Что входит в двс. Принцип работы двс

Такую маркировку можно часто встретить на сайтах посвященных автомобильной тематике, и не зря ведь в расшифровки данной аббревиатуры нет ничего сложного, а означает это знакомый всем двигатель внутреннего сгорания. ДВС его сокращенная версия. Это так называемая тепловая машина, главной особенностью которой является преобразование химической энергии, в механическую работу, посредством выполнения определенного перечня работ, в соответствующем порядке.

Различают несколько разновидностей двигателей: поршневой, газотурбинный и роторно-поршневой. Естественно, самый на данный момент известный и популярный, это поршневой двигатель. Поэтому разборка и изучения принципа работы будет рассмотрено именно на его примере. Да и в общем схема и характер работы для всех трех типов имеют схожий принцип.

Среди главных достоинств представленного мотора, который получил самое широкое применение, можно отметить: универсальность, автономность, стоимость, малый вес, компактность, многотопливность.

Но, несмотря на столь впечатляющий процент положительных сторон, недостатков также хватает. К ним можно отнести уровень шума, высокую частоту вращения вала, токсичность выработанных газов, малый ресурс, небольшой коэффициент полезной работы.

В зависимости от типа используемого топлива, различают дизельные и бензиновые. Последние наиболее востребованы и популярны. Среди альтернативных видов топлива могут использоваться природный газ, топлива так называемой спиртовой группы – этанол, метанол, водород.

Самым перспективным в будущем, может стать именно водородный мотор, учитывая ныне возросшее внимание к экологии. Ведь у данного двигателя отсутствуют вредные выбросы. Кроме двигателя, водород используется для производства электрической энергии для топливных механизмов автомобиля.

Устройство ДВС

Среди главных элементов ДВС стоит различать главный корпус, два основных механизма (газораспределительный и кривошатунный), а также ряд смежных систем в роде топливной, впускной, зажигания, охлаждения, управления, смазки, выпускной.

Корпус объединен с блоком цилиндров и головкой блока. Кривошатунный механизм позволяет преобразовать возвратно-поступательные движения поршня, во вращательные движения коленчатого вала. ГРМ обеспечивает своевременное снабжение воздухом или топливом в систему, а также выброс отработанных газов.

Впускная система отвечает за питание мотора воздухом, а топливная за топливо. Совместная работа этих систем или комплексов, обеспечивает формирование, так называемой топливно-воздушной массы. Главное место в топливной системе отведено системе впрыска.

Зажигание осуществляет принудительное воспламенение указанной выше смеси в бензиновых моторах. В дизельных процесс немного проще, так как смесь самовоспламеняющаяся.

Смазка позволяет снимать напряжение с деталей, между которыми происходит трение. За то, чтобы вовремя охлаждать механизмы и детали ДВС отвечает охлаждающая система. Одни из важных функций выполняет выпускная система, которая позволяет удалять отработанные газы, а также снижает их шум и токсичность.

СУД, то есть система управления двигателем обеспечивает электронный контроль и управление, всех систем мотора и смежных комплексов.

Принцип работы

Принцип работы основывается на эффекте расширения газов под воздействием тепла, возникающего во время сгорания смеси образованной воздушно-топливной системой. Благодаря этому осуществляется перемещение поршней в цилиндрах.

Работы у всех поршневых двигателей выполняется циклически. То, есть каждый цикл происходит за пару оборотов вала и соответственно включает четыре такта. Так называемые четырехтактные двигатели. Перечень тактов: впуск, сжатие, рабочий ход, выпуск.

Когда выполняется работа такта впуск и рабочий ход, движение поршня осуществляется по направлению в низ. Благодаря этому цикличность не совпадает в каждом из цилиндров. С учетом этого достигается плавность и равномерность работы двигателя. Существуют и двухтактные моторы, в них один цикл сгорания включает только сжатие и рабочий ход.

Такт впуск

Во время этого такта обе системы (впускная и топливная) обеспечивают образование воздушно-топливной массы. Учитывая разную конфигурацию моторов и конструкцию, образование смеси может происходить непосредственно во впускном коллекторе или же в самой камере сгорания. В момент, когда происходит открытие впускных клапанов ГРМ, воздух или уже топливно-воздушная смесь перемещается непосредственно в камеру сгорания, под воздействием силы разряжения, во время движения поршня.

Такт сжатия

Во время сжатия, соответствующие впускные клапаны перекрываются, и происходит сжимание топливно-воздушной смеси в цилиндрах.

Рабочий ход

Данный такт сопровождается образованием пламени, в зависимости от типа топлива, как уже говорилось принудительно или самостоятельно. В результате этого происходит образование большого количества газов. А те уже в свою очередь давят на сам поршень, заставляя двигаться вниз. А благодаря кривошипно-шатунному механизму движение поршня преобразуются в движения вращательного характера, передающиеся на коленчатый вал, последний используется в свою очередь для движения автомобиля.

Такт выпуска

Во время работы последнего такта, открываются выпускные клапаны механизма, через которые удаляются отработанные газы. В дальнейшем выполняется их очистка, снижение шума и охлаждение. Впоследствии чего, газы отправляются в атмосферу.

Если тщательно проанализировать прочитанную информацию, можно понять, почему именно ДВС имеют небольшой коэффициент полезного действия. А именно 40%, именно столько работы выполняется в конкретное время, во время работы одного цилиндра. Остальные в это же время обеспечивают соответственно впуск, сжатие и выпуск.

В подавляющем большинстве автомобилей используются в качестве топлива для двигателей производные нефти. При сгорании этих веществ выделяются газы. В замкнутом пространстве они создают давление. Сложный механизм воспринимает эти нагрузки и трансформирует их сначала в поступательное движение, а затем - во вращательное. На этом основан принцип работы двигателя внутреннего сгорания. Далее вращение уже передается на ведущие колеса.

Поршневой двигатель

В чем преимущество такого механизма? Что дал новый принцип работы двигателя внутреннего сгорания? В настоящее время им оборудуются не только автомобили, но и сельскохозяйственный и погрузочный транспорт, локомотивы поездов, мотоциклы, мопеды, скутера. Двигатели такого типа устанавливаются на военной технике: танках, бронетранспортерах, вертолетах, катерах. Еще можно вспомнить о бензопилах, косилках, мотопомпах, генераторных подстанциях и другом мобильном оборудовании, в котором используется для работы дизельное топливо, бензин или газовая смесь.

До изобретения принципа внутреннего сгорания топливо, чаще твердое (уголь, дрова), сжигалось в отдельной камере. Для этого применялся котел, который грел воду. В качестве первоисточника движущей силы использовался пар. Такие механизмы были массивными и габаритными. Ими оборудовались локомотивы паровозов и теплоходы. Изобретение двигателя внутреннего сгорания дало возможность в разы уменьшить габариты механизмов.

Система

При работе двигателя постоянно происходит ряд цикличных процессов. Они должны быть стабильными и проходить за строго определенный промежуток времени. Это условие обеспечивает бесперебойную работу всех систем.

У дизельных двигателей топливо предварительно не подготавливается. Система подачи топлива доставляет его из бака, и оно подается под высоким давлением в цилиндры. Бензин же по пути предварительно смешивается с воздухом.

Принцип работы двигателя внутреннего сгорания таков, что система зажигания воспламеняет эту смесь, а кривошипно-шатунный механизм принимает, трансформирует и передает энергию газов на трансмиссию. Газораспределительная система выпускает из цилиндров продукты горения и выводит их за пределы транспортного средства. Попутно снижается звук выхлопа.

Система смазки обеспечивает возможность вращения подвижных узлов. Тем не менее трущиеся поверхности нагреваются. Система охлаждения следит за тем, чтобы температура не выходила за пределы допустимых значений. Хотя все процессы происходят в автоматическом режиме, за ними все же необходимо наблюдать. Это обеспечивает система управления. Она передает данные на пульт в кабину водителя.

Достаточно сложный механизм должен иметь корпус. В нем монтируются основные узлы и агрегаты. Дополнительное оборудование для систем, обеспечивающих нормальную его работу, размещается поблизости и монтируется на съемных креплениях.

В блоке цилиндров располагается кривошипно-шатунный механизм. Основная нагрузка от сгоревших газов топлива передается на поршень. Он шатуном соединен с коленчатым валом, который преобразует поступательное движение во вращательное.

Также в блоке размещается цилиндр. По его внутренней плоскости перемещается поршень. На нем прорезаны канавки, в которых помещаются уплотнительные кольца. Это необходимо для минимизации зазора между плоскостями и создания компрессии.

Сверху к корпусу крепится головка блока цилиндров. В ней монтируется газораспределительный механизм. Он состоит из вала с эксцентриками, коромысел и клапанов. Их поочередное открытие и закрытие обеспечивают впуск топлива внутрь цилиндра и выпуск затем отработанных продуктов горения.

К низу корпуса монтируется поддон блока цилиндров. Туда стекает масло после того, как оно смажет трущиеся соединения деталей узлов и механизмов. Внутри двигателя еще расположены каналы, по которым циркулирует охлаждающая жидкость.

Принцип работы ДВС

Суть процесса заключается в преобразовании одного вида энергии в другой. Это происходит при сжигании топлива в замкнутом пространстве цилиндра двигателя. Выделяющиеся при этом газы расширяются, и внутри рабочего пространства создается избыточное давление. Его воспринимает поршень. Он может двигаться вверх-вниз. Поршень посредством шатуна соединен с коленчатым валом. По сути это главные детали кривошипно-шатунного механизма - основного узла, отвечающего за преобразование химической энергии топлива во вращательное движение вала.

Принцип работы двигателя внутреннего сгорания основан на поочередной смене циклов. При поступательном движении поршня вниз совершается работа - на определенный угол проворачивается коленчатый вал. На одном его конце закреплен массивный маховик. Получив ускорение, он по инерции продолжает движение, и это еще проворачивает коленчатый вал. Теперь шатун толкает поршень вверх. Он занимает рабочее положение и снова готов принять на себя энергию воспламененного топлива.

Особенности

Принцип работы ДВС легковых автомобилей чаще всего основан на преобразовании энергии сгораемого бензина. Грузовики, трактора и специальная техника оборудуются в основном дизельными двигателями. Еще в качестве топлива может использоваться сжиженный газ. Дизельные двигатели не имеют системы зажигания. Воспламенение топлива происходит от создаваемого давления в рабочей камере цилиндра.

Рабочий цикл может осуществляться за один или два оборота коленчатого вала. В первом случае происходит четыре такта: впуск топлива и его воспламенение, рабочий ход, сжатие, выпуск отработанных газов. Двухтактный двигатель внутреннего сгорания полный цикл осуществляет за один оборот коленчатого вала. При этом за один такт происходит впуск топлива и его сжатие, а на втором - воспламенение, рабочий ход и выпуск отработанных газов. Роль газораспределительного механизма в двигателях такого типа играет поршень. Двигаясь вверх-вниз, он поочередно открывает окна впуска топлива и выпуска отработанных газов.

Кроме поршневых ДВС существуют еще турбинные, реактивные и комбинированные двигатели внутреннего сгорания. Преобразование в них энергии топлива в поступательное движение транспортного средства осуществляется по другим принципам. Устройство двигателя и вспомогательных систем также существенно отличается.

Потери

Несмотря на то что ДВС отличается надежностью и стабильностью работы, его эффективность недостаточно высока, как это может показаться на первый взгляд. В математическом измерении КПД двигателя внутреннего сгорания составляет в среднем 30-45 %. Это говорит о том, что большая часть энергии сгораемого топлива расходуется вхолостую.

КПД лучших бензиновых двигателей может составлять лишь 30 %. И только массивные экономные дизели, у которых много дополнительных механизмов и систем, могут эффективно преобразовать до 45 % энергии топлива в пересчете на мощность и полезную работу.

Устройство двигателя внутреннего сгорания не может исключить потери. Часть топлива не успевает сгорать и уходит с отработанными газами. Другая статья потерь - это расход энергии на преодоление различного рода сопротивлений при трении сопряженных поверхностей деталей узлов и механизмов. И еще какая-то часть ее тратится на приведение в действие систем двигателя, обеспечивающих его нормальную и бесперебойную работу.

Современный двигатель внутреннего сгорания далеко ушел от своих прародителей. Он стал крупнее, мощнее, экологичнее, но при этом принцип работы, устройство двигателя автомобиля, а также основные его элементы остались неизменными.

Двигатели внутреннего сгорания, массово применяемые на автомобилях, относятся к типу поршневых. Название свое этот тип ДВС получил благодаря принципу работы. Внутри двигателя находится рабочая камера, называемая цилиндром. В ней сгорает рабочая смесь. При сгорании смеси топлива и воздуха в камере увеличивается давление, которое воспринимает поршень. Перемещаясь, поршень преобразует полученную энергию в механическую работу.

Как устроен ДВС

Первые поршневые моторы имели лишь один цилиндр небольшого диаметра. В процессе развития для увеличения мощности сначала увеличивали диаметр цилиндра, а потом и их количество. Постепенно двигатели внутреннего сгорания приняли привычный нам вид. Мотор современного автомобиля может иметь до 12 цилиндров.

Современный ДВС состоит из нескольких механизмов и вспомогательных систем, которые для удобства восприятия группируют следующим образом:

  1. КШМ - кривошипно-шатунный механизм.
  2. ГРМ - механизм регулировки фаз газораспределения.
  3. Система смазки.
  4. Система охлаждения.
  5. Система подачи топлива.
  6. Выхлопная система.

Также к системам ДВС относятся электрические системы пуска и управления двигателем.

КШМ - кривошипно-шатунный механизм

КШМ - основной механизм поршневого мотора. Он выполняет главную работу - преобразует тепловую энергию в механическую. Состоит механизм из следующих частей:

  • Блок цилиндров.
  • Головка блока цилиндров.
  • Поршни с пальцами, кольцами и шатунами.
  • Коленчатый вал с маховиком.


ГРМ - газораспределительный механизм

Чтобы в цилиндр поступало нужное количество топлива и воздуха, а продукты сгорания вовремя удалялись из рабочей камеры, в ДВС предусмотрен механизм, называемый газораспределительным. Он отвечает за открытие и закрытие впускных и выпускных клапанов, через которые в цилиндры поступает топливо-воздушная горючая смесь и удаляются выхлопные газы. К деталям ГРМ относятся:

  • Распределительный вал.
  • Впускные и выпускные клапаны с пружинами и направляющими втулками.
  • Детали привода клапанов.
  • Элементы привода ГРМ.

ГРМ приводится от коленчатого вала двигателя автомобиля. С помощью цепи или ремня вращение передается на распределительный вал, который посредством кулачков или коромысел через толкатели нажимает на впускной или выпускной клапан и по очереди открывает и закрывает их

В зависимости от конструкции и количества клапанов на двигатель может быть установлен один или два распределительных вала на каждый ряд цилиндров. При двухвальной системе каждый вал отвечает за работу своего ряда клапанов - впускных или выпускных. Одновальная конструкция имеет английское название SOHC (Single OverHead Camshaft). Систему с двумя валами называют DOHC (Double Overhead Camshaft).

Во время работы мотора его детали соприкасаются с раскаленными газами, которые образуются при сгорании топливо-воздушной смеси. Чтобы детали двигателя внутреннего сгорания не разрушались из-за чрезмерного расширения при нагреве, их необходимо охлаждать. Охладить мотор автомобиля можно с помощью воздуха или жидкости. Современные моторы имеют, как правило, жидкостную схему охлаждения, которую образуют следующие части:

  • Рубашка охлаждения двигателя
  • Насос (помпа)
  • Радиатор
  • Вентилятор
  • Расширительный бачок

Рубашку охлаждения двигателей внутреннего сгорания образуют полости внутри БЦ и ГБЦ, по которым циркулирует охлаждающая жидкость. Она отбирает избыточное тепло у деталей двигателя и относит его к радиатору. Циркуляцию обеспечивает насос, привод которого осуществляется с помощью ремня от коленчатого вала.

Термостат обеспечивает необходимый температурный режим двигателя автомобиля, перенаправляя поток жидкости в радиатор либо в обход него. Радиатор, в свою очередь, призван охлаждать нагретую жидкость. Вентилятор усиливает набегающий поток воздуха, тем самым увеличивая эффективность охлаждения. Расширительный бачок необходим современным моторам, так как применяемые охлаждающие жидкости сильно расширяются при нагреве и требуют дополнительного объема.

Система смазки ДВС

В любом моторе есть множество трущихся деталей, которые необходимо постоянно смазывать, чтобы уменьшить потери мощности на трение и избежать повышенного износа и заклинивания. Для этого существует система смазки. Попутно с ее помощью решается еще несколько задач: защита деталей двигателя внутреннего сгорания от коррозии, дополнительное охлаждение деталей мотора, а также удаление продуктов износа из мест соприкосновения трущихся частей. Систему смазки двигателя автомобиля образуют:

  • Масляный картер (поддон).
  • Насос подачи масла.
  • Масляный фильтр с .
  • Маслопроводы.
  • Масляный щуп (индикатор уровня масла).
  • Указатель давления в системе.
  • Маслоналивная горловина.

Насос забирает масло из масляного картера и подает его в маслопроводы и каналы, расположенные в БЦ и ГБЦ. По ним масло поступает в места соприкосновения трущихся поверхностей.

Система питания

Система подачи для двигателей внутреннего сгорания с воспламенением от искры и от сжатия отличаются друг от друга, хотя и имеют ряд общих элементов. Общими являются:

  • Топливный бак.
  • Датчик уровня топлива.
  • Фильтры очистки топлива - грубой и тонкой.
  • Топливные трубопроводы.
  • Впускной коллектор.
  • Воздушные патрубки.
  • Воздушный фильтр.

В обеих системах имеются топливные насосы, топливные рампы, форсунки подачи топлива, но в силу различных физических свойств бензина и дизельного топлива конструкция их имеет существенные различия. Сам принцип подачи одинаков: топливо из бака с помощью насоса через фильтры подается в топливную рампу, из которой попадает в форсунки. Но если в большинстве бензиновых двигателей внутреннего сгорания форсунки подают его во впускной коллектор мотора автомобиля, то в дизельных оно подается непосредственно в цилиндр, и уже там смешивается с воздухом. Детали, обеспечивающие очистку воздуха и поступление его цилиндры - воздушный фильтр и патрубки - тоже относятся к топливной системе.

Система выпуска

Система выпуска предназначена для отвода отработанных газов из цилиндров двигателя автомобиля. Основные детали, ее составляющие:

  • Выпускной коллектор.
  • Приемная труба глушителя.
  • Резонатор.
  • Глушитель.
  • Выхлопная труба.

В современных двигателях внутреннего сгорания выхлопная конструкция дополнена устройствами нейтрализации вредных выбросов. Она состоит из каталитического нейтрализатора и датчиков, сообщающихся с блоком управления двигателем. Выхлопные газы из выпускного коллектора через приемную трубу попадают в каталитический нейтрализатор, затем через резонатор в глушитель. Далее через выхлопную трубу они выбрасываются в атмосферу.

В заключение необходимо упомянуть системы пуска и управления двигателем автомобиля. Они являются важной частью двигателя, но их необходимо рассматривать вместе с электрической системой автомобиля, что выходит за рамки этой статьи, рассматривающей внутреннее устройство двигателя.

Бензиновый двигатель - особый вид поршневого ДВС (двигателя внутреннего сгорания), в котором воспламенение ТС (смеси топлива и воздуха) в цилиндрах осуществляется принудительно при помощи электрической искры, а в качестве топлива используется бензин .

GM Company

Виды бензиновых двигателей

Современные бензиновые двигатели можно классифицировать по нескольким категориям.

  1. По количеству цилиндров - с одним цилиндром, двумя цилиндрами и несколькими цилиндрами.
  2. По расположению цилиндров:
    • рядные двигатели (цилиндры расположены строго в ряд наклонным или вертикальным способом);
    • V-образные двигатели (цилиндры расположены под углом);
    • W-образные двигатели (цилиндры располагаются в четыре ряда под углом с коленвалом)
    • оппозитные двигатели (цилиндры расположены под углом 180 градусов)
  3. По способу получения топливной смеси - инжекторные, карбюраторные.
  4. По типу смазки - раздельные (масло находится только в картере), смешанные (масло смешивается с топливом).
  5. По методу охлаждения - охлаждение жидкостью, охлаждение воздухом.
  6. По типу циклов - двухтактные, четырехтактные.
  7. По типу подачи воздушной смеси в цилиндры - с наддувом, без наддува.

Принцип работы бензинового двигателя

Работа бензинового двигателя, как и любого другого двигателя внутреннего сгорания заключается в сгорании топливной смеси в закрытом пространстве, в данном случае, в камере сгорания. При сгорании ТС выделяется большое количество тепловой энергии, которая запускает механическую работу основного механизма двигателя.

Для обеспечения постоянной механической работы ДВС, в камеру сгорания должна осуществляться бесперебойная (цикличная) подача ТС.

В большинстве случаев бензиновые двигатели являются четырехтактными, рабочий цикл которых состоит из четырех тактов:

  • впуска;
  • сжатия;
  • рабочего хода;
  • выпуска

Более подробно о каждом из 4-х тактов.

Впуск

Поршневое движение начинается с одной точки (нижней или верхней), при этом открывается клапан впуска и происходит подача топлива в камеру сгорания. После того как поршень останавливается в противоположной крайней точке, все впускные клапаны закрываются.

Сжатие

На данном такте поршень возвращается на исходную точку, сжимая поступившую топливную смесь, увеличивая ее температуру нагрева. После того как поршень достигает крайней точки, происходит воспламенение сжатой топливной смеси свечой зажигания.

Рабочий ход

При сгорании топливная смесь образует газы, при расширении которых происходит выталкивание поршня. Все клапаны во время рабочего хода остаются полностью закрытыми.

Выпуск

В то время как коленвал продолжает осуществлять вращательные движения, поршень движется в верхнюю крайнюю точку. Вместе с ним открывается клапан выпуска, при котором поршень выталкивает газы в газораспределительную систему. После завершения такта все выпускные клапаны закрываются.

Весь рабочий процесс носит цикличный характер, поэтому после завершения одного такта, начинается следующий такт.

Основные элементы бензинового двигателя

Поршень

Основным рабочим элементом ДВС является поршень, соединенный с коленчатым валом специальным шатуном. Это образует кривошипно-шатунный механизм , который преобразует возвратно-поступательные перемещения поршней в рабочий ход (вращение) коленвала.

Для обеспечения нужной компрессии в цилиндрах двигателя, поршень оснащается уплотняющими чугунными кольцами. На современных бензиновых двигателях могут устанавливаться узкие кольца (высотой не более 2 мм) и широкие поршневые кольца (высотой до 3 мм).

Шатун

Элемент, соединяющий поршень и коленвал. Шатуны изготавливаются из высокопрочной стали, реже - из алюминия. Рабочее шатунное вращение всегда является двухсторонним.

Коленчатый вал

Поступательные поршневые движения преобразуются во вращательные движения вала, который отвечает за вращение автомобильных колес.

Клапаны

ДВС оснащен специальными клапанами - впускными и выпускными. Они предназначены для впуска воздушной массы и вывода выхлопных газов , полученных в процессе сгорания топлива.

Свеча зажигания

Для обеспечения процесса воспламенения ТС в камере, бензиновые двигатели оснащаются свечами зажигания. Электрическая свеча зажигает ТС в определенный момент его подачи и прохождения поршня.

Вспомогательные рабочие системы бензинового двигателя

Бесперебойная и эффективная работа бензинового двигателя обеспечивается вспомогательными рабочими системами - запуска ДВС, розжига, подачи смеси топлива и воздуха, охлаждения, вывода выхлопных газов, смазки.

Согласитесь, что сегодня невозможно представить себе современный мир без автомобилей, поездов, теплоходов и так далее. А ведь так было не всегда.

Еще совсем недавно каких-то двести лет назад единственным средством передвижения по земле кроме собственных ног были лошади. Лошади возили телеги, повозки, кареты, даже вагоны по рельсам.

И мысль о том, что все это можно передвигать без помощи этих несчастных животных была из области фантастики. Тогда-то, в начале 19 века, и начались первые изобретения самоходных машин на основе парового двигателя.

В таком двигателе нагревался огнем наполненный водой котел, и пар от кипящей воды совершал механическую работу по приведению двигателя в ход. Двигатели были чудовищными, малоэффективными, огромными и небезопасными. Однако, на основе этих двигателей были созданы первые автомобили, паровозы и пароходы.

Изобретение двигателя внутреннего сгорания

Людям понравилась эта затея, несмотря на все минусы. Тогда это было чудом техники. И лишь в 1860 году, когда паровые двигатели применялись уже повсеместно и перестали считаться чем-то необыкновенным, был изобретен первый двигатель внутреннего сгорания.

Еще 18 лет понадобилось, чтобы изобретение доработали до нормально работающего варианта, который и по сей день является основой любого двигателя внутреннего сгорания четырехтактного двигателя.

Еще через семь лет двигатели начали работать на бензине. До этого их топливом был светильный газ. В наше время практически везде применяются двигатели внутреннего сгорания с кратным четырем количеством цилиндров. Давайте рассмотрим устройство и принцип работы двигателя внутреннего сгорания.

Устройство и принцип работы двигателя внутреннего сгорания

Он состоит из цилиндра с поршнем, клапанов для впуска топлива и выпуска отработанных паров и коленчатого вала, соединенного с поршнем. Разберем, как работает двигатель внутреннего сгорания на основе простейшего одноцилиндрового движка.

Во время первого такта сквозь топливный клапан впускается горючая смесь бензина и воздуха. Поршень двигается вниз.

На втором такте поршень двигается вверх, сжимая эту смесь, отчего она нагревается.

Третий такт : сжатая смесь поджигается электрической свечой, и энергия от этого небольшого взрыва толкает поршень вниз, приводя в движение коленчатый вал. Энергии толчка достаточно, чтобы коленвал, вращаясь по инерции, приводил в движение поршень при последующих тактах.

И наконец, на четвертом такте , сквозь второй клапан отработанные газы выталкиваются поршнем из цилиндра. Как видно, только один из четырех тактов рабочий.

Для равномерного вращения вала и увеличения мощности совмещают на одном валу четыре цилиндра таким образом, чтобы во время каждого такта один из цилиндров был в стадии рабочего хода. В таком случае они равномерно и последовательно вращают коленвал. Восемь, двенадцать и более цилиндров применяются уже исключительно для увеличения