного листа концы рессоры крепят к раме или кузову автомобиля. От способа крепления рессоры зависит форма концов коренного листа, которые в легковых автомобилях делаются загнутыми в виде ушков.

При сборке рессоры ее листы смазывают графитовой смазкой, которая предохраняет их от коррозии и уменьшает трение между ними. В рессорах легковых автомобилей для уменьшения трения между листами по всей длине или на концах листов часто устанавливают специальные прокладки из неметаллических антифрикционных материалов (пластмассы, фанеры, фибры и т.п.). Основным преимуществом листовых рессор является их способность выполнять одновременно функции упругого, направляющего, гасящего и стабилизирующего устройств подвески.

Листовые рессоры способствуют гашению колебаний кузова и колес автомобиля. Кроме того, они просты в изготовлении и лег­ко доступны для ремонта в эксплуатации. По сравнению с упруги­ми устройствами других типов листовые рессоры имеют увели­ченную массу, менее долговечны, обладают сухим трением, ухудшают плавность хода авто­мобиля и требуют ухода (смазывания) в процессе эксплуатации. Листовые рессоры получили наибольшее применение в зависимых подвесках. Обычно их располагают вдоль автомобиля. Концы рессоры шарнирно соединяют с рамой или кузовом автомобиля. Передний конец закрепляют с помощью пальца, а задний – чаще всего подвижной серьгой. При таком соединении концов рессоры ее длина может изменяться во время движения автомобиля. Для крепления концов рессоры применяют шарниры различных типов.

Пружинные подвески в качестве упругого устройства имеют спиральные (витые) цилиндрические пружины. Пружины изготавливают из стального прутка круглого сечения. В подвеске витые пружины воспринимают только вертикальные нагрузки и не могут передавать продольные и поперечные усилия и их моменты от колес на раму и кузов автомобиля. Поэтому при их установке требуется применять направляющие устройства. При использовании витых пружин также необходимы гасящие устройства, так как в пружинах отсутствует трение. По сравнению с листовыми рессорами спиральные пружины имеют меньшую массу, более долговечны, просты в изготовлении и не требуют технического обслуживания. Спиральные пружины в качестве основного упругого элемента применяются главным образом в независимых подвесках и значи­тельно реже в зависимых. Их обычно устанавливают вертикально на нижние рычаги подвески.

Торсионные подвески в качестве упругого устройства имеют торсионы. Торсион представляет собой стальной упругий стержень, работающий на скручивание. Он может быть сплошным круглого сечения, а также составным – из круглых стержней или прямоугольных пластин. На концах торсиона имеются головки (утолщения) с нарезанными шлицами или выполненные в форме многогранника (шестигранные и т.д.). С помощью головок торсион одним концом крепится к раме или кузову автомобиля, а другим к рычагам подвески. Упругость связи колеса с рамой обеспечивается вследствие скручивания торсиона. Торсионы, как и пружины, требуют применения направляющих и гасящих устройств. По сравнению с листовыми рессорами торсионы обладают теми же преимуществами, что и спиральные пружины. Однако по сравнению со спиральными пружинами торсионы менее долговечны. Торсионы наиболее распространены в независимых подвесках. На автомобиле торсионы могут быть расположены как продольно, так и поперечно.

Пневматические подвески в качестве упругого устройства имеют пневматические баллоны различной формы. Упругие свойства в таких подвесках обеспечиваются за счет сжатия воздуха. Наибольшее применение в пневматических подвесках получили двойные (двухсекционные) круглые баллоны. Двойной круглый баллон состоит из эластичной оболочки, опоясывающего или разделительного кольца и прижимных колец с болтами. Оболочка баллона резинокордовая, обычно двухслойная. Корд оболочки капроновый или нейлоновый. Внутренняя поверхность оболочки покрыта воздухонепроницаемым слоем резины, а наружная – маслобензостойкой резиной. Для упрочнения бортов оболочки внутри их заделана металлическая проволока, как у покрышки пневматической шины. Опоясывающее кольцо служит для разделения секций баллона и позволяет уменьшить его диаметр. Прижимные кольца с болтами предназначены для крепления баллона. Двойные круглые баллоны применяют в подвесках автобусов, грузовых автомобилей, прицепов и полуприцепов. Обычно баллоны располагают вертикально в количестве от двух (передние подвески) до четырех (задние подвески).

Резиновые упругие элементы широко применяют в подвесках современных автомобилей в виде дополнительных упругих устройств, которые называются ограничителями или буферами. Часто внутрь буферов вулканизируют металлическую арматуру, которая повышает их долговечность и служит для крепления буферов. Буфера подразделяются на буфера сжатия и отдачи. Первые ограничивают ход колес вверх, вторые – вниз. При этом буфера сжатия ограничивают деформацию упругого устройства подвески и увеличивают его жесткость. Буфера сжатия и отдачи совместно применяют обычно в независимых подвесках. В зависимых подвесках используют главным образом буфера сжатия.

38. Назначение, типы и устройство амортизаторов

Гасители колебаний служат для гашения колебаний упругого элемента. При движении автомобиля в результате наезда колес на неровности доро­ги возникают колебания кузова и колес, которые гасятся с помощью уст­ройства, называемого амортизатором. Его принцип действия сводится к превращению механической энергии колебаний путем трения жидкости в тепловую энергию с последующим ее рассеиванием. Применяемые на ав­томобилях амортизаторы делятся на телескопические (двухтрубные и од­нотрубные) и рычажные. Телескопические амортизаторы легче, чем ры­чажные, имеют развитую поверхность охлаждения, вследствие большого хода поршня при одинаковой энергоемкости работают при сравнительно невысоких давлениях рабочей жидкости, поэтому менее чув­ствительны к изнашиванию, утечкам, технологичны в производстве и хо­рошо компонуются на автомобиле.

Двухтрубный телескопический амортизатор. Сопротивление колебаниям в нем создается в результате перекачивания жидкости через калиброванные отверстия в его клапанах. При увеличении скорости относительных переме­щений моста и несущей конструкции автомобиля резко возрастает сопро­тивление амортизатора. Амортизаторы заполняют специальной жидкостью, вязкость которой мало зависит от температуры окружающей среды. Колеба­ния несущей конструкции состоят из хода сжатия, когда несущая конструк­ция и мост сближаются, и хода отдачи, когда несущая конструкция и мост расходятся. Сопротивление амортизатора имеет двухстороннее действие. Ходы сжатия и отдачи неодинаковы. Так, сопротивление при ходе сжатия составляет 20-25 % сопротивления хода отдачи, так как необходимо, чтобы амортизатор гасил в основном свободные колебания подвески при ходе от­дачи и не увеличивал жесткость упругого элемента при ходе сжатия. Рабочий цилиндр амортизатора и часть окружающе­го его корпуса резервуара заполнены жидкостью. Внутри цилиндра помещен поршень со штоком, к концу которого приварена проушина кре­пления с балкой моста или рычагами колеса. Сверху рабочий цилиндр закрыт направляющей штока, а снизу днищем, являющимся одновре­менно корпусом клапана сжатия. В поршне по окружностям разного диаметра равномерно расположены два ряда отверстий. Отверстия на большом диаметре закрыты сверху перепускным клапаном отдачи. От­верстия на малом диаметре закрыты снизу дисками клапана отдачи, поджатого пружиной. В нижней части цилиндра запрессован корпус клапана сжатия, состоя­щий из перепускного клапана сжатия, дисков клапана и пружины. В кор­пусе клапана сжатия, аналогично клапану отдачи, имеются два ряда отверстий, расположенных по окружностям большого и малого диаметра. Отвер­стия на большом диаметре закрыты сверху перепускным клапаном, а отверстия на малом диаметре закрыты снизу дисками клапана сжатия.

Во время плавного хода сжатия подвески шток и поршень, опускаясь вниз, вытесняют основную часть жидкости из подпоршневого пространст­ва в надпоршневое через перепускной клапан отдачи, имеющий слабую пружину и незначительное сопротивление. При этом часть жидкости, равная объему штока, вводимого в рабочий цилиндр через отверстия клапана сжатия, перетекает в полость резервуара. При резком ходе сжатия и большой скорости движения поршня от большого давления жидкости клапан сжатия открывается на большую величину, преодолевая сопротивление пружины, вследствие чего уменьшается сопротивление протеканию жидкости. Во время хода отдачи поршень движется вверх и сжимает жидкость, находящуюся под поршнем. Перепускной клапан отдачи закрывается, и жидкость через внутренний ряд отверстий и клапан отдачи перетекает в пространство под поршнем. Необходимое сопротивление амортизатора созда­ется жесткостью пружины дискового клапана отдачи. При этом часть жидкости, равная объему штока, выводимого из цилиндра, через отверстия наружного ряда и перепускной клапан сжатия из резервуара перетекает в рабочий цилиндр. При резком ходе отдачи жидкость открывает клапан отдачи на большую величину, преодолевая сопротивление своей пружины. Сопротивление амортизатора определяется размерами отверстий в корпусах клапанов отдачи и сжатия и усилиями их пружин.

Однотрубный амортизатор. В отличие от двухтрубного однотрубный амортизатор не имеет отдельного цилиндрического корпуса, его функции выполняет рабочий цилиндр. Поскольку шток, перемещающий поршень, вдвигаясь в цилиндр при ходе сжатия и выдвигаясь из него при отбое, из­меняет объем пространства, предназначенный для жидкости, для компен­сации изменения этого объема в однотрубном амортизаторе имеется спе­циальная камера, заполненная сжатым газом, распо­ложенная в глухом конце рабочего цилиндра. Данные амортизаторы также называют газонаполненными. Для того чтобы газ не смешивался с жидко­стью, его изолируют от жидкости поршнем либо мембраной. При конструкции, когда вся используемая жидкость постоянно находится в рабочем цилиндре и не сообщается с внешним резервуаром, как в двухтрубных амортизаторах, все отверстия и клапаны, через которые происходит прокачивание жидкости, выполняются в основном поршне амортизатора. В поршне имеется два ряда сквозных косо расположенных отверстий. Внутренние отверстия закрыты сверху клапаном сжатия, а снизу клапаном отбоя. Клапаны имеют одинаковые конструкции, но могут отличаться характеристиками открытия. Они состоят из нескольких стальных дисков одинаковой толщины, собранных в пакет, и прижаты к торцам поршня с помощью гайки на конце штока под поршнем. В прилегающих к поршню дисках в местах выхода отверстии внутреннего ряда выполнены калиброванные просечки, благодаря которым, между торцом поршня и вторым цельным диском клапана образуются калиброванные щели, через которые прокачивается жидкость в дроссельном режиме работы амортизатора. По мере увеличения скорости протекания жидкости через отверстия в поршне, которая пропорциональна скорости перемеще­ния штока амортизатора, давление жидкости на клапан увеличивается, диски клапана плавно изгибаются, постепенно увеличивая проходные се­чения отверстий. В однотрубных амортизаторах весь объем жидкости, пе­ретекающей из одной рабочей полости в другую, подвергается дросселированию.

Однотрубные амортизаторы имеют следующие преимущества перед двухтрубными:


  • лучшее охлаждение жидкости, так как обдуву подвергается непосред­ственно рабочий цилиндр;

  • при хорошем уплотнении газовой камеры не возникает эмульсирова­ние жидкости, следовательно, характеристики амортизатора более стабильные;

  • однотрубные амортизаторы можно устанавливать на автомобиле под любым углом, в том числе и штоком вниз, в последнем случае

  • уменьшается величина массы неподрессоренных частей.
К недостаткам однотрубных амортизаторов можно отнести: их относительно высокую стоимость из-за более сложной технологии изготовления и большую длину из-за наличия газовой камеры при одинаковом ходе штока(в сравнении с двухтрубным амортизатором).