Двигатель внутреннего сгорания на дизельном топливе. Дизельные двигатели

Особенности дизельного двигателя, такие как экономичность и высокий крутящий момент, делают его предпочтительным вариантом. Современные дизели близки к бензиновым моторам по шумности, сохраняя преимущества в экономичности и надежности.

Конструкция и строение

По конструкции дизельный двигатель не отличается от бензинового - те же цилиндры, поршни, шатуны. Правда, клапанные детали усилены, чтобы воспринимать высокие нагрузки - ведь степень сжатия дизеля намного выше (19-24 единиц против 9-11 у бензинового мотора). Именно этим объясняется большой вес и габариты дизельного мотора в сравнении с бензиновым.

Принципиально отличие заключается в способах формирования смеси топлива и воздуха, её воспламенения и сгорания. У бензинового мотора смесь образуется во впускной системе, а в цилиндре воспламеняется искрой свечи зажигания. В дизельном двигателе подача топлива и воздуха происходит раздельно . Вначале в цилиндры поступает воздух. В конце такта сжатия, когда он нагревается до температуры 700-800 о С, в камеру сгорания форсунками, под большим давлением впрыскивается солярка, которое почти мгновенно самовоспламеняется.

Смесеобразование в дизелях протекает за очень короткий промежуток времени. Для получения горючей смеси, способной быстро и полностью сгорать, необходимо, чтобы топливо было распылено на возможно более мелкие частицы и чтобы каждая частица имела достаточное для полного сгорания количество воздуха. С этой целью топливо в цилиндр впрыскивается форсункой под давлением, в несколько раз превышающим давление воздуха при такте сжатия в камере сгорания .

В дизелях применяют неразделенные камеры сгорания. Они представляют собой единый объем, ограниченный днищем поршня 3 и поверхностями головки и стенок цилиндров. Для лучшего перемешивания топлива с воздухом форму неразделенной камеры сгорания приспосабливают к форме топливных факелов. Углубление 1 , выполненное в днище поршня, способствует созданию вихревого движения воздуха.

Мелко распыленное топливо впрыскивается из форсунки 2 через несколько отверстий, направленных в определенные места углубления. Чтобы топливо полностью сгорало и дизель обладал наилучшими мощностями и экономическими показателями, топливо нужно впрыскивать в цилиндр до прихода поршня в ВМТ.

Самовоспламенение сопровождается резким нарастанием давления - отсюда повышенная шумность и жесткость работы. Такая организация рабочего процесса позволяет работать на очень бедных смесях, что определяет высокую экономичность. Экологические характеристики тоже лучше - при работе на бедных смесях выбросы вредных веществ меньше, чем у бензиновых моторов.

К недостаткам относят повышенную шумность и вибрацию, меньшую мощность, трудности холодного пуска, проблемы с зимней соляркой. У современных дизелей эти проблемы не столь очевидны.


Дизельное топливо должно отвечать определенным требованиям. Главные показатели качества топлива - чистота, малая вязкость, низкая температура самовоспламенения, высокое цетановое число (не ниже 40). Чем больше цетановое число, тем меньше период задержки самовоспламенения после момента впрыска его в цилиндр и двигатель работает мягче (без стуков).

Типы дизельных двигателей

Существует несколько типов дизельных моторов, различие между которыми заключено в конструкции камеры сгорания. В дизелях с неразделенной камерой сгорания - их называю дизелями с непосредственным впрыском - топливо впрыскивается в надпоршневое пространство, а камера сгорания выполнена в поршне. Непосредственный впрыск применяется на низкооборотных двигателях большого рабочего объема. Это связано с трудностями процесса сгорания, а также повышенным шумом и вибрацией.

Благодаря внедрению топливных насосов высокого давления (ТНВД) с электронным управлением, двухступенчатого впрыска топлива и оптимизации процесса сгорания удалось добиться устойчивой работы дизеля с неразделенной камерой сгорания на оборотах до 4500 об/мин, улучшить экономичность, снизить шум и вибрацию.

Наиболее распространенным является другой тип дизеля - с раздельной камерой сгорания . Впрыск топлива осуществляется не в цилиндр, а в дополнительную камеру. Обычно применяется вихревая камера, выполненная в головке блока цилиндров и соединенная с цилиндром специальным каналом так, чтобы при сжатии воздух, попадая в вихревую камеру, интенсивно закручивался, что улучшает процесс самовоспламенения и смесеобразования. Самовоспламенение начинается в вихревой камере, а затем продолжается в основной камере сгорания.

При раздельной камере сгорания снижается темп нарастания давления в цилиндре, что способствует снижению шумности и повышению максимальных оборотов. Такие двигатели составляют большинство среди устанавливаемых на современные автомобили.

Устройство топливной системы

Важнейшей системой является система топливоподачи. Ее функция - подача строго определенного количества топлива в заданный момент и с заданным давлением. Высокое давление топлива и требования к точности делают топливную систему сложной и дорогой.

Главными элементами являются: топливный насос высокого давления (ТНВД), форсунки и топливный фильтр.

ТНВД
ТНВД предназначен для подачи топлива к форсункам по строго определенной программе, в зависимости от режима работы двигателя и действий водителя. По своей сути современный ТНВД совмещает в себе функции сложной системы автоматического управления двигателем и главного исполнительного механизма, отрабатывающего команды шофера.

Нажимая педаль газа, водитель не увеличивает непосредственно подачу топлива, а лишь меняет программу работы регуляторов, которые уже сами изменяют подачу по строго определенным зависимостям от числа оборотов, давления наддува, положения рычага регулятора и т.п.

На современных авто применяются ТНВД распределительного типа. Насосы этого типа получили широкое распространение. Они компактны, отличаются высокой равномерностью подачи топлива по цилиндрам и отличной работой на высоких оборотах благодаря быстродействию регуляторов. В то же время они предъявляют высокие требования к чистоте и качеству дизтоплива: ведь все их детали смазываются топливом, а зазоры в прецизионных элементах малы.

Форсунки.
Другим важным элементом топливной системы является форсунка. Она вместе с ТНВД обеспечивает подачу строго дозированного количества топлива в камеру сгорания. Регулировка давления открытия форсунки определяет рабочее давление в топливной системе, а тип распылителя определяет форму факела топлива, которая имеет важное значение для процесса самовоспламенения и сгорания. Применяются обычно форсунки двух типов: со шрифтовым или многодырчатым распределителем.

Форсунка на двигателе работает в тяжелых условиях: игла распылителя совершает возвратно-поступательные движения с частотой в половину меньшей, чем обороты двигателя, и при этом распылитель непосредственно контактирует с камерой сгорания. Поэтому распылитель форсунки изготавливается из жаропрочных материалов с особой точностью и является прецизионным элементом.

Топливные фильтры.
Топливный фильтр, несмотря на его простоту, является важнейшим элементом дизельного мотора. Его параметры, такие, как тонкость фильтрации, пропускная способность, должны строго соответствовать определенному типу двигателя. Одной из его функций является отделение и удаление воды , для чего обычно служит нижняя сливная пробка. На верхней части корпуса фильтра часто установлен насос ручной подкачки для удаления воздуха из топливной системы.

Иногда устанавливается система электроподогрева топливного фильтра, позволяющая несколько облегчить запуск двигателя, предотвращающая забивание фильтра парафинами, образующимися при кристаллизации дизтоплива в зимних условиях.

Как происходит запуск?

Холодный пуск дизеля обеспечивает система предпускового подогрева. Для этого в камеры сгорания вставлены электрические нагревательные элементы - свечи накаливания. При включении зажигания свечи за несколько секунд разогреваются до 800-900 о С, обеспечивая тем самым подогрев воздуха в камере сгорания и облегчая самовоспламенение топлива. О работе системы водителю в кабине сигнализирует контрольная лампа.

Погасание контрольной лампы свидетельствует о готовности к запуску. Электропитание со свечи снимается автоматически, но не сразу, а через 15-25 секунд после запуска, чтобы обеспечить устойчивую работу непрогретого двигателя. Современные системы предпускового подогрева обеспечивают легкий пуск исправного дизеля до температуры 25-30 о С, разумеется, при условии соответствия сезону масла и дизтоплива.

Турбонаддув и Common-Rail

Эффективным средством повышения мощности является турбонаддув. Он позволяет подать в цилиндры дополнительное количество воздуха и в результате увеличивается мощность. Давление выхлопных газов дизеля в 1,5-2 раза выше, чем у бензинового мотора, что позволяет турбокомпрессору обеспечить эффективный наддув с самых низких оборотов, избежав свойственного бензиновым турбомоторам провала - "турбоямы".


Компьютерное управление подачей топлива позволило впрыскивать его в камеру сгорания цилиндра двумя точно дозированными порциями. Сначала поступает крохотная, всего около миллиграмма, доза, которая при сгорании повышает температуру в камере, а следом идет главный «заряд». Для дизеля - двигателя с воспламенением топлива от сжатия - это очень важно, так как при этом давление в камере сгорания нарастает более плавно, без «рывка». Вследствие этого мотор работает мягче и менее шумно.

В результате в дизелях с системой Common-Rail расход топлива сокращается на 20%, а крутящий момент на малых оборотах коленвала возрастает на 25%. Также уменьшается содержание в выхлопе сажи и снижается шумность работы мотора.

Того же года он был успешно испытан. Дизель активно занялся продажей лицензий на новый двигатель. Несмотря на высокий КПД и удобство эксплуатации по сравнению с паровой машиной практическое применение такого двигателя было ограниченным: он уступал паровым машинам того времени по размерам и весу.

Первые двигатели Дизеля работали на растительных маслах или лёгких нефтепродуктах. Интересно, что первоначально в качестве идеального топлива он предлагал каменноугольную пыль. Эксперименты же показали невозможность использования угольной пыли в качестве топлива - прежде всего из-за высоких абразивных свойств как самой пыли, так и золы, получающейся при сгорании; также возникали большие проблемы с подачей пыли в цилиндры.

Принцип работы

Четырёхтактный цикл

  • 1-й такт. Впуск . Соответствует 0° - 180° поворота коленвала. Через открытый ~от 345-355° впускной клапан воздух поступает в цилиндр, на 190-210° клапан закрывается. По крайней мере до 10-15° поворота коленвала одновременно открыт выхлопной клапан, время совместного открытия клапанов называется перекрытием клапанов .
  • 2-й такт. Сжатие . Соответствует 180° - 360° поворота коленвала. Поршень, двигаясь к ВМТ (верхней мёртвой точке), сжимает воздух в 16(в тихоходных)-25(в быстроходных) раз.
  • 3-й такт. Рабочий ход, расширение . Соответствует 360° - 540° поворота коленвала. При распылении топлива в горячий воздух происходит инициация сгорания топлива, то есть частичное его испарение, образование свободных радикалов в поверхностных слоях капель и в парáх, наконец, оно вспыхивает и сгорает по мере поступления из форсунки, продукты горения, расширяясь, двигают поршень вниз. Впрыск и, соответственно, воспламенение топлива происходит чуть раньше момента достижения поршнем мёртвой точки вследствие некоторой инертности процесса горения. Отличие от опережения зажигания в бензиновых двигателях в том, что задержка необходима только из-за наличия времени инициации, которое в каждом конкретном дизеле - величина постоянная и изменению в процессе работы не подлежит. Сгорание топлива в дизеле происходит, таким образом, длительно, столько времени, сколько длится подача порции топлива из форсунки. Вследствие этого рабочий процесс протекает при относительно постоянном давлении газов, из-за чего двигатель развивает большой крутящий момент. Из этого следуют два важнейшие вывода.
    • 1. Процесс горения в дизеле длится ровно столько времени, сколько требуется для впрыска данной порции топлива, но не дольше времени рабочего хода.
    • 2. Соотношение топливо/воздух в цилиндре дизеля может существенно отличаться от стехиометрического, причем очень важно обеспечить избыток воздуха, так как пламя факела занимает небольшую часть объема камеры сгорания и атмосфера в камере должна до последнего обеспечить нужное содержание кислорода. Если этого не происходит, возникает массивный выброс несгоревших углеводородов с сажей - «тепловоз „даёт“ медведя».).
  • 4-й такт. Выпуск . Соответствует 540° - 720° поворота коленвала. Поршень идёт вверх, через открытый на 520-530° выхлопной клапан поршень выталкивает отработавшие газы из цилиндра.

В зависимости от конструкции камеры сгорания, существует несколько типов дизельных двигателей:

  • Дизель с неразделённой камерой : камера сгорания выполнена в поршне, а топливо впрыскивается в надпоршневое пространство. Главное достоинство - минимальный расход топлива. Недостаток - повышенный шум («жесткая работа»), особенно на холостом ходу. В настоящее время ведутся интенсивные работы по устранению указанного недостатка. Например, в системе Common Rail для снижения жёсткости работы используется (зачастую многостадийный) предвпрыск.
  • Дизель с разделённой камерой : топливо подаётся в дополнительную камеру. В большинстве дизелей такая камера (она называется вихревой либо предкамерой) связана с цилиндром специальным каналом так, чтобы при сжатии воздух, попадая в оную камеру, интенсивно завихрялся. Это способствует хорошему перемешиванию впрыскиваемого топлива с воздухом и более полному сгоранию топлива. Такая схема долго считалась оптимальной для легких дизелей и широко использовалась на легковых автомобилях. Однако, вследствие худшей экономичности, последние два десятилетия идёт активное вытеснение таких дизелей двигателями с нераздельной камерой и с системами подачи топлива Common Rail.

Двухтактный цикл

Продувка двухтактного дизельного двигателя: внизу - продувочные окна, выпускной клапан верху открыт

Кроме вышеописанного четырёхтактного цикла, в дизеле возможно использование двухтактного цикла .

При рабочем ходе поршень идёт вниз, открывая выпускные окна в стенке цилиндра, через них выходят выхлопные газы, одновременно или несколько позднее открываются и впускные окна, цилиндр продувается свежим воздухом из воздуходувки - осуществляется продувка , совмещающая такты впуска и выпуска. Когда поршень поднимается, все окна закрываются. С момента закрытия впускных окон начинается сжатие. Чуть не достигая ВМТ, из форсунки распыляется и загорается топливо. Происходит расширение - поршень идёт вниз и снова открывает все окна и т. д.

Продувка является врожденным слабым звеном двухтактного цикла. Время продувки, в сравнением с другими тактами, невелико и увеличить его невозможно, иначе будет падать эффективность рабочего хода за счет его укорочения. В четырёхтактном цикле на те же процессы отводится половина цикла. Полностью разделить выхлоп и свежий воздушный заряд тоже невозможно, поэтому часть воздуха теряется, выходя прямо в выхлопную трубу. Если же смену тактов обеспечивает один и тот же поршень, возникает проблема, связанная с симметрией открывания и закрывания окон. Для лучшего газообмена выгоднее иметь опережение открытия и закрытия выхлопных окон. Тогда выхлоп, начинаясь ранее, обеспечит снижение давления остаточных газов в цилиндре к началу продувки. При закрытых ранее выхлопных окнах и открытых - еще - впускных осуществляется дозарядка цилиндра воздухом, и, если воздуходувка обеспечивает избыточное давление, становится возможным осуществление наддува.

Окна могут использоваться и для выпуска отработавших газов, и для впуска свежего воздуха; такая продувка называется щелевой или оконной. Если отработавшие газы выпускаются через клапан в головке цилиндра, а окна используются только для впуска свежего воздуха, продувка называется клапанно-щелевой. Существуют двигатели, где в каждом цилиндре находятся два встречно двигающихся поршня; каждый поршень управляет своими окнами - один впускными, другой выпускными (система Фербенкс-Морзе - Юнкерса - Корейво : дизели этой системы семейства Д100 использовались на тепловозах ТЭ3 , ТЭ10 , танковых двигателях 4ТПД, 5ТД(Ф) (Т-64), 6ТД (Т-80УД), 6ТД-2 (Т-84), в авиации - на бомбардировщиках Junkers (Jumo 204, Jumo 205).

В двухтактном двигателе рабочие ходы происходят вдвое чаще, чем в четырёхтактном, но из-за наличия продувки двухтактный дизель мощнее такого же по объёму четырёхтактного максимум в 1,6-1,7 раз.

В настоящее время тихоходные двухтактные дизели весьма широко применяются на больших морских судах с непосредственным (безредукторным) приводом гребного винта. Ввиду удвоения количества рабочих ходов на одних и тех же оборотах двухтактный цикл оказывается выгодным при невозможности повысить частоту вращения, кроме того, двухтактный дизель технически проще реверсировать; такие тихоходные дизели имеют мощность до 100 000 л.с.

В связи с тем, что организовать продувку вихревой камеры (или предкамеры) при двухтактном цикле сложно, двухтактные дизели строят только с неразделёнными камерами сгорания.

Варианты конструкции

Для средних и тяжелых двухтактных дизельных двигателей характерно применение составных поршней, в которых используется стальная головка и дюралевая юбка. Основной целью данного усложнения конструкции является снижение общей массы поршня при сохранении максимально возможной жаростойкости донышка. Очень часто используются конструкции с масляным жидкостным охлаждением.

В отдельную группу выделяются четырехтактные двигатели, содержащие в конструкции крейцкопф . В крейцкопфных двигателях шатун присоединяется к крейцкопфу - ползуну, соединенному с поршнем штоком (скалкой). Крейцкопф работает по своей направляющей - крейцу, без воздействия повышенных температур, полностью ликвидируя воздействие боковых сил на поршень. Данная конструкция характерна для крупных длинноходных судовых двигателей, часто - двойного действия, ход поршня в них может достигать 3 метров; тронковые поршни таких размеров были бы перетяжеленными, тронки с такой площадью трения существенно снизили бы механический КПД дизеля.

Реверсивные двигатели

Сгорание впрыскиваемого в цилиндр дизеля топлива происходит по мере впрыска. Потому дизель выдаёт высокий вращающий момент при низких оборотах, что делает автомобиль с дизельным двигателем более «отзывчивым» в движении, чем такой же автомобиль с бензиновым двигателем. По этой причине и ввиду более высокой экономичности в настоящее время большинство грузовых автомобилей оборудуются дизельными двигателями . Например, в России в 2007 году почти все грузовики и автобусы были оснащены дизельными двигателями (окончательный переход этого сегмента автотранспорта с бензиновых двигателей на дизели планировалось завершить к 2009 году) . Это является преимуществом также и в двигателях морских судов , так как высокий крутящий момент при низких оборотах делает более лёгким эффективное использование мощности двигателя , а более высокий теоретический КПД (см. Цикл Карно) даёт более высокую топливную эффективность.

По сравнению с бензиновыми двигателями, в выхлопных газах дизельного двигателя, как правило, меньше окиси углерода (СО), но теперь, в связи с применением каталитических конвертеров на бензиновых двигателях, это преимущество не так заметно. Основные токсичные газы, которые присутствуют в выхлопе в заметных количествах - это углеводороды (НС или СН) , оксиды (окислы) азота (NO х) и сажа (или её производные) в форме чёрного дыма. Больше всего загрязняют атмосферу в России дизели грузовиков и автобусов , которые часто являются старыми и неотрегулированными.

Другим важным аспектом, касающимся безопасности, является то, что дизельное топливо нелетучее (то есть легко не испаряется) и, таким образом, вероятность возгорания у дизельных двигателей намного меньше, тем более, что в них не используется система зажигания . Вместе с высокой топливной экономичностью это стало причиной широкого применения дизелей на танках, поскольку в повседневной небоевой эксплуатации уменьшался риск возникновения пожара в моторном отделении из-за утечек топлива. Меньшая пожароопасность дизельного двигателя в боевых условиях является мифом, поскольку при пробитии брони снаряд или его осколки имеют температуру, сильно превышающую температуру вспышки паров дизельного топлива и так же способны достаточно легко поджечь вытекшее горючее. Детонация смеси паров дизельного топлива с воздухом в пробитом топливном баке по своим последствиям сравнима со взрывом боекомплекта, в частности, у танков Т-34 она приводила к разрыву сварных швов и выбиванию верхней лобовой детали бронекорпуса. С другой стороны, дизельный двигатель в танкостроении уступает карбюраторному в плане удельной мощности, а потому в ряде случаев (высокая мощность при малом объёме моторного отделения) более выигрышным может быть использование именно карбюраторного силового агрегата (хотя это характерно для слишком уж лёгких боевых единиц).

Конечно, существуют и недостатки, среди которых - характерный стук дизельного двигателя при его работе. Однако, они замечаются в основном владельцами автомобилей с дизельными двигателями, а для стороннего человека практически незаметны.

Явными недостатками дизельных двигателей являются необходимость использования стартёра большой мощности, помутнение и застывание (запарафинивание) летнего дизельного топлива при низких температурах, сложность и более высокая цена в ремонте топливной аппаратуры, так как насосы высокого давления являются прецизиоными устройствами. Также дизель-моторы крайне чувствительны к загрязнению топлива механическими частицами и водой. Ремонт дизель-моторов, как правило, значительно дороже ремонта бензиновых моторов аналогичного класса. Литровая мощность дизельных моторов также, как правило, уступает аналогичным показателям бензиновых моторов, хотя дизель-моторы обладают более ровным и высоким крутящим моментом в своём рабочем объёме. Экологические показатели дизельных двигателей значительно уступали до последнего времени двигателям бензиновым. На классических дизелях с механически управляемым впрыском возможна установка только окислительных нейтрализаторов отработавших газов, работающих при температуре отработавших газов свыше 300 °C, которые окисляют только CO и CH до безвредных для человека углекислого газа (CO 2) и воды. Также раньше данные нейтрализаторы выходили из строя вследствие отравления их соединениями серы (количество соединений серы в отработавших газах напрямую зависит от количества серы в дизельном топливе) и отложением на поверхности катализатора частиц сажи. Ситуация начала меняться лишь в последние годы в связи с внедрением дизелей так называемой системы Common rail . В данном типе дизелей впрыск топлива осуществляется электронно-управляемыми форсунками . Подачу управляющего электрического импульса осуществляет электронный блок управления, получающий сигналы от набора датчиков. Датчики же отслеживают различные параметры двигателя, влияющие на длительность и момент подачи топливного импульса. Так что, по сложности современный - и экологически такой же чистый, как и бензиновый - дизель-мотор ничем не уступает своему бензиновому собрату, а по ряду параметров (сложности) и значительно его превосходит. Так, например, если давление топлива в форсунках обычного дизеля с механическим впрыском составляет от 100 до 400 бар (приблизительно эквивалентно «атмосфер»), то в новейших системах «Common-rail» оно находится в диапазоне от 1000 до 2500 бар, что влечёт за собой немалые проблемы. Также каталитическая система современных транспортных дизелей значительно сложнее бензиновых моторов, так как катализатор должен «уметь» работать в условиях нестабильного состава выхлопных газов, а в части случаев требуется введение так называемого «сажевого фильтра» (DPF - фильтр твёрдых частиц). «Сажевый фильтр» представляет собой подобную обычному каталитическому нейтрализатору структуру, устанавливаемую между выхлопным коллектором дизеля и катализатором в потоке выхлопных газов. В сажевом фильтре развивается высокая температура, при которой частички сажи способны окислиться остаточным кислородом, содержащимся в выхлопных газах. Однако часть сажи не всегда окисляется, и остается в «сажевом фильтре», поэтому программа блока управления периодически переводит двигатель в режим «очистки сажевого фильтра» путём так называемой «постинжекции», то есть впрыска дополнительного количества топлива в цилиндры в конце фазы сгорания с целью поднять температуру газов, и, соответственно, очистить фильтр путём сжигания накопившейся сажи. Стандартом де-факто в конструкциях транспортных дизель-моторов стало наличие турбонагнетателя, а в последние годы - и «интеркулера » - устройства, охлаждающего воздух после сжатия турбонагнетателем - чтобы после охлаждения получить большую массу воздуха (кислорода) в камере сгорания при прежней пропускной способности коллекторов, а Нагнетатель позволил поднять удельные мощностные характеристики массовых дизель-моторов, так как позволяет пропустить за рабочий цикл большее количество воздуха через цилиндры.

В своей основе конструкция дизельного двигателя подобна конструкции бензинового двигателя. Однако, аналогичные детали у дизеля тяжелее и более устойчивы к высоким давлениям сжатия, имеющим место у дизеля, в частности, хон на поверхности зеркала цилиндра более грубый, но твёрдость стенок блока цилиндров выше. Головки поршней, однако, специально разработаны под особенности сгорания в дизельных двигателях и почти всегда рассчитаны на повышенную степень сжатия. Кроме того, головки поршней в дизельном двигателе находятся выше (для автомобильного дизеля) верхней плоскости блока цилиндров. В некоторых случаях - в устаревших дизелях - головки поршней содержат в себе камеру сгорания («прямой впрыск»).

Сферы применения

Дизельные двигатели применяются для привода стационарных силовых установок, на рельсовых (тепловозы , дизелевозы , дизель-поезда , автодрезины) и безрельсовых (автомобили , автобусы , грузовики) транспортных средствах, самоходных машинах и механизмах (тракторы , асфальтовые катки, скреперы и т. д.), а также в судостроении в качестве главных и вспомогательных двигателей.

Мифы о дизельных двигателях

Дизельный двигатель с турбонаддувом

  • Дизельный двигатель слишком медленный.

Современные дизельные двигатели с системой турбонаддува гораздо эффективнее своих предшественников, а иногда и превосходят своих бензиновых атмосферных (без турбонаддува) собратьев с таким же объёмом. Об этом говорит дизельный прототип Audi R10, выигравший 24-х часовую гонку в Ле-Мане, и новые двигатели BMW , которые не уступают по мощности атмосферным (без турбонаддува) бензиновым и при этом обладают огромным крутящим моментом.

  • Дизельный двигатель слишком громко работает.

Громкая работа двигателя свидетельствует о неправильной эксплуатации и возможных неисправностях. На самом деле некоторые старые дизели с непосредственным впрыском действительно отличаются весьма жёсткой работой. С появлением аккумуляторных топливных систем высокого давления («Common-rail») у дизельных двигателей удалось значительно снизить шум, прежде всего за счёт разделения одного импульса впрыска на несколько (типично - от 2-х до 5-ти импульсов).

  • Дизельный двигатель гораздо экономичнее.

Основная экономичность обусловлена более высоким КПД дизельного двигателя. В среднем современный дизель расходует топлива до 30 % меньше . Срок службы дизельного двигателя больше бензинового и может достигать 400-600 тысяч километров. Запчасти для дизельных двигателей несколько дороже, стоимость ремонта так же выше, особенно топливной аппаратуры. По вышеперечисленным причинам, затраты на эксплуатацию дизельного двигателя несколько меньше, чем у бензинового. Экономия по сравнению с бензиновыми моторами возрастает пропорционально мощности, чем определяется популярность использования дизельных двигателей в коммерческом транспорте и большегрузной технике.

  • Дизельный двигатель нельзя переоборудовать под использование в качестве топлива более дешёвого газа.

С первых моментов построения дизелей строилось и строится огромное количество их, рассчитанных для работы на газе разного состава. Способов перевода дизелей на газ, в основном, два. Первый способ заключается в том, что в цилиндры подаётся обеднённая газо-воздушная смесь, сжимается и поджигается небольшой запальной струёй дизельного топлива. Двигатель, работающий таким способом, называется газодизельным. Второй способ заключается в конвертации дизеля со снижением степени сжатия, установкой системы зажигания и, фактически, с построением вместо дизеля газового двигателя на его основе.

Рекордсмены

Самый большой/мощный дизельный двигатель

Конфигурация - 14 цилиндров в ряд

Рабочий объём - 25 480 литров

Диаметр цилиндра - 960 мм

Ход поршня - 2500 мм

Среднее эффективное давление - 1,96 МПа (19,2 кгс/см²)

Мощность - 108 920 л.с. при 102 об/мин. (отдача с литра 4,3 л.с.)

Крутящий момент - 7 571 221 Н·м

Расход топлива - 13 724 литров в час

Сухая масса - 2300 тонн

Габариты - длина 27 метров, высота 13 метров

Самый большой дизельный двигатель для грузового автомобиля

MTU 20V400 предназначен, для установки на карьерный самосвал БелАЗ-7561.

Мощность - 3807 л.с. при 1800 об/мин. (Удельный расход топлива при номинальной мощности 198 г/кВт*ч)

Крутящий момент - 15728 Н·м

Самый большой/мощный серийный дизельный двигатель для серийного легкового автомобиля

Audi 6.0 V12 TDI с 2008 года устанавливается на автомобиль Audi Q7 .

Конфигурация - 12 цилиндров V-образно, угол развала 60 градусов.

Рабочий объём - 5934 см³

Диаметр цилиндра - 83 мм

Ход поршня - 91,4 мм

Степень сжатия - 16

Мощность - 500 л.с. при 3750 об/мин. (отдача с литра - 84,3 л.с.)

Крутящий момент - 1000 Нм в диапазоне 1750-3250 об/мин.

В нынешнее время многие из автолюбителей отдают предпочтение именно дизельным двигателям. Консалтинговое агентство J.D. PowerAsiaPacific проводило исследование. По его результатам четверть всех новых автомобилей выпускается с дизельными моторами. И это еще не все, имеется тенденция к увеличению этой цифры.

Еще в 2000-х с дизельком ездил лишь один из 10 автомобилей. А в будущем, опираясь на мнение экспертов, эта цифра будет расти ежегодно на 1–2%. Причин для этого много: постоянно возрастающая цена на топливо и ужесточенный контроль экологических норм. Еще один плюс - возможность заправки биодизелем, который в свете сокращения запасов нефти является все более актуальным.

Плюсы и минусы дизельного двигателя

Давайте выделим, чем дизельный двигатель лучше своих бензиновых товарищей:

  • Экономичность. Потребность в топливе 30–40% меньше.
  • Срок службы. Он долговечный, в среднем прослужит вам вдвое больше бензинового аналога.
  • Цены на топливо. Дизельное топливо по всей территории страны гораздо дешевле бензина.
  • Простота. В нем нет системы зажигания, что избавляет от многих проблем. Надежность выше.
  • Экологичность. Выбросы углекислого газа очень малы.

Коль назвали преимущества, то нужно сказать и о недостатках.

  • Надежность. Некачественное топливо быстро уничтожит форсунки.
  • Техническое обслуживание. Обойдется вам примерно на 20% дороже.
  • Комфорт. Звук мотора при запуске очень неприятен, и прогрев займет больше времени.
  • Удобство. Если пользуетесь ручной коробкой передач, то передачи придется переключать чаще.

Большинство россиян, услышав слово дизель, вспоминают запах солярки в автобусе, а также джинсы и часы одноименного бренда. В Европе это слово ассоциируется с фамилией немецкого изобретателя. И оно является символом надежного, недорого автомобиля.

В нашей стране он не так популярен, наверное, из-за климата. И в последние годы о двигателях «миллионниках», которыми так славились 90-е годы, практически ничего не слышно. Скорее всего, это связано с тем, что большим корпорациям стало попросту невыгодно выпускать надежные, долгоживущие двигатели.

Рейтинг лучших дизельных двигателей

Изучив рейтинги крупных автосалонов мира, можно прийти к выводу, что лучшие дизельные движки легковых авто это уже не уменьшенные копии агрегатов грузовиков, а полноценный продукт. Чего только стоит прочный двигатель 1.9 TDI от всем известного концерна Volkswagen.

В нынешнее время, по мнению экспертов, он считается наиболее сбалансированным и по мощности, и по динамике.

Он выходит в различных модификациях, не конфликтует с местным топливом, а в хороших руках пробегает около 500 тысяч километров. Конечно, многое зависит от правильного техобслуживания и условий эксплуатации, но все равно данная модель заслуживает внимания.

Не обойдем внимание и новенькие авто серии Passat. На них сейчас устанавливают движки комплектации BlueMotion. Инженеры потрудились на славу, им удалось уменьшить расход топлива притом что мощность не изменилась и варьируется от 90 до 120 (л. с.).

Теперь он тратит всего лишь 3.3 л. на 100 км. Этого они добились благодаря обновлению турбины и поднятию давления в камерах сгорания. А еще они стали намного меньше загрязнять окружающую среду, что в условиях нынешнего времени немаловажно.

Также не можем обойти своим внимание моторы фирмы Mercedes и Nissan - это двигатели самые надежные, чуть ниже в нашем рейтинге расположим моторы Subaru. Но хорошие дизели есть не только у японцев и немцев, к примеру, у американцев есть неплохой мотор от компании Ford. На следующую ступень поставим Opel. На этом и остановимся, поскольку на движки рено слишком много жалоб, а двигатели ВАЗ заслуживают отдельного разговора о них.

Что может послужить причиной поломки двигателя

Как и все в нашем мире, надежность дизельного мотора - это относительное понятие. Стоит отметить, турбинно-дизельные двигатели не такие надежные, как атмосферные, потому что турбина имеет свойство часто ломаться. Очень много факторов, влияющих на работу помимо сборки. Один и тот же двигатель внутреннего сгорания в разных условиях будет вести себя по-разному.

Как упоминалось выше, дизельные моторы очень зависят от качества топлива. Солярка сомнительного качества может знатно потрепать ваш движок уже после первой же заправки. Суть в том, что устаревшие советские моторы с легкостью справляются с таким топливом, а новым автополомка гарантируется. Особенно если каким-либо образом в топливе окажется немного воды.

Это связано с возникновением серной кислоты, которая негативно влияет на все детали автомобиля. Она возникает в результате реакции серы с водой, катализатором которой служит большая температура в двигателях внутреннего сгорания.

Хотя даже и без отсутствия воды превышенное содержание серы значительно сокращает срок службы масла. За счет попадания в него картерных газов. А также сера быстро испортит ваш сажевый фильтр. Следует запомнить, что если вы сомневаетесь в топливе, то для уверенности в работе автомобиля, масло придется менять в два раза чаще.

При соблюдении простых правил, даже не самый удачный мотор прослужит вам верой и правдой долгий срок. Нужно пользоваться только качественным моторным маслом, по возможности одной и той же торговой марки, замену делать в срок, и, конечно же, не перегревать ваш агрегат - не позволяйте мотору работать на повышенных нагрузках.

«Вечные» двигатели

Вернемся к уже упомянутым выше легендарным моторам-миллионникам. Бытует мнение, что раньше были движки, которые могли гонять до 1 миллиона километров, и это по тем дорогам, без капитального ремонта. Одним из таких был Мерседес-Бенц модели M102. Он пришел на замену М115. М102 стал легче, но в то же время мощнее.

Этого он добился за счет более тонких стен, что позволило опустить коленвал ниже. Цилиндрические головки выполнялись в перекрестной форме, на которой находятся подвесные V-образные клапаны, привод работает через центральное коромысло распределяющего вала.

Сам движок начали выпускать в 80-х годах прошлого столетия в двух сборках. Обе конфигурации устанавливали в семействе автомобилей W123.

Через 4 года появилось новое семейство - W124 и двигатель был усовершенствован. Гидроопоры заменили резиновые. На нем был установлен датчик давления масла, поликлиновый ремень, коленчатый вал и облегченные шатуны, также был заменен масляный фильтр.

Карбюраторный вариант стал последним в истории марки.

Также стоит упомянуть дизельный 2,5 л движок от тойоты. Этот двигатель считался очень хорошим и мог отбегать свой миллион. Но конечно же, с капитальным ремонтом, потому что цилиндры изнашиваются намного быстрее. Срок жизни цилиндров приблизительно 300- 400 тыс. км.

Давайте вспомним про двигатели ВАЗ. Хоть и качество сборки этих автомобилей желает лучшего, но на ладах стоят очень даже неплохие движки, хочется выделить 8- клапанные движки внутреннего сгорания. Для ВАЗ-2112 вполне обычным считается пробег 200–300 тысяч километров, после чего придется делать капитальный ремонт.

А ВАЗ-21083 при правильном подходе и своевременной замене масла могут послужить еще дольше - до 400 тыс. км. Но 16-клапанный мотор очень быстро ломается. Если подытожить, весь продукт ВАЗ - это лотерея. Брак встречается очень часто.

Про моторы Renault трудно что-то сказать однозначно - в линейке силовых агрегатов есть хорошие модели, а есть откровенно слабые. Самым надежным дизельным двигателем считается 8-клапанный мотор K7J, объемом 1,4 л., и K7M, объемом 1.6 л. Выполнены они просто и удачно, поэтому и ломаются очень редко.

Они имеют ременной ГРМ (газораспределительный механизм) привод, клапан регулируется винтами. K7M - используется в авто RenaultSymbol/ Sandero/Logan/ Clio. Выше упомянутый ВАЗ использует в своем автомобиле Лада Ларгус. По всем признакам K7J выглядит хорошо, кроме мощности - её недостаточно для среднеразмерного легкового автомобиля.

В среднем самый экономичный мотор может пробежать до 400 тыс. км без капитального ремонта.

Что касается компании Рено, её моторы не характеризуются высокой надежностью - это дизели 1,5 л, 1,9 л и 2,2 л. С ними часто возникают проблемы. При нагрузках начинает стучать коленчатый вал, а когда то же самое начинает происходить и с шатунными вкладышами - это однозначно капремонт. Пробежать этот дизелек от Рено много не сможет, и капремонт придется делать уже через 130–150 тысяч километров.

Самый большой и самый маленький двигатели

Так же интересно, какой дизельный двигатель является самым лучшим? На сегодняшний день Wartsila-Sulzer RTA96 - самый мощный дизельный двигатель. Его размер сравним с трехэтажным домом.

Этот двухтактный двигатель весит 2300 тонн. Имеет две модификации - 6 и 14-цилиндровый и 108920 лошадиных сил. Этот двигатель предназначен для больших торговых судов. Последний вариант двигателя будет сжигать 6280 литров топлива в час.

А самый маленький дизельный двигатель поместится на одном пальце. В ближайшем будущем в Европе и США на подходе микроскопические двигатели, которые будут подпитываться углеводородным топливом и приводиться в движение крошечным генератором.

Вывод

С написанного выше, мы можем видеть, что проблем хватает. Понять автомобилиста, не желающего рисковать ради экономии, вполне можно. Но при грамотной эксплуатации мотор проработает очень долго.

Известны случаи, когда такие моторы служили по 1–1,2 млн км даже на топливе невысокого качества.

То есть, если вам нужен автомобиль, рассчитанный на долгий срок работы, то стоит хорошенько подумать про дизельный вариант. Также не забываем про экономичность. Каждые 100 километров дадут вам коло 30% экономии в топливе, что вполне оправдывает более высокую стоимость легковых автомобилей.

В России, как и в любой промышленно развитой стране мира, моторостроение играет роль одного из ключевых факторов движущей силы автопрома. Мировой опыт моторостроения показывает, что технический уровень бензиновых и дизельных двигателей, их многообразие по размерности, эффективным показателям, а также качество и удешевление продукции существенным образом зависят от развития производства компонентов.

Самые современные отечественные двигатели

Сегодня дизелестроители выпускают двигатели с двумя типами систем питания: насос-форсунки и Common Rail. Последняя, как более перспективная, получила наибольшее распространение. Действенным средством повышения мощности и гибкости работы дизеля стал турбонаддув с промежуточным охлаждением наддувочного воздуха.

Переход к выполнению норм Евро-4 и выше требует применения системы рециркуляции отработавших газов в сочетании с фильтром-уловителем твердых частиц, а также системы селективной нейтрализации NOx (SCR), что при переходе на Евро-5 потребует организации сети заправок с предложением реагента типа AdBlue. Отечественный транспортный дизель в ближайшие годы будет обладать: удельной мощностью 35–40 кВт/л; оптимизированной конструкцией головки и блока цилиндров из чугуна; двухступенчатым турбонаддувом с или без промежуточного охлаждения наддувочного воздуха, гибкой системой впрыска топлива с давлением впрыска до 250 МПа, предпочтительно Common Rail, стандартизированными форсунками; приводом валов газораспределения со стороны маховика; встроенным моторным тормозом; оптимизированной системой контроля расхода воздуха и рециркуляции отработавших газов; фильтром частиц в базовой комплектации; системой SCR. Найдут применение валы газораспределения (один или два) в головке цилиндров и «открытый» фильтр.

Требования экологических норм Евро-4 и выше у бензиновых двигателей выполняются за счет применения электронных систем впрыска, более совершенных систем зажигания и использования каталитических нейтрализаторов двухблочной конструкции, применения катколлекторов. Газовые двигатели ныне составляют относительно небольшую долю по сравнению с бензиновыми и дизельными моторами. Газобаллонные автомобили могут получить распространение после организации широкой сети наполнительных станций. Серьезной проблемой является отставание российских предприятий по широкому спектру технологий для получения сложных заготовок моторного производства, таких как литье из высокопрочных чугунов и чугунов с вермикулярным графитом, стальное и биметаллическое литье, а также обработка поверхностей деталей химико-термическим, лазерным, плазменным методами. Не случайно развитие отечественного моторостроения все более зависит от западных поставщиков.

Современные двигатели УМЗ

Ульяновский моторный завод (УМЗ), входящий в «Группу ГАЗ», развернул производство бензиновых двигателей стандарта Евро-4. Ведется создание силовых установок Евро-5 с перспективой выполнения норм Евро-6. К числу отличий 4-цилиндрового 125-сильного мотора УМЗ-42164 (2,89 л) можно отнести: электронную педаль газа Delphi, топливные форсунки нового поколения той же Delphi, распредвал с оптимизированными фазами, регулятор разрежения картерных газов с маслоотделителем, комплексную микропроцессорную систему управления топливоподачей и зажиганием. В 2014 г. на УМЗ стали выпускать двигатели EvoTech 2.7 рабочим объемом 2,7 л мощностью 107 л. с. Это совместная разработка «Группы ГАЗ» и южнокрейской инжиниринговой компании Tenergy. Отличительные черты мотора: новая конструкция поршневой группы, камеры сгорания и блока цилиндров; усовершенствованный газораспределительный механизм; измененные системы охлаждения, питания, зажигания и смазки. Результат - увеличенный крутящий момент в широком диапазоне оборотов, надежная работа в жестких температурных условиях и сниженный на 10 % расход топлива. Двигатель соответствует нормам Евро-4 и Евро-5, его ресурс - 400 тыс. км. Ульяновские моторостроители первыми в России освоили серийное производство газобензиновых модификаций двигателей. Это 100-сильные агрегаты серии УМЗ-421647 ГБО (Евро-4) с микропроцессорной системой управления впрыском топлива и зажиганием. Дальнейшее развитие продуктовой линейки двигателей УМЗ связано с повышением экологичности и экономичности. При этом особый акцент сделают на развитии битопливных газовобензиновых модификаций.

На ОАО «Автодизель», также входящем в «Группу ГАЗ», выпускаются семейства среднелитражных рядных 4- и 6-цилиндровых двигателей ЯМЗ-534 (4,43 л) и ЯМЗ-536 (6,65 л). Агрегаты создавались для выполнения норм Евро-4, а в дальнейшем Евро-5 и выше. Их параметры находятся на уровне лучших зарубежных аналогов, а силовой диапазон составляет от 120 до 320 л. с. В конструкции моторов применяется система Electronic Common Rail System 2 фирмы Bosch, обеспечивающая давление впрыска 180 МПа с потенциалом до 200 МПа для выполнения стандарта Евро-5. Система рециркуляции отработавших газов (EGR) установлена непосредственно на двигателе, а механизм контроля над этим устройством интегрирован в систему управления двигателем. Турбокомпрессор оборудован клапаном перепуска газов на турбине, интеркулером типа «воздух-воздух» и встроенным маслорадиатором. Двигатель ЯМЗ-534, это L-образный четырехцилиндровый дизель семейства ЯМЗ-530, производства Ярославского моторного завода. Новое семейство многоцелевых дизельных двигателей ЯМЗ-530 выпуcкается в четырехцилиндровом и шестицилиндровом исполнении. Серия ЯМЗ-534 разработана на Автодизеле "с нуля", при участии известной инжиниринговой компании AVL List. ЯМЗ-534 относится к средним рядным дизелям, первый серийный мотор такого рода на территории России. Надо сказать, что в модельном ряду уже был четырехцилиндровый дизель ЯМЗ-204 (снят с производства более 20 лет назад), но в отличии от двигателя ЯМЗ-534, он относился к тяжелым дизелям и не имел турбонаддува. Базовой моделью является мотор ЯМЗ-5340, он представляет собой рядный четырехтактный дизель с турбонаддувом. Более поздние модификации двигателя ЯМЗ-5340, силовые агрегаты ЯМЗ-5341, ЯМЗ-5342 и ЯМЗ-5344, конструктивно выполнены аналогично базовой модели. Данные двигатели покрывают мощностной диапазон от 136 до 190 л.с., различаются только регулировками топливной аппаратуры за счет изменения параметров настройки электронного блока управления (ЭБУ). ЯМЗ-534 CNG это перспективный двигатель Ярославского моторного завода, спроектирован для работы на газе. Газовый двигатель ЯМЗ-534 CNG создан при участии канадской компании Westport – признанного мирового лидера по разработке газовых систем для транспорта. Двигатели ЯМЗ-534, их модификации и комплектации предназначены для установки на автомобили МАЗ, Урал, ГАЗ и ГАЗон NEXT на газовом топливе, а также автобусы ПАЗ. Ресурс моторов достигает 800–900 тыс. км пробега.

Вместе с тем локализация производства упомянутых моторов до сих пор не превышает 25 %. Важнейшие детали и системы поступают из-за рубежа. «Автодизель» в содружестве с компанией Westport разработал и выпускает линейку газовых двигателей, работающих на сжатом метане. Эти модели (Евро-4) обладают техническими и потребительскими преимуществами базового семейства ЯМЗ-530.

Двигатель ЯМЗ-536

Базовый двигатель серии ЯМЗ-536, семейства ЯМЗ-530. Входит в состав семейства шестицилиндровых L-образных дизелей производства Ярославского моторного завода. Дизель рядный, четырехтактный с воспламенением от сжатия, с непосредственным впрыском, с жидкостным охлаждением, с наддувом и охлаждением наддувочного воздуха в теплообменнике типа "воздух-воздух". Дизельные моторы ЯМЗ-536 выпускаются без коробки переключения передач и сцепления. Имеются три дополнительные модификации: ЯМЗ-536-01 - комплектация под установку компрессора кондиционера; ЯМЗ-536-02 - комплектация с возможностью подключения ретардера; ЯМЗ-536-03 - комплектация под установку компрессора кондиционера с возможностью подключения ретардера. Двигатель ЯМЗ-536 используется в качестве силового агрегата техники МАЗ: грузовые автомобили, самосвалы, шасси автомобильные, тягачи с колесной формулой 4х2, 4х4, 6х2, 6х4, 6х6, 8х4 полной массой до 36 т, а также автопоезда на их базе массой до 44 т.

На «Автодизеле» выпускаются рядные 6-цилиндровые турбодизели ЯМЗ-6511 и ЯМЗ-651 (11,12 л) мощностью 362 и 412 л. с. соответственно. Для достижения параметров Евро-4 применены система Common Rail типа CRS 2 с электронным управлением подачей топлива EDC7 UC31, обеспечивающая давление впрыска топлива 160 МПа, система EGR и РМ-САТ (глушителя-нейтрализатора), доработаны системы охлаждения и наддува.

В арсенале предприятия имеются V-образные 6-цилиндровые дизели ЯМЗ-6565 (11,15 л) и 8-цилиндровые ЯМЗ-6585 (14,86 л). Для выполнения норм Евро-4 применены топливная аппаратура Common Rail на базе топливоподающего насоса высокого давления ЯЗДА и система SCR. Мощность «шестерок» составляет 230–300 л. с., а «восьмерок» - 330–450 л. с. Если говорить о дальнейшем развитии модельного ряда двигателей ЯМЗ, то в планах компании в ближайшие годы освоение выпуска двигателей мощностью от 130 до 1000 л. с., работающих на всех видах топлива.

Современные моторы ЗМЗ

Заметное место в производственной программе Заволжского моторного завода занимают двигатели, отвечающие стандарту Евро-4. На бензиновых 4-цилиндровых моделях ЗМЗ-40905.10 и ЗМЗ-40911.10 (2,7 л) мощностью соответственно 143 и 125 л. с. применены впрыск топлива во впускные каналы головки цилиндров, датчик абсолютного давления, топливная рампа с форсунками двухпоточного распыления, система вентиляции с подачей картерных газов в ресивер и привод газораспределительного механизма зубчатыми цепями.

4-цилиндровый дизель ЗМЗ-51432.10 (2,235 л) с отдачей 114 л. с. оборудован непосредственным впрыском, турбонаддувом, интеркулером, системой Common Rail фирмы Bosch с максимальным давлением впрыска 145 МПа, охлаждаемой системой EGR.

Бензиновый V-образный 8-цилиндровый ЗМЗ-52342.10 (4,67 л) мощностью 124 л. с. оснащен системой коррекции состава топливной смеси. В нынешнем году на заводе начата подготовка производства двигателей экологического стандарта Евро-5. Речь идет о бензиновых 4-цилиндровых ЗМЗ-40906.10 для автомобилей УАЗ, двухтопливных (газ-бензин) 8-цилиндровых ЗМЗ-5245.10 для автобусов ПАЗ и газовых 4-цилиндровых ЗМЗ-409061.10 для грузовика компании «БАУ-РУС». Причем битопливный двигатель будет работать на бензине, сжатом или сжиженном газе. Начать серийное производство этих моторов планируется в январе 2016 года.

Двигатели ТМЗ

Тутаевский моторный завод (ТМЗ) сосредоточен на выпуске V-образных 8-цилиндровых дизелей рабочим объемом 17,24 л. Технические особенности самого современного 500-сильного двигателя ТМЗ-864.10 (Евро-4) заключаются в применении индивидуальной 4-клапанной головки цилиндров, поршней с полостным охлаждением маслом, вставок под верхнее поршневое кольцо из жаропрочного чугуна. Мотор снабжен системой Common Rail, регулируемым турбонаддувом с интеркулером, системой EGR, встроенным водомасляным радиатором и замкнутой системой вентиляции картера.

В ближайшей перспективе будет решена задача по созданию новых моторов экологического класса Евро-4 мощностью до 700 л. с. На заводе готовы создать двигатели уровня Евро-5, но для этого потребуется закупка зарубежных комплектующих, т.к. системы впрыска топлива, развивающие давление 160 МПа, и электронные системы управления работой двигателя в России практически не выпускаются.

Двигатели КАМАЗА

На Камском автозаводе освоили выпуск линейки V-образных 8-цилиндровых дизелей уровня Евро-4 мощностью от 280 до 440 л. с.

При разработке этих двигателей (размерность 120х120 и 120х130 мм) выбор пал на систему Common Rail CRS фирмы Bosch с блоком управления EDC7 UC31. Цельнолитой картер маховика, наддув одним турбокомпрессором, цилиндропоршневая группа фирмы Federal Mogul и другие особенности позволили создать двигатели с возможностью дальнейшей модернизации.

В этих моделях обеспечено повышенное давление впрыска (существующие системы - 160 МПа, перспективные - до 250 МПа), регулирование давления впрыска в зависимости от условий эксплуатации автомобиля, точное дозирование с возможностью индивидуальной электронной регулировки, снижение уровня шума мотора. Ресурс - не менее 1 млн км пробега автомобиля. Семейства газовых двигателей (Евро-4) КАМАЗ-820.60 и КАМАЗ 820.70 рабочим объемом 11,76 л включают модели мощностью от 240 до 300 л. с. Моторы оснащены турбонаддувом, ОНВ, электронным управлением и системой обработки отработавших газов.

Для выполнения норм Eвро-5 КАМАЗ сделал упор на создание дизелей новой конструкции. Плодом совместной работы с рядом инжиниринговых фирм стало появление моторов мощностью от 280 до 550 л. с. В них нашли при- менение: система Common Rail с давлением впрыска 220 МПа; единая чугунная головка на каждый полублок вместо алюминиевых, нижние опоры коренных подшипников коленвала, объединенных в один блок; коренные и шатунные шейки коленчатого вала увеличенного диаметра. В то же время большое внимание на КАМАЗе уделяют сотрудничеству с фирмой Liebherr-International AG, которая поможет российской компании создать следующее поколение дизельных и газовых двигателей. Для этого КАМАЗ создаст современное производство в Набережных Челнах, а задача Liebherr - консультации по проектированию, монтажу и пуску в эксплуатацию технологического оборудования.

Новые рядные 6-цилиндровые двигатели рабочим объемом 12 л мощностью от 450 до 700 л. с. оснастят системами впрыска Common Rail и блоками управления производства Liebherr. Дизели будут соответствовать не только экологическим нормам Евро-5, но и обладать потенциалом выполнения требований стандарта Евро-6. У перспективных моторов КАМАЗ межсервисный интервал обслуживания будет увеличен до 150 тыс. км. Серийный выпуск двигателей запланирован на конец 2016 г.

В сентябре 1913 года среди пассажиров парома «Дрезден», следующего в Англию, был Рудольф Дизель. Известно, что он поднялся на борт судна, и… больше его никто не видел. Таинственное исчезновение знаменитого немецкого инженера до сих пор остаётся одной из самых интригующих и загадочных историй XX века.

Рождение и детство гения

18 марта 1858 года в семье эмигрантов из Германии родился будущий великий немецкий инженер. Человек, чьё изобретение поставило его в один ряд с известнейшими людьми конца XIX и начала XX века. Именно в Париж из Аугсбурга (Германия) перебрались Теодор Дизель и Элиз Штробель.

Отец Рудольфа был потомственным переплётчиком, одним из его страстных увлечений, являлось изобретение игрушек. Так, с раннего детства Рудольф Дизель начинает приобщаться к труду, развозя по французской столице переплетённые отцом книги заказчикам. Возможно, что первое знакомство Рудольфа Дизеля с миром техники произошло в техническом музее, который находился недалеко от его дома.

Каждые выходные отец водил мальчика в музейный зал, где находились паровые машины, история появления которых начинается с 1770 года. Жизнь шла своим чередом, размеренно и спокойно. Семья трудолюбивых немцев не имела большого достатка, но и не бедствовала.

Вынужденный отъезд

Всё закончилось в 1870 году с началом франко-прусской войны. Этническим немцам в Париже становится жить небезопасно. Теодор Дизель был вынужден оставить всё своё имущество, и вместе с женой и 12-летним сыном Рудольфом перебраться в Лондон. Немецкие войска на тот период полностью оккупировали столицу Франции. Столица Великой Британии неприветливо встретила новых жителей.

Семья Дизелей испытывала большую нужду. Работы не было, приходилось перебиваться случайными заказами на переплёт книг. Тогда, в 1871 году, семьёй было принято решение для продолжения учёбы отправить юного Рудольфа Дизеля в Аугсбург, к брату матери, профессору математики Кристофу Барнекелю.

Рудольф Дизель: биография будущего изобретателя

Перед отъездом Рудольф твёрдо пообещал родителям, что после окончания учёбы он вернётся домой, чтобы помогать отцу. Однако вслед за сыном через два года в Аугсбург переехали и его родители.

Семья профессора Барнекеля встретила племянника с теплотой, мальчик был окружён заботой и вниманием. Способности Рудольфа очаровали профессора, за что дядя разрешил ему пользоваться своей обширной библиотекой. Первым занятием Рудольфа в семье профессора стало переплетение всех старых книг, искусство, которому обучил его отец. Общение с образованным родственником, несомненно, пошло на пользу молодому человеку. Сегодня весь мир знает, кто изобрёл дизельный двигатель. А тогда всё только начиналось.

По прибытии племянника в Германию профессор Барнекель устраивает мальчика в реальное училище, которое Рудольф Дизель оканчивает как лучший ученик. После начального образования юное дарование в 1873 году поступает в Аугсбургскую политехническую школу, которую оканчивает через два с половиной года с наивысшими показателями. Следующим шагом молодого учёного становится поступление в Мюнхенскую Высшую техническую школу, которая была успешно окончена в 1880 году.

Мюнхенский технический университет в Баварии (Германия) до сих пор хранит в своём музее результаты выпускных экзаменов студента Рудольфа Дизеля, превзойти которые не может ни один студент за всю почти полуторавековую историю вуза.

Встреча, которая перевернула его жизнь

Во время учёбы Рудольф Дизель познакомился с известным немецким инженером, разработчиком холодильного оборудования, профессором Карлом фон Линде. Так случилось, что из-за заболевания брюшным тифом студенту Дизелю не удалось вовремя сдать экзамены профессору. Рудольф был вынужден на время покинуть университет и отправиться на практику в Швейцарию, устроившись в машиностроительную компанию братьев Шульцер.

Спустя год Дизель возвращается в Германию, где успешно завершает учебный процесс, сдав выпускные экзамены профессору Карлу фон Линде. К тому времени наставник решает оставить преподавательскую деятельность и вплотную заняться прикладными исследованиями в организованной им же компании «Хладогенераторы Линде». Рудольф Дизель получает место в парижском филиале компании в качестве управляющего.

На протяжении десяти лет Рудольф Дизель усовершенствовал свои знания в области термодинамики. Механический холодильник - вот над чем работали всё это время немецкие изобретатели в компании Карла Линде. Принципом работы холодильной установки было испарение и конденсат аммиака при помощи механического насоса.

Ещё при обучении в университете Р. Дизеля волновала проблема автономного источника питания для производства. Индустриальная революция основывалась на неэффективных и громоздких паровых двигателях, чей 10-процентный коэффициент полезного действия (КПД) явно не отвечал растущим потребностям в энергетической области. Миру нужны были компактные и дешёвые источники энергии.

Дизельный двигатель: первый рабочий экземпляр

Помимо основной работы Рудольф Дизель проводил научные исследования по созданию эффективного теплового устройства, которое превращало бы тепловую энергию в механическую. В своих лабораторных экспериментах Рудольф изначально использовал аммиак как рабочее тело установки. В качестве топлива применялся порошок из каменного угля.

По теоретическим расчётам, двигатель Рудольфа Дизеля должен был работать от сжатия в рабочей камере тела, которое при соединении с топливом создавало бы критическую температуру для воспламенения.

Уже в ходе экспериментов было установлено, что опытные образцы дизельного двигателя имели небольшое преимущество над паровыми установками. Это вдохновляло изобретателя на дальнейшую работу и эксперименты.

В один из дней работа по созданию дизельного двигателя чуть не стала фатальной для его изобретателя. Взрыв машины едва не привёл к гибели Рудольфа Дизеля. Немецкий инженер был госпитализирован в одну из парижских клиник. Во время взрыва Рудольф получил повреждение глазного яблока. До конца жизни эта проблема сопровождала изобретателя.

Забегая вперёд, следует отметить, что в 1896 году Рудольф Дизель изобрёл свой первый рабочий экземпляр, который представил на всеобщее обозрение. При финансовой поддержке братьев Щульцер и Фридриха Круппа мир увидел двигатель мощностью 20 лошадиных сил с КПД 26% при весе механического агрегата пять тонн. Сегодня это чудо технического прогресса можно созерцать среди экспонатов Машиностроительного музея в городе Аугсбурге (Германия).

Берлинский филиал

После частичного восстановления зрения в парижской клинике Рудольф по приглашению своего учителя Карла фон Линда возглавил Берлинский филиал компании. Окрылённый успехом Рудольф Дизель создаёт промышленный образец двигателя, который имел коммерческий успех. Новую силовую установку изобретатель назвал атмосферным газовым двигателем.

Однако такое название надолго не прижилось, и изобретение стали называть просто "дизель" в честь создателя агрегата. Многочисленные контракты, финансовые потоки и устойчивый спрос на новое изобретение заставляют Дизеля покинуть филиал Карла фон Линда и открыть свой собственный завод по производству дизельных двигателей.

Финансовый успех

Могли ли предположить родители, отправляя своего сына на обучение к дяде, что уже к 40 годам он станет известен всему миру? Осенью 1900 года в Лондоне появляется новая компания по промышленному производству дизельных двигателей.

Дальнейшая хронология событий разворачивается очень стремительно:

  • В 1903 году мир увидел первый корабль с двигателем Рудольфа Дизеля.
  • В 1908 году автомобильная промышленность получила компактный дизельный двигатель для грузового транспорта.
  • В 1910 году с железнодорожного депо в Англии вышел первый локомотив с дизельным двигателем.
  • Немецкая компания «Мерседес» стала выпускать свои автомобили исключительно с дизельными двигателями.

К тому времени Рудольф Дизель достиг успехов не только в работе. Личная жизнь изобретателя сложилась довольно успешно. Любящая жена и трое детей вдохновляли его на дальнейшую работу.

Мировой кризис

Крупнейшие машиностроительные компании Европы и Соединённых Штатов Америки стояли в очереди на приобретение лицензий по производству дизельных двигателей. Мировая пресса постоянно подогревала интерес к изобретению Рудольфа Дизеля, давая лестные характеристики преимуществам нового агрегата над другими силовыми установками.

Р. Дизель стал очень богат. Альфонс Буш, американский магнат по производству пива, предложил конструктору один миллион долларов за право производства двигателей в США. Но всё закончилось в одночасье.

В 1913 году грянул мировой кризис. Неумелое распределение финансовых потоков приводило к постепенному банкротству предприятий Дизеля.

Тайна исчезновения

29 сентября 1913 года из Антверпена в Лондон отправлялся пароход «Дрезден». Среди пассажиров находился и Рудольф Дизель. Как погиб великий промышленник и изобретатель двигателя, до сих пор остаётся тайной.

Известно, что Р. Дизель отправился в Англию на открытие нового завода компании Consolidated Diesel Manufacturing, где должны были производиться его двигатели. Однако в конечном пункте назначения пассажира с фамилией Дизель не оказалось...