Бесконтактная система зажигания 6 цилиндров. Бесконтактная система зажигания

Факультет механический. Кафедра сельскохозяйственной техники

ЛАБОРАТОРНАЯ РАБОТА №7 по предмету «Тракторы и автомобили»

Лабораторная работа - Бесконтактно-транзисторная система зажигания

Вопросы

1. БТСЗ с магнитоэлектрическим индукционным датчиком.

2. БТСЗ с датчиком Холла.

3. Преимущества БТСЗ

4. Электрическая схема БТСЗ с магнитоэлектрическим датчиком

Бесконтактная транзисторная система зажигания

Недостатки, связанные с наличием контактов прерывателя, полностью устранили, применив системы с бесконтактным управлением моментом зажигания и механическими автоматами регулирования угла опережения зажигания. Сигналы, которые руководят моментом зажигания, формируются бесконтактными датчиками, которые устанавливают в распределителе вместо подвижной пластины, прерывателя и кулачка.

Применяют в основном два типа генераторных датчиков:

- магнитоэлектрический индукционный датчик , который устанавливают на автомобилях типа ГАЗ , ЗИЛ , Лиаз , УАЗ . Принцип работы такого датчика основывается на явлении электромагнитной индукции. Он состоит из неподвижной катушки с определенным количеством витков и постоянного магнита, который вращается от коленчатого вала двигателя;

- датчик Холла , принцип действия которого состоит в возникновении ЭДС в полупроводниковой пластине с током, который находится в магнитном поле. Магнитная система, как правило, монтируется в датчик, а коммутация магнитного потока осуществляется специальной шторкой из магнитоэлектрической стали, механически соединенной с коленчатым валом. Такие датчики устанавливают на автомобилях ВАЗ-2108 , -2109 ,-1111 , "Ока" , ЗАС-1102 "Таврия" и т. п..

Коммутация тока в первичной обмотке индукционной катушки в БТСЗ осуществляется транзистором. При этом время, в течение которого происходит накопление энергии в магнитном поле, может зависеть от частоты вращения коленчатого вала двигателя (угол поворота коленчатого вала двигателя, при котором существует ток в первичной обмотке катушки зажигания постоянный и не зависит от частоты его вращения) или не зависеть от нее (время накопления энергии нормируется).

На рис. 1 изображена принципиальная схема бесконтактной транзисторной системы зажигания с магнитоэлектрическим индукционным датчиком, который представляет собой однофазный генератор сменного тока с ротором на постоянных магнитах, число пар полюсов которого отвечает числу цилиндров двигателя. К такой БТСЗ входят также высоковольтный датчик-распределитель 2 (датчик и распределитель конструктивно объединены в один агрегат - датчик-распределитель), катушка зажигания 4 , транзисторный коммутатор 3, свечи зажигания 1 и другие элементы.

Датчики-распределители БТСЗ (рис. 2 ) изготавливают на базе традиционных распределителей, в которых контакты прерывателя заменены бесконтактным датчиком. Поэтому целесообразно рассмотреть лишь особенности их конструкции.

В корпусе 3 на подшипнике 15 установлен статор 13 магнитоэлектрического датчика импульсов. Ротор напрессован на латунную втулку 12 , которая своей подковоподобной пластиной соединена с центробежным регулятором 16 угла опережения зажигания. Статор имеет обмотки 23 и две стальные пластины - 22 и 24 . Один конец обмотки соединен с выводом 5 датчика-распределителя.

Ротор состоит из кольцевого постоянного магнита 26 и двух клювоподобных стальных наконечников 25 и 27 , размещенных с обоих торцов постоянного магнита. Один наконечник имеет северный полюс, второй - южный. Зубцы наконечника с северным полюсом входят во впадины между зубцами южного полюса.

Для правильной установки полюсных наконечников 25 и 27 на втулку 12 в каждом наконечнике есть шип, а на втулке 12 - паз.

Рис. 1 - Принципиальная схема бесконтактной транзисторной системы зажигания с индукционным датчиком:

1 - свечи зажигания; 2 - датчик-распределитель; 3 - коммутатор; 4 - катушка зажигания

Для установки зажигания на статоре и роторе нанесенные метки 20 , которые совмещают при положении поршня первого цилиндра двигателя в ВМТ конца такта сжатия.

Датчики-распределители для 6- и 8-цилиндровых двигателей отличаются лишь числом пар полюсов статора и ротора и соответствующим числом высоковольтных выводов на крышке.

В датчике-распределителе автомобилей типа ГАЗ, УАЗ и других центробежный регулятор установлен на бронзовые втулке выше статора и ротора датчика, который снижает срабатывание подшипников и облегчает регулировку центробежного регулятора угла опережения зажигания.

Во время вращения ротора датчика напряжение, которое развивается им, подается на вход транзисторного коммутатора, который коммутирует ток в первичной обмотке катушки зажигания, обеспечивает накопление энергии в ней и возникновение высокого напряжения во вторичной обмотке в момент искрообразования соответственно углу опережения зажигания.

Рис. 2 - Датчик-распределитель системы зажигания с магнитоэлектрическим датчиком:

1 - муфта распределителя; 2 - опорная пластина; 3- корпус распределителя; 4 - масленка; 5 - вывод; 6 - вакуумный регулятор; 7 - крышка распределителя; 8 - центральный угольный электрод с пружиной; 9 - внешний контакт ротора; 10 - центральный контакт ротора; 11 - ротор; 12, 19 - втулки; 13 - статор магнитоэлектрического датчика; 14 - регулировочные шайбы; 15, 17 - подшипники; 16 - центробежный регулятор опережения зажигания; 18 - валик распределителя; 20 - метки; 21 - ротор датчика; 22, 24 - пластины; 23 - обмотка; 25, 27 - полюсные наконечники; 26 - кольцевой постоянный магнит

В случае неисправности магнитоэлектрического датчика или транзисторного коммутатора применяют резервную систему зажигания , в состав которой входят аварийный вибратор РС331 (51.3747), индукционная катушка и распределитель высокого напряжения . Во время работы вибратор с определенной частотой беспрерывно размыкает круг питания первичной обмотки индукционной катушки, которая в этом случае работает в режиме беспрерывного искрообразования.

Вибратор - это электромагнитный прерыватель с контактами, заблокированными конденсаторами С7 и С8 (см. рис. 6 ). Ток от аккумуляторной батареи через выключатель S1 , дополнительный резистор СЕ326 , соединение ВК-12 и клемму ВК проходит через первичную обмотку индукционной катушки и соединение КЗ , обмотку электромагнита вибратора и дальше на корпус и клемму "-" аккумуляторной батареи. Сердечник электромагнита намагничивается, якорек реле притягивается к сердечнику, размыкая при этом контакты и круг питания. Намагничивание сердечника исчезает, и якорек обратной пружиной возвращается в исходное положение, замыкая контакты.

Во время размыкания контактов вибратора одновременно исчезает ток в первичной обмотке индукционной катушки. В процессе спадания магнитного потока во вторичной обмотке возбуждается ток высокого напряжения, который вызывает искрообразование в свече зажигания. Потом процесс повторяется. Частота вибрации контактов составляет 250- 400 Гц.

Для включения резервной системы зажигания отсоединяют провод от клеммы КЗ транзисторного коммутатора, соединяют его с выводом вибратора и при включении зажигания сразу включают стартер. Если пуск двигателя не состоялся, выключают включатель зажигания, иначе импульсы тока высокого напряжения прожгут крышку датчика-распределителя.

Итак, резервная система зажигания имеет кратковременное действие, ее ресурс представляет не более чем 30 ч, и пользуются ею лишь для того, чтобы добраться к месту технического обслуживания. Кроме того, во время работы резервной системы не работают центробежный и вакуумный регуляторы, а значит, двигатель работает с не регулированным моментом зажигания, которое приводит к неравномерности работы двигателя и перерасхода топлива.

В случае применения БТСЗ с датчиком Холла время накопления энергии в катушке зажигания остается постоянным независимо от частоты вращения коленчатого вала. Энергия искры здесь в 3-4 разы выше, чем в КСЗ. Коммутатор такой системы довольно сложный (включает микросхему, силовой транзистор, несколько резисторов, стабилитроны и конденсаторы) и нуждается в осторожности в процессе эксплуатации. В частности, отсоединение провода от свечи может привести к пробою коммутатора или распределителя.

Магнитоэлектрические датчики Холла начали применять довольно широко еще в начале 70-х годов двадцатого столетия. Они характеризуются довольно высокой надежностью, долговечностью и малыми габаритами. Недостатками таких датчиков является постоянное потребление энергии и сравнительно высокая стоимость.

Принцип действия датчика Холла заключается в том, что когда на полупроводник, по которому проходит ток, подействовать магнитным полем, то в нем возникает поперечная разность потенциалов (ЭДС Холла). Такая ЭДС может иметь напряжение лишь на 3 В меньше, чем напряжение питания.

Рассмотрим полупроводниковую пластину размером 5x5 мм (рис. 3, а ). Если по пластине между двумя параллельными сторонами пропустить ток и одновременно подвести к ней постоянный магнит, а к двум другим сторонам квадрата присоединить провода, то получим генератор Холла (см. рис. 3, б ). Если между магнитом и полупроводником разместить подвижный экран с прорезами, то будем иметь импульсный генератор Холла (см. рис. 3, в ).

Подобные системы устанавливают на автомобилях ВАЗ-2108, ВАЗ-2109, ЗАС-1102 "Таврия" и др. Они выполнены по блоково-модульному принципу.

На рис. 4 приведена схема бесконтактной системы зажигания, которую устанавливают на двигателе Мемз-245 автомобилей ЗАС-1102 "Таврия". Она состоит из катушки зажигания 6 типа 53.9705 , коммутатора 5 типа 36620.3704 , датчика-распределителя 4 типа 53.013706 , свечей зажигания 3 типа А17ДВ-10 или А17ДВР и источника питания 7 , которое включается выключателем 1 .

В датчик-распределитель входят датчик Холла, выполненный в виде функционально законченного узла с чувствительным элементом, постоянным магнитом, усилителем и коммутатором. Здесь также смонтированы центробежный и вакуумный регуляторы угла опережения зажигания, октан-корректор и распределитель тока высокого напряжения.

Рис. 3- Принцип действия импульсного генератора Холла: а - нет магнитного поля и по полупроводнику проходит ток питания в направлении АВ; б - под действием магнитного поля Н появляется ЭДС Холла - EF; в - датчик Холла

Датчик Холла через специальный разъем 2 проводами низкого напряжения соединен с коммутатором, который, в свою очередь, подключен к источнику тока и катушки зажигания.

При замкнутом выключателе 1 и вращении валика датчика-распределителя на выходе датчика Холла возникают импульсы напряжения, которые из контакта 2 разъема поступают на контакт 6 коммутатора и руководят его работой, осуществляя подачу и прерывание тока в первичном круге катушки зажигания.

Рис. 4 - Схема бесконтактной системы зажигания автомобильного двигателя Мемз-245:

1 - выключатель зажигания; 2 - разъем; 3 - свечи зажигания; 4 - распределитель; 5 - коммутатор; 6 - катушка зажигания; 7 - источник питания

В отличие от прежде рассмотренных систем зажигания, управляющие импульсы напряжения здесь формируются в датчике, который кроме гальваномагнитного элемента Холла имеет усилитель и компаратор и выполнен в виде функционально и конструктивно завершенного узла. Он выдает полностью сформированный сигнал, параметры которого не зависят от частоты вращения, условий и продолжительности эксплуатации, обеспечивает стабильные характеристики искрообразования

Такая система зажигания является системой высокой энергии. В ней применяют катушку зажигания с уменьшенной индуктивностью и активным сопротивлением первичной обмотки 0,45 ± 0,05 Ом, что дает возможность увеличить ток размыкания до 8-9 А, повысить уровень накопительской энергии и скорость роста импульса высокого напряжения до 700 В/мкс.

Тем не менее, по этим причинам на коммутатор возлагают дополнительные функции, среди которых: ограничение тока в первичном круге катушки при низкой частоте вращения вала двигателя; отключение катушки при неработающем двигателе; регулирование времени накопления энергии в катушке в зависимости от режима работы двигателя, который существенным образом снижает надежность работы коммутатора.

На рис. 5 изображена конструкция 4-х искрового датчика-распределителя 40.3706, который имеет вакуумный и центробежный регуляторы угла опережения зажигания, принцип действия которых и конструкция подобны прежде рассмотренного распределителя БТСЗ с магнитоэлектрическим датчиком импульсов.

Рис. 5 - Датчик-распределитель 40.3706 автомобилей ВАЗ-2108, ВАЗ-2109 системы зажигания с датчиком Холла:

1 - муфта; 2 - валик; 3 - маслозащитное кольцо; 4 - сальник; 5 - корпус распределителя; 6 - втулка; 7 - подшипник; 8 - недвижимая пластина; 9 - изоляционная прокладка; 10 - крышка; 11 - ротор; 12 - винт; 13 - датчик Холла; 14 - экран; 15 - втулка крепления экрана; 16 - центробежный автомат; 17 - штекерное соединение; 18 - вакуумный автомат

Датчик 13 - бесконтактный электронный, в котором используется эффект Холла. Он состоит из постоянного магнита, полупроводниковой пластины и интегральной микросхемы. Между полупроводниковой пластиной и магнитом есть зазор, сквозь который проходит стальной экран 14 с четырьмя прорезами (по числу цилиндров). Когда в зазоре находится прорез экрана, то магнитное поле действует на полупроводниковую пластину и на ней возникает разность потенциалов, которая превращается в микросхеме на сигнал на выходе датчика. Во время прохождения сквозь зазор стального экрана магнитное поле замыкается через него и не действует на полупроводниковую пластину.

Стальной экран соединен с валиком датчика-распределителя, и во время его вращения происходит импульсное действие магнитного поля на полупроводниковую пластину, а на выходе датчика формируются отрицательные импульсы напряжения определенной величины. Когда экран находится в зазоре датчика, то напряжение на выходе Uмах меньше напряжения питания приблизительно на 3 В. Если в зазор попадает прорез, то Umin< 0,4 В. Отношение периода Т к продолжительности импульса Ti равняется 3. Напряжение питания датчика 8-14 В подается по проводам от коммутатора через клеммы штекерного соединение 17. На эту самую колодку выводит сигнал из выхода датчика и идет дальше на вход коммутатора.

Центробежный регулятор угла опережения зажигания 16 закреплен на валике 2 . К втулке ведомой пластины центробежного автомата приклепан экран 14 . Таким образом, ведомая пластина составляет одно целое с экраном и они могут вращаться на валике в определенных границах.

Применение БТСЗ имеет важные преимущества , а именно:

Контакты прерывателя не обгорают (как в КСЗ) и не загрязняются (как в КТСЗ);

Нет необходимости продолжительное время восстанавливать момент зажигания, контролировать и регулировать угол запертого (разомкнутого) состояния контактов, в результате двигатель не теряет мощности по этим причинам;

Не нарушается равномерность распределения искровых импульсов по цилиндрам, поскольку из-за отсутствия контактов нет битья и вибрации их, а соответственно, и ротора распределителя;

Повышенная энергия разряда на свече в БТСЗ надежно обеспечивает зажигание рабочей смеси за разных режимов работы двигателя, который особенно эффективно во время разгона автомобиля, когда обедненность смеси не полностью компенсируется даже ускоряющим насосом.

Эффективное зажигание приблизительно на 20% снижает содержимое CO в отработанных газах и на 5% - расход топлива; обеспечивает надежный пуск холодного двигателя при низких температурах и в случае спада напряжения питания даже до 6 В.

Бесконтактные транзисторные системы зажигания могут быть установлены на автомобилях с классической системой зажигания (КСЗ). В этом случае вместо прерывателя-распределителя и катушки зажигания устанавливают три новых прибора: датчик-распределитель, другую индукционную катушку и коммутатор.

Электрическая схема бесконтактной системы зажигания с магнитоэлектрическим датчиком изображена на рис. 6 .

Эта система работает так . При включенном зажигании и неподвижном роторе датчика электрические импульсы в его обмотке не возбуждаются. При этом транзистор VT1 закрыт, его база и эмиттер имеют одинаковый потенциал. В таком случае потенциал базы транзистора VT2 несколько выше, чем эмиттера, и через переход база-эмиттер проходит ток управления по кругу: аккумуляторная батарея, выключатель S1, дополнительный резистор СЕ326 , соединение ВК12 , диод VD7 , резистор R6 , диод VD3 VT2 , резисторы R3 , R9 и направляется на корпус, т. е. к "минусовой" клемме аккумуляторной батареи.

Тогда транзистор VT2 приоткрывается и через его переход коллектор-эмиттер проходит ток управления транзистора VT3 , что приводит к открыванию транзистора VT3 , возникновение тока управления и открывание исходного транзистора VT4 . Через открытый транзистора VT4 ток поступает в первичную обмотку индукционной катушки, создавая магнитный поток. При этом ток проходит по кругу: клемма "+" аккумуляторной батареи, выключатель S1 , резистор СЕ326 , соединение ВК12 , первичная обмотка индукционной катушки, диод VD8 , переход коллектор-эмиттер транзистора VT4 , корпус, клемма "-" аккумуляторной батареи. Итак, схема подготовлена к формированию импульсов высокого напряжения.

Рис. 6 - Схема бесконтактной транзисторной системы зажигания GB

В случае вращения коленчатого вала двигателя стартером, и как следствие ротора датчика, в обмотке возбуждаются импульсы переменного тока синусоидальной формы, который через диод VD1 и резистор R1 , переход база-эмиттер транзистора VT1 и корпус поступает во второй конец обмотки датчика. При достижении наибольшего значения положительной полуволны синусоидального тока транзистор VT1 приоткрывается и шунтирует переход база-эмиттер транзистора VT2 , соединяя его базу через диод VD3 с клеммой "-" батареи. Транзистор VT2 закрывается, как следствие закрываются и транзисторы VT3 и VT4 , переходя в режим отсечения, т. е. ток через них не проходит. При этом ток в первичной обмотке индукционной катушки резко уменьшается, а ниспадающий магнитный поток возбуждает в витках вторичной обмотки ток высокого напряжения, который распределяется распределителем по свечам зажигания.

Одновременно ниспадающий магнитный поток возбуждает ЭДС самоиндукции в первичной обмотке, которая может привести к пробою транзисторов. Во избежание этого, параллельно транзистору VT4 включен стабилитрон VD9 , что обеспечивает зарядку конденсаторов С3 и С6 . При этом в контуре, который состоит из первичной обмотки индукционной катушки и конденсатора СЗ , возникают затухающие колебания, которые возбуждают во вторичной обмотке серию импульсов высокого напряжения, и как следствие поочередно еще несколько последовательных искр (до 10 и больше) в свече зажигания. Именно повышение интенсивности искрообразования есть одно из главных преимуществ электронных схем зажигания, которое повышает возможность быстрого пуска двигателя, особенно в холодную пору года. Положительный период ЭДС самоиндукции через диод VD8 по кругу обратной связи (резистора R2 и конденсатора С1 ) поступает на базу VT1 , ускоряя его открывание. Так заканчивается один цикл работы схемы, и как следствие возникновение искры в одной свече зажигания.

Для очередного срабатывания схемы нужно открыть транзистор VT4 и пропустить ток через первичную обмотку индукционной катушки. Это осуществляется так: отрицательная полуволна синусоидального тока датчика замыкает входной транзистор VT1 , в этом случае транзистор VT2 приоткрывается, а вместе с ним приоткрываются и транзисторы VT3 и VT4 , итак, ток снова начинает поступать в первичную обмотку индукционной катушки. Дальше процесс повторяется.

При незначительной частоте вращения коленчатого вала двигателя стартером частота вращения ротора датчика и, значит частота импульсов управления незначительные, что увеличивает продолжительность положительных импульсов. В результате конденсатор С1 заряжается и разряжается несколько раз, а транзисторы VT1 , VT2 , VT3 , VT4 переходят из открытого состояния в закрытый. При этом магнитный поток первичной обмотки индукционной катушки возникает и исчезает несколько раз, который и вызывает серию импульсов тока высокого напряжения и искр в свече зажигания.

С увеличением частоты вращения коленчатого вала двигателя до 600 мин-1 и выше увеличивается частота вращения ротора датчика и, значит количество импульсов управления, продолжительность которых соответственно уменьшается. Одновременно уменьшается частота зарядки и разрядки конденсатора С1 в круге обратной связи, колеблющийся процесс в контуре первичной обмотки индукционной катушки и конденсатора С3 прекращается и в схеме возбуждается лишь один импульс тока высокого напряжения, а в свече зажигания возникает лишь одна искра.

Стабилитроны VD5 и VD6 защищают транзисторный коммутатор от возможного превышения напряжения в системе электропитания машины. Так, в случае повышения напряжения генератора до 17-18 В (вместо 14 В) через стабилитроны VD5 и VD6 ток проходит в обратном направлении, от клеммы "+" генератора через резистор R5 на переход база-эмиттер транзистора VT1 . При этом последний приоткрывается и обуславливает закрытие транзисторов VT2 , VT3 и VT4 , что приводит к нарушению работы системы зажигания и свидетельствует о необходимости регулирования напряжения генератора.

Опережение зажигания осуществляется рычажками центробежного регулятора 16 (см. рис. 2), которые при повышении частоты вращения валика датчика-распределителя через пластину прокручивают ротор датчика в сторону вращения. При этом управляющий импульс подается на транзисторный коммутатор несколько раньше и угол опережения зажигания также увеличивается. Вакуумный регулятор 6 действует при изменении давления во всасывательном трубопроводе двигателя и мембрана, перемещаясь в ту или другую сторону, через тягу поворачивает статор 13 относительно ротора, соответственно изменяя угол опережения зажигания.

Крышка 7 распределителя, в частности данного распределителя, имеет девять выводов, из которых восемь соединены проводами высокого напряжения со свечами зажигания, а центральный - через угольный подвижный электрод типа ДСНК - с контактной пластиной ротора 11 . Угольный электрод имеет активное сопротивление 6-15 кОм и, кроме пропуска тока высокого напряжения, уменьшает радиопомехи от системы зажигания. Итак, ротор, вращаясь, распределяет импульсы высокого напряжения по неподвижным контактам высоковольтных выводов крышки, соединенных с свечами в порядке работы цилиндров двигателя.

Применение агрегатов в разных системах зажигание приведено в табл. 1.

Применение агрегатов систем зажигания

систем зажигания

Прерыватель или датчик-

Электронный

Дополнительный

автомобиля

распределитель

зажигание

коммутатор

резистор

Контактные системы зажигания

ГАЗ-24, УАЗ-

452ВС, -469БМ

"Москвич-2140",

ІЖ-2125, -2715

Контактнотранзисторные системы зажигания

"Урал-375ДМ"

ПАЗ, КАвЗ

Бесконтактные электронные системы зажигания

ВАЗ-2108, -2109

Микропроцессорные системы зажигания

ВАЗ-21083-02,

"Москвич-2141"

*1 - экранированное выполнение; *2 - в комплекте с аварийным вибратором РС331; *3 - в комплекте с аварийным вибратором 51.3734-01; *4 - коммутатор

Все рассмотренные схемы систем зажигания имеют режим одноразового искрообразования, продолжительность которого даже в лучших образцах достигает 2,5-3,0 мс. Увеличить его или ввести режим многоразового искрообразования без дальнейшего осложнения схемы практически невозможно. Это побуждает конструкторов к поиску других функциональных и конструктивных решений, включение в устройстве управления микропроцессоров и микроконтроллеров для автоматической установки оптимального момента зажигания, применение блоково-модульного принципа построения систем с унификацией функциональных модулей и взаимозаменяемостью.

Контрольные вопросы.

1. Каким образом устранили недостатки КТСЗ, применив БТСЗ.

2. Назовите типы генераторных датчиков в БТСЗ?

3. Из чего состоит БТСЗ с магнитоэлектрическим датчиком?

4. Из чего состоит магнитоэлектрический датчик?

5. Принцип работы магнитоэлектрического датчика.

6. Какие регулировки предусмотрены в датчике-распределителе БТСЗ для установки угла опережения зажигания?

7. Что применяют в БТСЗ в случае неисправности магнитоэлектрического датчика и транзисторного коммутатора?

8. Из чего состоит резервная система зажигания?

9. Принцип работы резервной системы зажигания.

10. Как включают в работу резервную систему зажигания?

11. На чем основан принцип действия датчика Холла?

12. Из чего состоит датчик Холла?

13. Составляющие БТСЗ с датчиком Холла.

14. Преимущества применения БТСЗ.

1. Описать возможные варианты БТСЗ.

2. Зарисовать схему БТСЗ с магнитоэлектрическим датчиком (рис. 1), ее составляющие.

3. Описать устройство и работу магнитоэлектрического датчика в БТСЗ.

4. Описать назначение, подсоединение, составляющие и работу резервной системы зажигания.

5. Описать принцип действии и конструкцию датчика Холла.

Список литературы.

1. А. М. Гуревич и др. Конструкция тракторов и автомобилей. М.: Агропромиздат, 1989. – с. 309-310

2. В. А. Родичев. Тракторы и автомобили. М.: Колос, 1998. – с. 284-286, с. 301-304.

3. М. Ф. Бойко. Трактори та автомобілі. Єлектрообладнання. 2 частина. Київ. Вища освіта, 2001 – с. 92-105.

Система зажигания современного авто отличается достаточно сложным устройством, и предназначена для генерации высокого напряжения, необходимого для мгновенного сгорания топливной смеси. В настоящее время основная часть машин штатно оснащается бесконтактной системой зажигания, которая имеет выраженные преимущества перед контактной. В том случае, если авто работает с контактной системой, имеется возможность собственноручной замены ее на более совершенную бесконтактную.

Компоновка системы и принцип ее функционирования

Любая бесконтактная система зажигания состоит из множества конструктивных элементов, в числе основных имеет смысл отметить следующие из них:

  • катушка;
  • регуляторы опережения - центробежный и вакуумный;
  • коммутатор;
  • датчик импульсов;
  • бронепровода и свечи;

Принцип работы бесконтактной системы зажигания достаточно прост. С поворотом ключа зажигания начинается поступление тока на монтажный блок, где происходит его распределение между катушкой, стартером, и остальными имеющимися в авто потребителями. Начавший движение коленвал заставляет датчик импульсов посылать сигналы на транзисторный коммутатор. Его задача заключается в остановке подачи тока на первичные обмотки катушки бесконтактной системы зажигания, что позволяет получить на вторичных витках ток высокого напряжения.

Он является пригодным для генерирования сильной искры свечами, к которым ток поступает от распределителя зажигания. Каждая свеча получает ток лишь в определенный момент, соответствующий текущему положению коленвала. Этот процесс контролируется регуляторами опережения зажигания, которые анализируют не только частоту вращения коленвала, но и степень нагрузки на двигатель. При оптимально отрегулированной бесконтактной системе зажигания, искра в свечах образуется достаточной мощности для быстрого воспламенения смеси и ее полного сгорания.

Преимущества - заметные и очевидные

По сравнению с распространенной ранее контактной, бесконтактная система зажигания имеет массу плюсов - они делают ее более приемлемой в современных условиях, несмотря на то, что устройство бесконтактной системы зажигания отличается большей сложностью. Среди основных преимуществ необходимо выделить следующие:


Кроме этого, увеличенная энергия разряда существенно улучшает процесс воспламенения рабочей смеси. Что также благоприятно сказывается на работе силовой установки. Так, отмечается снижение расхода топлива и повышение мощности двигателя. Значительно улучшается и динамика разгона автомобиля, когда фиксируемое некоторое обеднение смеси делает ее быстрое воспламенение затрудненным. Отсутствие подвижных элементов в прерывателе упрощает обслуживание бесконтактной системы зажигания и способствует более адекватному распределению искры.

Неисправности системы - можно ли устранить их самостоятельно

Схема бесконтактной системы зажигания достаточно сложна, особенно для малоопытного водителя, тем не менее, найти и устранить некоторые поломки бесконтактной системы зажигания реально своими силами. При невозможности завести автомобиль ключом зажигания, первое, на что следует обратить внимание - на стрелку вольтметра, встроенного в панель приборов.

При включении зажигания она должна занять среднее положение на шкале, а через некоторое время немного отклониться вправо - это говорит об исправности коммутатора. При отсутствии встроенного прибора, его может заменить контрольная лампа/вольтметр. Контрольный прибор присоединяется к массе и клемме «1» коммутатора. Движение стрелки вольтметра или горение лампы говорит о рабочем коммутаторе. Если при рабочем коммутаторе бесконтактная система зажигания не в состоянии запустить двигатель, необходимо проверить систему на искру.

Первоначально для этого извлекается центральный провод из распределителя и фиксируется примерно в 10 мм от массы. При включении стартера должна появиться искра. При проведении тестирования в одиночку вызвать образование искры удобнее, вращая бегунок, сняв для этого крышку распределителя. Если хода бегунка оказывается недостаточно, помогает поворот коленвала. Причиной нерабочей системы могут оказаться и бронепровода, ведущие к свечам, и сами свечи. При затруднениях с самостоятельной диагностикой, имеет смысл обратиться к специалистам. О том, как самостоятельно смонтировать такую систему на свой автомобиль, демонстрируется на видео .

Пары бензина, сгорая в цилиндрах двигателя, дают энергию для движения автомобиля. Сам по себе процесс сгорания не начинается, его инициализацию осуществляет система зажигания. С самого начала появления бензиновых моторов это производилось механическим способом. С течением времени у него было выявлено множество недостатков и замечаний в работе, в том числе сложность в эксплуатации. Появление электронных компонентов (транзисторов, тиристоров и т.д.) позволило преодолеть эти недостатки, т.к. была создана бесконтактная система зажигания (БСЗ).

Для чего оно нужно и каким бывает

Горючая смесь в цилиндрах двигателя должна воспламеняться в конце второго такта – сжатия, когда поршень располагается в верхнем положении. Здесь смесь находится под самым сильным давлением, и при рабочем ходе поршня будет совершена максимальная работа. Именно в этот момент на свече должна появиться искра, которая и воспламенит горючую смесь.
Для этого служит зажигание. Было разработано несколько различных вариантов, но на автомобиле обычно используется батарейное (контактное) зажигание.

Контактное

Как оно работает, должно быть понятно из описания к приведенному ниже рисунку.

Когда ключ вставлен в замок (Contactor), ток протекает от АКБ (Battery) через бобину или катушку зажигания (Ignition Coil) и контакты прерывателя (Contakt breaker). Этот ток образует магнитное поле, в которое попадает вторичная обмотка Ignition Coil. Когда контакты прерывателя размыкаются, через первичную обмотку прекращается протекание тока, во вторичной обмотке благодаря эффекту самоиндукции создается высоковольтное напряжение, подаваемое через распределитель (Distributor) на нужную свечу (spark plugs).

При поступлении этого напряжения на свечу, образуется искра, от чего воспламеняется топливная смесь . Вот примерно так работает контактная (батарейная) система зажигания (КСЗ). В том виде, как описано выше, она была создана еще для первых автомобилей. Здесь приведен только общий принцип ее работы. На самом деле, даже у старых машин, например, «классика» ВАЗ, дополнительно используется такие устройства, как вакуумный и центробежный регуляторы, дающие возможность изменять момент генерации искры в зависимости от скорости движения и нагрузки на автомобиль.

Недостатки подобной системы

Несмотря на все дополнительные устройства, описанная система зажигания, установленная на автомашины ВАЗ 2107,2016, имеет довольно серьезные недостатки. Из них следует отметить:

  1. Протекание значительного по величине тока через прерыватель, что вызывает подгорание его контактов, следствием чего будет увеличение между ними зазора. Из-за этого изменяется угол опережения зажигания (УОЗ), ухудшается пуск двигателя, снижается его мощность и экономичность. Кроме того, другие значения УОЗ могут вызвать перебои в работе мотора при повышенных оборотах (высокой скорости). Чтобы избежать этого, необходимо проводить регулярное техническое обслуживание системы.
  2. У катушки первичная обмотка входит в цепь, содержащую контакты, ограничивающие величину протекающего через них тока, что сказывается на его значении во вторичной цепи и приводит к ограничению энергии искры.
  3. При высокой скорости движения возникает так называемый «дребезг» контактов, что означает их неоднократное размыкание-замыкание, что опять же отрицательно сказывается на работе зажигания.

Тем не менее, из-за своей дешевизны и простоты КСЗ использовалась долгое время, в частности, на машинах семейства ВАЗ 2107, 2106.

Дальнейшее развитие системы зажигания

Вышеописанные трудности удалось решить с широким распространением полупроводниковых элементов, таких как транзисторы и тиристоры. Итогом их применения стала так называемая бесконтактная система зажигания. Однако ее внедрение на отечественные автомобили произошло не сразу, сначала на ВАЗ 2107, 2106 было использовано так называемое контактно-транзисторное зажигание.

Контактно-транзисторное зажигание

Функциональную схему такой системы можно увидеть ниже.


Из рисунка становится понятно, что механический прерыватель управляет не накопителем энергии, в роли которого выступает катушка зажигания, а электронным коммутатором. Такое решение облегчило режимы работы прерывателя, повысило надежность и качество работы всей системы. Кроме того, это позволило модернизировать многочисленные автомашины ВАЗ 2107, 2106, находящиеся в эксплуатации, без значительных затрат со стороны их владельцев.

Бесконтактная система зажигания

Следующим этапом в развитии системы стало исключение механического прерывателя. Бесконтактная система зажигания такого типа показана на рисунке.


Впервые в отечественном автомобилестроении подобная система была внедрена на автомобилях ВАЗ девятого семейства, хотя потом с ней серийно выпускались и ВАЗ 2107, 2106.
Такая бесконтактная система подразумевает использование коммутатора для управления катушкой зажигания и предусматривает работу коммутатора с сигналами, получаемыми от бесконтактного датчика. Последние могут быть трех типов:

  • индуктивный;
  • датчик Холла (магнитный);
  • оптический.

В отечественных машинах семейства ВАЗ 2107, 2106 используется датчик Холла.


Работа такого устройства мало чем отличается от работы обычной КСЗ. Вращение вала двигателя бесконтактный датчик преобразует в импульсы, поступающие на коммутатор напряжения. Последний обеспечивает импульсное прохождение тока через бобину. Благодаря этому во вторичной цепи возникает высоковольтное напряжение, поступающее через распределитель на свечи зажигания, между электродами возникает искра и от нее воспламеняется горючая смесь.
В процессе работы происходит регулирование УОЗ. Для этого используется центробежный (при изменении оборотов двигателя) и вакуумный (при изменении нагрузки) регуляторы.

Система зажигания, установленная на автомобиле, предназначена для своевременного воспламенения топливной смеси. Первоначально применялась контактная, но затем по мере развития электроники появилась бесконтактная система зажигания. Конечно, сейчас используются гораздо более сложные, микропроцессорные системы, но и БСЗ сыграла в свое время значительную роль в повышении качества и надежности автомобиля.

Некоторые владельцы классических автомобилей семейства ВАЗ 2101-07 постоянно стараются улучшить, доработать, добавить электроники и удобства. Одной из таких доработок — это установка бесконтактного электронного зажигания.

Какое зажигание лучше: бесконтактное или контактное?

Контактные зажигания устарели, но все же используются в старых автомобилях. На заднеприводных моделях Ваз бесконтактное впервые установили на 2107.

Разберем отличия контактного от бесконтактного зажигания:

Преимущества бесконтактного зажигания:

  • так как в распределителе нет контактной группы, искрообразование происходит четко;
  • высокий срок эксплуатации катушки;
  • при средних оборотах мотора БСЗ создает искру в 4 раза мощнее, чем контактное зажигание. Это особенно полезно, если свечи загрязнились, так как искра все равно будет вырабатываться;
  • отлично выполняет свои функции даже в мороз;
  • если напряжение в электросети низкое, то искрообразование все равно будет происходить;
  • благодаря мощной стабильной искре свечей, воспламенение топливно-воздушной смеси происходит быстрее;
  • если установлен БСЗ, то уменьшается расход топлива и повышается мощность мотора;
  • улучшается динамика разгона автомобиля;
  • БСЗ легче обслуживать, потому что в устройстве нет подвижных деталей.

Устройство бесконтактной системы зажигания

Устройство БСЗ для карбюраторных двигателей состоит из:

Электронная и бесконтактная система зажигания — это одно и то же устройство. Получило название из-за отсутствия контактной группы в устройстве системы. В тоже есть, которая является частой причиной отказа запуска двигателя.

Устройство трамблера:

  • корпус;
  • кулачок;
  • подвижный контакт (бегунок).

Схемы подключения электронного зажигания: Ваз 2101-Ваз 2107

Схема бесконтактной системы зажигания для автомобилей ВАЗ:

1 — коммутатор; 2 — катушка зажигания (бобина); 3 — трамблер; 4 — ключ замка зажигания; 5 — датчик Холла.

Как работает бесконтактное зажигание

Последовательность и принцип работы БСЗ такой:

  1. Водитель поворачивает ключ замка зажигания.
  2. Цепь замкнулась и на первичную обмотку катушки зажигания подается постоянное напряжение от аккумулятора. Первичная обмотка под напряжением образует вокруг себя магнитное поле.
  3. При запуске стартера, он начинает вращать коленчатый вал ДВС и вращает вал, который находится внутри трамблера вместе с бегунком.
  4. Датчик холла фиксирует как вращается вал трамблера (по выступу на валу) и передает сигнал коммутатору.
  5. Электронный блок отключает поступление напряжения к первичной обмотке по сигналу датчика Холла.
  6. Когда цепь подачи напряжения прерывается, в этот момент появляется импульс высокого напряжения до 24 килоВольт во вторичной обмотке катушки, которое передается по толстому проводу на бегунок (подвижная часть трамблера).
  7. На крыше встроены неподвижные контакты. Бегунок бросает импульс на один из этих неподвижных контактов. От контакта, который получил импульс высокого напряжения, оно передается по высоковольтным проводам на свечи зажигания тех цилиндров, в которых поршни находятся в верхних мертвых точках.
  8. Во время подачи напряжения на свечу, в рабочей камере сгорания цилиндра уже есть топливо и воздух в сжатом состоянии для воспламенения.
  9. Бегунок трамблера вращается от искру всем свечам по определенной схеме последовательности: 1-3-4-2. В зависимости, от того как установить бегунок, зависит вся работа системы, мы научились в другом материале.
  10. Мотор автомобиля заводится.

Бывают взаимозаменяемы, а бывают и не ремонтнопригодны.

Схема устаревшей системы зажигания ВАЗ (без коммутатора)

1 — трамблер (распределитель); 2 — прерыватель; 3 — конденсатор; 4 — катушка зажигания (бобина); 5 — АКБ; 6 — замок зажигания; 7 — искры свечей зажигания.

Такая схема в системах, где нет коммутатора. Разрыв цепи происходит механически с помощью прерывателя.

Минусы контактного зажигания:

  1. Подгорают и окисляются контакты из-за чего мощность создания искры уменьшается.
  2. Есть быстроизнашивающиеся детали, которые рекомендуется менять через каждый 20 тыс. км. пробега.
  3. Преобразовываемая мощность в контактных системах до 18 килоВольт. У электронных или бесконтактных — до 24 килоВольт.

Минусы бесконтактного зажигания:


Выбор БСЗ

При покупке нового БСЗ следует обратить внимание на наличие составляющих всего комплекта. В заводском комплекте должно быть:

    1. Трамблер (главный распределитель). Шифр для двигателей 1.5 и 1.6 — 38.37061. Для двигателей 1.3 номер будет 38.3706–01, потому что высота блока 1.3 мотора ниже, а вал трамблера короче.
    2. Коммутатор с номером 36.3734 или 3620.3734.
    3. Высоковольтная катушка (бобина). Маркировка 27.3705
    4. Тонкие провода с разъемами.

По внешнему виду очень похож комплект БСЗ для машины ВАЗ 2121 «НИВА». Но лучше не ставить этот комплект на Ваз 2107 или на Ваз 2106, потому как характеристики «шестерки» и «семерки» сильно отличаются от «нивы». Марки трамблера для Нивы: 3810.3706 или 38.3706–10.

Лучшим производителем электронной системы зажигания для старых авто ВАЗ является компания «СОАТЭ». База производственной мощности находится в городе Старый Оскол. По отзывам автовладельцев классических моделей БСЗ СОАТЭ отличный вариант.

Установка бесконтактного зажигания Ваз 2107, 2106

Чтобы установить БСЗ своими руками, потребуются следующие инструменты:

  • Отвертки (плоские и крестовые);
  • Ключи рожковые на 8, 10, 13 мм;
  • Пассатижи (плоскогубцы);
  • Свечной ключ;
  • Дрель или шуруповерт с диаметром сверла 3-3,5 мм. Придется просверлить два отверстия в кузове, чтобы закрепить коммутатор.
  • Спецключ для вращения коленвала ДВС или обычным рожковым на 30 мм.

Смотровая яма для установки зажигания не потребуется. Вот, собственно, сам порядок действий по снятию старого контактного зажигания:


Порядок монтажа бесконтактного электронного зажигания на Ваз 2106-2107.

  1. Просверлить и прикрепить коммутатор рядом с катушкой. Но, не надо ставить под бачки с жидкостью.
  2. Снять крышку нового трамблера и надеть прокладку.
  3. Установить в посадочное место для трамблера так, чтобы подвижный контакт был напротив начерченной метки на клапанной крышке. Сразу до упора гайку не затягиваем.
  4. Установить новую катушку, где стояла старая. К клеммам бобины надо подсоединить провода от реле замка зажигания, тахометра, коммутатора. Провод от электронного блока под номером 1 подсоединяется к клемме катушки с обозначением «К», провод от 4-го контакта соединяем с клеммой катушки с обозначением «Б».
  5. Проверить зазоры свечей (должно быть 0,8-0,9 мм) и вкрутить по местам.
  6. Защелкнуть крышку трамблера и подсоединить высоковольтные провода (центральный от катушки и 4 провода на свечи). Провода к свечам подсоединяем строго по соответствию обозначениям.
  7. Подсоединить вакуумный шланчик.

После установки в правильной последовательности, запускаем мотор и начинаем настраивать зажигание. Если после установки нового электронного бесконтактного зажигания двигатель не заводится, следует проверить правильность подключения проводов катушки и высоковольтных на свечи. Если провода в норме, то не совмещены метки.

Установка электронного зажигания на видео на классические автомобили ВАЗ 2101-2107.

В этом видео ражжеваны все нюансы.

Как отрегулировать бесконтактное зажигание

Перед настройкой зажигания на автомобилях ВАЗ 2101-2107, надо немного прогреть двигатель, не давая ему заглохнуть.

Отрегулировать можно либо на слух, либо с помощью специального прибора, который называется стробоскоп для установки зажигания.
Стробоскоп — это прибор, с помощью которого даже новичок может правильно выставить зажигание. Подробнее по настройке зажигания страбоскопом смотрите на видео.

В. ГОРКИН, А. ФЕДОРОВ

Тенденции развития современных автомобильных карбюраторных двигателей внутреннего сгорания предполагают повышение удельной мощности, степени сжатия, снижения токсичности выхлопных газов, повышение экономичности и надежности в эксплуатации.

Все это трудно, а подчас и невозможно, обеспечить без применения электроники, в частности, без электронной системы зажигания.

В статье рассмотрена транзисторная бесконтактная система зажигания с накоплением энергии в индуктивности, управляемая параметрическим взаимоиндуктивным датчиком. Такая система должна обеспечивать, по сравнению с тиристорными системами, использующими, как правило, накопление энергии в емкости, лучшее воспламенение рабочей смеси в цилиндрах двигателя на режимах частичных нагрузок за счет большей длительности искрового разряда.

Амплитуда сигнала параметрического датчика не зависит от частоты вращения коленчатого вала двигателя, что позволяет производить установку зажигания так же, как и в классической системе зажигания. Кроме того, конструкция системы зажигания дает возможность изготовления ее радиолюбителями средней квалификации.

Принципиальная схема бесконтактной системы зажигания приведена на рис. 1.

Рис. 1. Принципиальная электрическая схема бесконтактной системы зажигания

Система содержит источник питания - аккумуляторную батарею 1 напряжением 12 В, добавочное сопротивление 2, катушку зажигания 3, параметрический датчик 4, транзисторный коммутатор 5, выключатель зажигания 6, реле стартера 7.

Параметрический датчик импульсов, работающий с генератором, расположен в корпусе распределителя зажигания. Датчик имеет неподвижный Ш-образный ферритовый сердечник, на среднем стержне которого расположена обмотка III, включенная в цепь базы транзистора генератора, а на боковых - обмотки положительной II и отрицательной I обратной связи, включенные в коллекторную цепь транзистора генератора. Обмотки I и II соединены последовательно-встречно, чтобы их суммарный магнитный поток равнялся нулю при разомкнутом сердечнике.

Ротор датчика имеет магнитопроводящие выступы, которыми можно поочередно замыкать средний и один из боковых стержней Ш-образного сердечника.

В состав транзисторного коммутатора входят генератор датчика, формирующая цепь и выходной каскад.

Генератор датчика (транзистор T1) представляет собой блокинг-генератор, работающий в автоколебательном режиме. Ограничительный диод Д1 служит для защиты перехода эмиттер - база транзистора T1, конденсатор С1 фильтрует всплески питающего напряжения.

Формирующая цепь состоит из диодов Д2, Д3, конденсаторов С4, С5, резистора R2. Выходной каскад, собранный на двух кремниевых транзисторах Т2 и Т3, работающих в ключевом режиме, содержит также диоды Д4, Д5 (для ускорения запирания выходного транзистора); диод Д6 (для защиты от инверсного тока); стабилитрон Д7 (для защиты перехода эмиттер - коллектор транзистора Т3 от напряжения самоиндукции катушки зажигания); конденсатор первичной цепи С6, резистор положительной обратной связи R4 и резисторы R3, R5, R6. Напряжение питания подается через добавочное сопротивление.

Система зажигания работает следующим образом.
При замыкании ротором стержней сердечника, на которых находятся обмотки III и I, усиливается отрицательная обратная связь, генератор не работает, и транзистор Т2 закрывается. На базу транзистора Т3 подается положительный потенциал, транзистор открывается, через первичную обмотку катушки зажигания протекает электрический ток, идет процесс накопления энергии в катушке зажигания.

При замыкании ротором стержней сердечника, на которых находятся обмотки III и II, усиливается положительная обратная связь, транзисторный генератор возбуждается и работает с частотой, определяемой в основном индуктивностью обмотки II и емкостью конденсатора С3 (напряжение на коллекторе T1 показано на рис. 2).

Рис. 2. Выходной сигнал генератора датчика.


Положительное напряжение генератора через формирующую цепь подается на базу транзистора Т2, транзистор отпирается. Соответственно выходной транзистор Т3 запирается и прерывает ток в первичной обмотке катушки зажигания. Возникает переходный процесс в двух индуктивно-связанных контурах: один образован первичной обмоткой катушки и первичным конденсатором С6, а другой - вторичной обмоткой катушки и емкостью вторичной цепи. В результате переходного процесса во вторичной цепи создается высокое напряжение, достигающее 25-30 кВ, которое распределителем подается на свечи зажигания в порядке работы цилиндров двигателя. Затем процесс повторяется.

Настройка системы зажигания заключается только в подборе сопротивления резистора R1 по силе тока, потребляемого генератором. Порядок работы следующий:

резистор R1 заменяется переменным с номиналом 15 кОм, последовательно с которым включен ограничительный резистор 1-3 кОм;

между клеммой «+» и клеммой «Д» полностью собранного коммутатора включается миллиамперметр (датчик отключен);

коммутатор подключается к источнику, постоянного напряжения 12 В, причем положительный полюс источника подключается к клемме «+», а отрицательный - к корпусу коммутатора;

регулировкой сопротивления резистора R1 добиваются силы тока, равной 100-120 мА;

переменный резистор R1 заменяется постоянным ближайшего выбранного номинала.

Формирующая цепь и выходной каскад транзисторного коммутатора настройки не требуют. При правильно собранной схеме коммутатор сразу начинает работать.

Конструкция. Неподвижная часть датчика системы зажигания сделана из текстолита, в виде рамки для установки сердечника, Сердечник - из феррита марки 2000 НМ, типоразмер Ш4Х4. Число витков обмоток одинаково и равно 30; намотка производится на каркас из любого изоляционного материала (например, из электротехнического картона, прессшпана и т. д.) проводом ПЭЛ 0,25, каркас надевается на стержень сердечника.

Схема намотки приведена на рис. 3.

Рис. 3. Схема намотки катушек датчика.


Затем производится установка сердечника в текстолитовую рамку и заливка эпоксидной смолой.

Ротор датчика также изготавливается из текстолита и имеет вид цилиндра диаметром 23 и высотой 20 мм. На текстолит надевается магнитопроводящий экран с прорезями. Его конструкция показана на рис. 4.

Рис. 4. Ротор параметрического датчика

Датчик может устанавливаться в распределитель для классической системы зажигания на подвижную пластину прерывателя. В описываемой конструкции в качестве примера приводится датчик-распределитель завода АТЭ имени 60-летия Октября (рис. 5).

Рис. 5. Вид на датчик-распределитель

Зазор между ротором и стержнями сердечника должен быть 0,2-0,5 мм.

В выходном каскаде, кроме указанных на схеме рис. 1 транзисторов КТ801Б и КТ808А, могут использоваться КТ809А и КТ812А.

Элементы транзисторного коммутатора, кроме транзисторов Т1, Т3, диодов Д6, Д7, конденсатора С1 и резистора R3, смонтированы на печатной плате из одностороннего фольгированного стеклотекстолита толщиной 2 мм. Печатная плата изготовлена методом химического травления, причем печатные проводники должны быть максимально возможной ширины при расстояниях между ними не менее 2 мм. Вид на плату со стороны расположения элементов показан на рис. 6.


Корпус транзисторного коммутатора, куда установлена печатная плата, одновременно является радиатором для транзисторов Т1, Т3 и диодов Д6, Д7 (рис. 7).


Площадь поверхности корпуса составляет около 470 см2. Транзисторы Т2, Т3 и диод Д6 необходимо тщательно изолировать от корпуса. Для этого можно использовать слюдяные или фторопластовые прокладки толщиной 0,1 мм.

Соединение элементов, установленных на корпусе, с печатной платой осуществляется любым медным изолированным проводом сечением не менее 0,5 мм2. Транзисторный коммутатор соединяется с остальными элементами системы зажигания с помощью специальной четырехклеммовой колодки от автомобилей «Жигули» ВАЗ. Могут также использоваться и обычные штекерные разъемы, принятые в радиотехнике и рассчитанные на силу тока 8-10 А.

В системе зажигания применена специальная катушка зажигания марки Б116, которая будет выпускаться заводом АТЭ имени 60-летия Октября с 1981 г. для системы зажигания автомобиля «Москвич-2140». Катушка собрана по трансформаторной схеме и имеет повышенный коэффициент трансформации по сравнению с катушками в классической системе зажигания. В таблице приведены основные параметры катушки Б116 и для сравнения катушки марки Б115В, используемой в системе зажигания автомобиля «Москвич-412».

Таблица


Добавочное сопротивление марки СЭ107 изготавливается отдельно от катушки зажигания и состоит из двух секций сопротивлением 0,52 Ом каждая. В момент пуска двигателя одна секция закорачивается. Резисторы намотаны на керамический каркас проводом из константана, мощность рассеяния составляет около 50 Вт.

Бесконтактная система зажигания работоспособна в широком диапазоне температур от -40° С до +80° С, поэтому ее можно располагать в подкапотном пространстве. Установка датчика-распределителя и катушки зажигания производится на местах, предусмотренных для штатной системы зажигания.

Транзисторный коммутатор и добавочное сопротивление могут находиться на брызговике крыла, ближе к вентилятору. Крепление коммутатора и добавочного сопротивления осуществлено винтами диаметром 6 мм.

Монтаж бесконтактной системы зажигания должен быть выполнен тщательно, медным проводом сечением не менее 0,75 мм2. Соединение транзисторного коммутатора, катушки зажигания и датчика с корпусом автомобиля должны обеспечивать хороший контакт.

Общий вид и монтажная схема системы л схема зажигания приведены на рис. 8, 9.

Рис. 8. Общий вид бесконтактной системы зажигания с параметрическим датчиком


Рис. 9. Монтажная схема бесконтактной системы зажигания

Система зажигания выдает «искру» даже при провертывании коленчатого вала двигателя от руки, поэтому установка зажигания на автомобиле по первому цилиндру производится, как и для классической системы, следующим образом. Контрольная лампа включается между клеммой «К» транзисторного коммутатора и «массой». При открытом состоянии выходного транзистора лампа горит тускло. При переходе транзистора в состояние отсечки лампа ярко вспыхивает, что и указывает на момент подачи искры. Зазор в свечах устанавливается в пределах 0,7-0,9 мм.

В эксплуатации бесконтактная система зажигания практически не требует обслуживания. Необходимо только смазывать распределитель в соответствии с инструкцией, а также следить за чистотой клеммных и штекерных соединений.

Проверка исправности бесконтактных систем зажигания на автомобилях аналогична проверке классической системы и может быть выполнена следующим образом. При неработающем двигателе вынимают высоковольтный провод из центрального гнезда распределителя и устанавливают наконечник провода на расстоянии 2- 5 мм от кузова или двигателя автомобиля. Включают выключатель зажигания и провертывают коленчатый вал двигателя. Если искра есть, неисправность надо искать поочередно в распределителе, высоковольтных проводах или в свечах. Если искры нет, то необходимо убедиться в исправности проводки и надежности контактных соединений в системе зажигания.

Категорически запрещается замыкать накороткб выводные клеммы, а также производить какие-либо переключения соединительных проводов, не предусмотренные монтажной схемой. Соблюдение указанных требований при монтаже и эксплуатации обеспечивает исправную и долголетнюю работу бесконтактной системы зажигания.

ЛИТЕРАТУРА
Балагуров В. А. Аппараты зажигания.- М., Машиностроение, 1968.
Галкин Ю. М. Электрооборудование автомобилей.и тракторов.- М., Машиностроение, 1967.
Глезер Г. Н., Опарин И. М. Автомобильные электронные системы зажигания.- М.(«Машиностроение, 1977.
Моргулев А.С, Сонин Е. К. Полупроводниковые системы зажигания.-М., Энергия, 1972.
[email protected]