Пластичные (консистентные) смазки. Свойства и обозначение смазок

Исходные данные…………………………………………..…………..3

Перечень листов графической части……………………...........4

ВВЕДЕНИЕ…………………………………………………………..…….......5

1.ЭКСПЛУАТАЦИОННЫЕ свойства ПЛАСТИЧНЫХ СМАЗОК……9

1.1. Температура каплепадения………………………………….…………..9

1.2. Механические свойства………………………………………….…..…..9

1.3. Эффективная вязкость………………………………………………….10

1.4. Коллоидная стабильность………………………………………………11

1.5. Водостойкость…………………………………………………………..11

2.КЛАССИФИКАЦИЯ И ПРИМЕНЕНИЕ ПЛАСТИЧНЫХ СМАЗОК…..12

2.1.Смазки общего назначения……………………………………………...13

2.2.Универсальные смазки……………………………………………….….13

2.3.Специализированные смазки…………………………………………...14

2.4.Термостойкие смазки……………………………………………….…...14

2.5.Морозостойкие смазки……………………………………………...…...15

3.ХИММОТОЛОГИЧЕСКАЯ КАРТА………………………………………16

3.1.Химмотологическая карта горюче-смазочных материалов и спецжидкостей, применяемых по необходимости и при ремонтных работах………………………………………………………………………...20

4.ТАБЛИЦА ЗАПРАВОЧНЫХ ЕМКОСТЕЙ………………………………22

5.Список использУЕМОЙ литературы…………………....…….23

Исходные данные

Вариант

Марка автобуса

Эксплуатационный материал

Студент группы

ПАЗ - 3205

Пластичная смазка

Тимофеев Владислав Валерьевич

ПЕРЕЧЕНЬ ЛИСТОВ ГРАФИЧЕСКОЙ ЧАСТИ

ВВЕДЕНИЕ

Правильный выбор и рациональное использование эксплуатационных материалов во многом определяют надежность и долговечность техники, затраты на ее обслуживание и ремонт. Ошибка при выборе моторного масла может привести в лучшем случае к сокращению срока службы двигателя, в худшем — к его поломке.

Выбор и правильное применение масла осложняются зачастую тем, что технической документацией на некоторые машины предусматривается большое число марок смазочных материалов. Поэтому унификация их и использование заменителей могут иметь большое значение для упрощения эксплуатации автомобильной техники.

В автомобиле имеется большое число узлов и механизмов, где применяются пластичные смазки, разнообразие которых также предполагает грамотное их использование.

Для смазки ряда механизмов и деталей автомобиля используют густые мазеобразные продукты – пластичные смазки. Согласно одному из терминологических определений, отражающему объемно-механические свойства, пластичной смазкой называют систему, которая при малых нагрузках проявляет свойства твердого тела; при некоторой критической нагрузке смазка начинает пластично деформироваться (течь подобно жидкости) и после снятия нагрузки вновь приобретает свойства твердого тела.

Смазки по своему составу являются сложными веществами. В простейшем случае они состоят из двух компонентов – масляной основы (дисперсионная среда) и твердого загустителя (дисперсная фаза). Сочетая в себе свойства твердого тела и жидкости, пластичные смазки в качестве грубой модели могут быть представлены, как кусок ваты, пропитанной маслом. Волокна ваты соответствуют частицам дисперсной фазы, а масло, удерживаемое в вате, - дисперсионной среде смазки.

Свойства твердого тела придает смазке наличие структурного каркаса. Когда нагрузки малы, например под действием собственного веса, структурный каркас и сама смазка не разрушаются, а упруго деформируются. Это обусловлено природой загустителя – размером, формой, характером сцепления частиц дисперсной фазы.

Структурный каркас смазки не отличается сколько-нибудь значительной прочностью. Даже приложение малых нагрузок разрушает его, и смазка деформируется подобно пластично-вязкой жидкости. Благодаря этому смазку можно использовать в узле трения, свободно наносить на защищаемые от коррозии поверхности.

Процесс разрушения структурного каркаса пластичных смазок обратим. После снятия нагрузки течение смазки прекращается, структурный каркас практически мгновенно восстанавливается, и смазка вновь приобретает свойства твердого тела.

В качестве масляной основы смазок используют различные масла нефтяного и синтетического происхождения. Загустителями, образующими твердые частицы дисперсной фазы, могут быть вещества органического и неорганического происхождений (мыла жирных кислот, парафин, такие термостойкие материалы, как силикагель, бентонит, сажа, органические пигменты и т.п.).

Пластичные смазки предназначены для применения в узлах трения, где масло не удерживается или невозможно обеспечить непрерывное пополнение его запаса.

1.ЭКСПЛУАТАЦИОННЫЕ СВОЙСТВА ПЛАСТИЧНЫХ СМАЗОК

1.1.Температура каплепадения

В пластичной смазке при нагревании происходит необратимый процесс разрушения кристаллического каркаса, и смазка становится текучей. Переход из пластичного состояния в жидкое условно выражают температурой каплепадения , т.е. температурой, при которой из стандартного прибора при нагревании падает первая капля смазки. Температура каплепадения смазок зависит от вида загустителя и его концентрации.

По температуре каплепадения смазки делят на тугоплавкие (Т), среднеплавкие (С) и низкоплавкие (Н). Тугоплавкие смазки имеют температуру каплепадения выше 100 °С; низкоплавкие -до 65 ºС. Во избежание вытекания смазки из узла трения температура каплепадения должна превышать температуру рабочего узла на 15-20 ºС.

1.2.Механические свойства

Механические свойства смазок характеризуются пределом прочности смазок при сдвиге и пенетрацией.

Предел прочности — это минимальное удельное напряжение, которое нужно приложить к смазке, чтобы изменить ее форму и сдвинуть один слой смазки относительно другого. При меньших нагрузках пластичные смазки сохраняют свою внутреннюю структуру и упруго деформируются подобно твердым телам, а при больших давлениях структура разрушается, и смазка ведет себя как вязкая жидкость.

Предел прочности зависит от температуры смазки — с повышением температуры он уменьшается. Этот показатель характеризует способность смазки удерживаться в узлах трения, противостоять сбросу под влиянием инерционных сил. Для рабочих температур предел прочности не должен быть ниже 300—500 Па.

Пенетрация - условный показатель механических свойств смазок, численно равный глубине погружения в них конуса стандартного прибора за 5 с. Пенетрация - показатель условный, не имеющий физического смысла, и не определяет поведение смазок в эксплуатации. В то же время, так как этот показатель быстро определяется, им пользуются в производственных условиях для оценки идентичности рецептуры и соблюдения технологии изготовления смазок.

Число пенетрации характеризует густоту смазок и колеблется от 170 до 420.

1.3.Эффективная вязкость

Вязкость смазки при одной и той же температуре может иметь различное значение, которое зависит от скорости перемещения слоев относительно друг друга. С увеличением скорости перемещения вязкость уменьшается, так как частицы загустителя ориентируются по ходу движения и оказывают меньшее сопротивление скольжению. Увеличение концентрации и степени дисперсности загустителя приводят к увеличению вязкости смазки. Вязкость смазки зависит от вязкости дисперсной среды и технологии приготовления смазки.

Вязкость смазки при определенной температуре и скорости перемещения называется эффективной вязкостью и рассчитывается по формуле

где — напряжение сдвига; D — градиент скорости сдвига.

Показатель вязкости имеет большое практическое значение, Он определяет возможность подачи смазок и заправки в узлы трения с помощью различных заправочных устройств. Вязкость смазки определяет также расход энергии на ее перекачку при перемещении смазанных деталей.

1.4.Коллоидная стабильность

Коллоидная стабильность — это способность смазки сопротивляться расслаиванию.

Коллоидная стабильность зависит от структурного каркаса смазки, который характеризуется размерами, формой и прочностью связей структурных элементов. Следовательно, на коллоидную стабильность оказывает влияние вязкость дисперсной среды: чем выше вязкость масла, тем труднее ему вытекать.

Выделение масла из смазки увеличивается с повышением температуры, увеличением давления под действием центробежных сил. Сильное выделение масла не допустимо, так как смазка может ухудшить или потерять полностью свои смазочные свойства. Для оценки коллоидной стабильности используют различные приборы, способные выпрессовывать масло под действием нагрузки.

1.5.Водостойкость

Водостойкость — это способность смазки противостоять размыву водой. Растворимость смазки в воде зависит от природы загустителя. Наилучшей водостойкостью обладают парафиновые, кальциевые и литиевые смазки. Натриевые и калиевые - водорастворимые смазки.

2.КЛАССИФИКАЦИЯ И ПРИМЕНЕНИЕ ПЛАСТИЧНЫХ СМАЗОК

Пластичные смазки подразделяются на четыре группы:

Антифрикционные - для снижения износа и трения скольжения сопрягаемых деталей;

Консервационные - для предотвращения коррозии при хранении, транспортировке и эксплуатации;

- канатные - для предотвращения коррозии и износа стальных канатов;

Уплотнительные - для герметизации зазоров, облегчения сборки и разборки арматуры, манжет, резьбовых, разъемных и любых подвижных соединений.

Антифрикционные смазки являются самой многочисленной группой пластических смазок и делятся на следующие подгруппы:

С - общего назначения;

О - для повышенной температуры;

М - многоцелевые;

Ж - термостойкие (узлы трения с рабочей температурой >150 °С);

Н - низкостойкие (узлы трения с рабочей температурой <40 °С);

И - противозадирные и противоизносные;

X - химически стойкие;

П - приборные;

Т - редукторные (трансмиссионные);

Д - приработочные пасты;

У - узкоспециализированные (отраслевые).

Консервационные смазки обозначаются буквой “3”, канатные — “К”.

Уплотнительные смазки имеют три подгруппы:

А - арматурные (для манжет);

Р - резьбовые;

В - вакуумные (для уплотнений в вакуумных системах).

В зависимости от применения смазки делят па общего назначения, многоцелевые и специализированные.

2. 1 .Смазки общего назначения

Кальциевые смазки имеют общее название — солидолы. Это самые массовые и дешевые антифрикционные смазки, относятся к сред не плавким. Кальциевые смазки выпускаются следующих марок: солидол Ж, прессолидол Ж, солидол С или прессолидол С.

Солидол С работоспособен при температуре от -20 до 65 °С. Прессолидол С - от -30 до 50 °С.

Натриевые и натриево-кальциевые смазки работают в более широком интервале температур (от -30 до 110 °С) и применяются главным образом в подшипниках качения.

Например, смазка автомобильная ЯНЗ-2 почти нерастворима в воде, но при длительном применении во влажной среде эмульгируется. Вытесняется универсальной смазкой Литол-24.

2.2.Универсальные смазки

Универсальные смазки водостойки и работоспособны в широком интервале температур, скоростей и нагрузок. Обладают хорошими консервационными свойствами. Загустителями для них служат литиевые мыла.

Литол-24 - можно использовать в качестве единой автомобильной смазки, она работоспособна при температуре от -40 до 130 °С.

Фиол-1, Фиол-2, Фиол-3 - смазки аналогичны Литол-24, но более мягкие, лучше удерживаются в узлах трения.

2. 3 .Специализированные смазки

К специализированным смазкам относятся около 20 марок смазок разного качества. Они наиболее эффективно используются в качестве несменяемых и непополняемых смазок в процессе эксплуатации.

Графитная - применяется преимущественно в открытых узлах.

AM карданная - для карданных шарниров равных угловых скоростей (Тракта, Рцеппа, Вейса) грузовых автомобилей, склонна к вытеканию из узлов.

Шрус-4 - для шарниров равных угловых скоростей (типа Бирфильд) легковых автомобилей; работоспособна при температуре от -40 до 130 °С, водостойка, имеет высокие противозадирные и противоизносные свойства.

ШРБ-4 - для герметизированных шарниров подвесок и рулевого управления, диапазон рабочих температур от -40 до 130 °С.

ЛСЦ-15 - применяется в шлицевых соединениях, шарнирах и осях приводов педалей, стеклоподъемниках; обладает высокой водостойкостью, адгезией (прилипаемостью) к металлам, хорошими консервационными свойствами.

2.4.Термостойкие смазки

Предел работоспособности термостойких смазок — от 150 до 250 °С.

Униол-ЗМ - водостоек, обладает хорошей коллоидной стабильностью и противозадирными свойствами.

ЦИАТИМ-221 - можно применять при температурах от -60 до 150 °С, химически стабильна к резине и полимерным материалам.

2.5.Морозостойкие смазки

Морозостойкие смазки работоспособны во всех узлах трения в условиях Крайнего Севера и Арктики.

Зимол - морозостойкий аналог смазки Литол-24.

Лита - многоцелевая морозостойкая рабоче-консервационная смазка, водостойкая.

ЦИАТИМ-201 - основная морозостойкая смазка для автомобилей, обладает посредственными противозадирными свойствами, при хранении выделяет масло. Зимол и Лита, уступая ей по морозостойкости, превосходят по противоизносным свойствам, работоспособности при повышенных температурах.

3.ХИММОТОЛОГИЧЕСКАЯ КАРТА

Таблица 1.

№ поз. на схеме смазки

Наименование узла, агрегата

Кол-во смазки (общее на все точки)

Наименование смазки

Кол-во точек

Периодичность

Указания по смазке

ТО-1

ТО-2

СТО

Валик привода педали тормоза

Смазывайте через пресс-маслёнку

Система гидроусилителя руля

2,5 л

МГ-15-В ГОСТ 17479.3-85

Х ХХ

Проверьте уровень масла в бачке и, при необходимости долейте. При использовании заменителей меняйте масло при СТО, оба фильтра насоса промойте в бензине или керосине. Замените фильтрующий элемент

Бачок заливной главного цилиндра тормоза

0,6 л

Жидкость для тормозов "Роса" ТУ 2451-004-10488057-94 Заменители: "Нева", "Томь" ТУ 6.01.1163-78, ТУ 6.01.1276-82, SAE 1703F;
DOT-4

Продолжение таблицы 1.

Картер масляный двигателя

10 л

Проверьте уровень масла при ЕО, долейте до нормы. Замените масло и фильтрующий элемент масляного фильтра

Подшипники водяного насоса

Литол-24 ГОСТ 21150-87 Заменитель: Литиевая смазка по NLGJ №3

Маслоотделитель вентиляции картера двигателя

ХХ

Разберите, промойте в керосине, протрите насухо, установите на место

Подшипники натяжного ролика вентилятора

Литол-24 ГОСТ 21150-87 Заменитель: Литиевая смазка по NLGJ №3

Х ХХХ

Доложите смазку в полость подшипника. Снемите ролик, промойте в керосине, протрите насухо и заложите свежую смазку

Подшипники валов вентилятора

Литол-24 ГОСТ 21150-87 Заменитель: Литиевая смазка по NLGJ №3

Смазывайте через пресс-маслёнку до появления свежей смазки из контрольного отверстия

Продолжение таблицы 1.

Ролики шторки радиатора

3 г

Литол-24 ГОСТ 21150-87 Заменитель: Литиевая смазка по NLGJ №3

Смазывайте оси роликов один раз в год - осенью

Распределитель зажигания: - втулка ротора

М-4з/6-В1 ГОСТ-17479.1-85 Дублирующие: SAE 5W-30, SAE 5W-40

4 - 5 капель

Подшипники ступиц колёс передней оси

1 кг

Литол-24 ГОСТ 21150-87 Заменитель: Литиевая смазка по NLGJ №3

ХХ

Закладывайте смазку при снятой ступице между роликами и сепараторами равномерно по всей внутренней полости подшипников

Подшипник муфты выключения сцепления

30 г

Литол-24 ГОСТ 21150-87 Заменитель: Литиевая смазка по NLGJ №3

Смазывайте одной полной заправкой колпачковой маслёнки

Картер коробки передач

3 л

ТМ-5-18
ГОСТ 17479.2-85
Заменитель: SAE 85W/90 по API GL-5

ХХ

Проверьте уровень масла, при необходимости долейте. Замените смазку.

Шарниры карданных валов

50 г

Литол-24 ГОСТ 21150-87 Заменитель: Литиевая смазка по NLGJ №3

Смазывайте раз в два года

Подшипник опоры промежуточного вала карданной передачи

50 г

Литол-24 ГОСТ 21150-87

Смазывайте через пресс-маслёнку до появления свежей смазки из контрольного отверстия

Шлицы карданного вала

240 г

Литол-24 ГОСТ 21150-87 или ЯНЗ-2 ГОСТ 19537-74

Смазывайте через пресс-маслёнку (10 качков шприцем)

Продолжение таблицы 1.

Клеммы и перемычки аккумуляторной батареи

Литол-24 ГОСТ 21150-87 или ЦИАТИМ-201 ГОСТ 6267-74

Смазывайте тонким слоем

Картер заднего моста

8,2 л

ТМ-5-18
ГОСТ 17479.2-85 или
Top75W-85
SKG-F

ХХ

Замените масло

Фильтры воздушных усилителей тормозов

Масло M-8В ГОСТ 10541-78

ХХХ

Промойте фильтрующие элементы в керосине и обмакните в чистое масло

Предохранитель против замерзания

200 г

Спирт этиловый технический ГОСТ 17228-78

Применяйте при температурах окружающего воздуха ниже 5˚С

Шарниры рулевых тяг

Литол-24 ГОСТ 21150-87 Заменитель: Литиевая смазка по NLGJ №3

Смазывать до появления свежей смазки

Шкворни поворотных кулаков

0,09 кг

Литол-24 ГОСТ 21150-87 Заменитель: Литиевая смазка по NLGJ №3

Смазывать через пресс-маслёнку по четыре кучка на каждую точку

Шарниры силового цилиндра ГУР опора цилиндра

Литол-24 ГОСТ 21150-87 Заменитель: Литиевая смазка по NLGJ №3

Смазывайте до появления свежей смазки из отверстия. Разберите, смажьте

Продолжение таблицы 1.

Заливной бачок привода выключения сцепления

0,45 л

Томь
ТУ 2451-004-
10488057
или SAE 1703F;
DOT-4

Проверьте уровень жидкости и, при необходимости, долейте (то же проделать после прокачки и ремонтных работ). Заменяйте жидкость раз в год осенью

3.1.Химмотологическая карта горюче-смазочных материалов и спецжидкостей, применяемых по необходимости и при ремонтных работах

Таблица 2.

№ поз. на схеме смазки

Наименование узла

Кол-во смазки

Наименование смазки

Указания по смазке

Кронштейн сферы рычага переключения передач

0,05 кг

Литол-24
ГОСТ 21150-87,
Литиевая смазка по NLGJ №3

Смазывайте по необходимости

Амортизаторы

1,9 л

ГТЖ-12
ГОСТ-23008-88

Замените при ремонтных работах

Механизм запасного колеса

0,015 кг

Литол-24
ГОСТ 21150-87,
Литиевая смазка по NLGJ №3

Смазывайте при ремонте ось барабана

Шток и толкатель пневмоусилителей

0,015 кг

Литол-24
ГОСТ 21150-87,
Литиевая смазка по NLGJ №3

Смазывайте по необходимости

Замок двери водителя

0,005 кг

Смазывайте по необходимости при ремонте или разборке

Привод стояночного тормоза

0,010 кг

Литол - 24 ГОСТ 21150-87

Смазывать по необходимости

Петли двери водителя

35 г

Литол - 24 ГОСТ 21150-87 ЦИАТИМ - 201 ГОСТ 6267-74

Смазывайте по необходимости

Подшипник рулевой колонки

0,05 кг

Литол - 24 ГОСТ 21150-87

Продолжение таблицы 2.

Карданный шарнир рулевой колонки

0,015 кг

Литол-24
ГОСТ 21150-87,
Литиевая смазка по NLGJ №3

Смазывайте по необходимости и при ремонте

4.ТАБЛИЦА ЗАПРАВОЧНЫХ ЕМКОСТЕЙ

Таблица 3.

Система, механизм, агрегат

Объём, л

Эксплуатационные материалы

Топливный бак

АИ-91 , АИ-92

Система охлаждения

Тосол А-65М

Система смазки (исключая масляный радиатор)

М-4з/6-В1

Картер коробки передач

ТМ-5-18

Картер заднего моста

ТМ-5-18

Амортизаторы (каждый)

0,475

ГТЖ-12

Система гидравлического привода рабочих тормозов

0,75

"Роса", "Нева", "Томь"

Гидроусилитель руля

МГ-15-В

Ступица передних колёс (каждая)

Литол-24

Омыватель ветровых стёкол

Спирт этиловый технический

Бачок заливной главного цилиндра привода выключения сцепления

0,45

"Роса", "Нева", "Томь"

5.СПИСОК ИСПОЛЬЗУЕМОЙ ЛИТЕРАТУРЫ

1. Стуканов В.А. Автомобильные эксплуатационные материалы. М.; ФОРУМ: ИНФРА-М, 2003 - 208 с.

2. Васильева Л. С. Автомобильные эксплуатационные материалы. – М.: Транспорт, 1986 – 280 с.

3. Автобусы семейства ПАЗ-3205: особенности конструкции, руководство по эксплуатации и техническому обслуживанию, г.Павлово-на Оке. 2006 – 113 с.

Пластичные смазки использовались еще в XIV веке до н.э. египтянами для осей деревянных колесниц. Изготавливали их из оливкового масла, смешивая его с известью.

Современные смазки представляют собой многокомпонентные структуры, отвечающие многим, зачастую противоречивым требованиям, которые выдвигает специфика работы различных узлов.

Пластичные смазки используют для уменьшения трения и износа узлов, в которых создавать принудительную циркуляцию масла нецелесообразно или невозможно. Легко проникая в зону контакта трущихся деталей, смазки удерживаются на трущихся поверхностях, не стекая с них, как это происходит с маслом. Смазки применяются также в качестве защитных или уплотнительных материалов.

К достоинствам пластичных смазок следует отнести способности:

    Удерживаться

    Не вытекать

    Не выдавливаться из негерметизированных узлов трения

    Более широкий, чем у масел, температурный диапазон применения

Все это позволяет упростить конструкцию узлов трения, следовательно, уменьшить их металлоемкость и стоимость. Некоторые смазки обладают хорошей герметизирующей способностью и хорошими консервационными свойствами.

Основными недостатками являются удержание продуктов механического и коррозионного износа, которые увеличивают скорость разрушения трущихся поверхностей, и плохой отвод тепла от смазываемых деталей.

По области применения в соответствии с ГОСТ смазки делятся на следующие группы:

  • Антифрикционные смазки – снижают силу трения и износ различных трущихся поверхностей
  • Консервационные смазки – предотвращают коррозию металлических поверхностей механизмов при их хранении и эксплуатации
  • Уплотнительные смазки – герметизируют и предотвращают износ резьбовых соединений и запорной арматуры (вентили, задвижки, краны)
  • Канатные смазки – предотвращают износ и коррозию стальных канатов

В автомобилях наибольшее распространение получили антифрикционные смазки многоцелевые.

В бывшем СССР до 1979 г. наименования смазок устанавливали произвольно.

В результате одни смазки получили словесное название (Солидол-С), другие – номер (№ 158), третьи – обозначение создавшего их учреждения (ЦИАТИМ-201, ВНИИНП-292). В 1979 г. был введен ГОСТ 23258-78 (действующий в настоящее время в России), согласно которому наименование смазки должно состоять из одного слова и цифры.

За рубежом фирмы-производители вводят наименование смазок произвольно из-за отсутствия единой для всех классификации по эксплуатационным показателям (за исключением классификации по консистенции).

Это привело к появлению огромного ассортимента пластичных смазок.

Не каждая смазка допускает перемешивание с другой, поэтому перед закладкой новой смазки рекомендуется тщательно удалить остатки старой. Сделать это необходимо еще и потому, что старая смазка содержит продукты износа. Отечественные автомобили смазываются в соответствии со своей картой смазки. В случае ее отсутствия можно воспользоваться таблицей.

Узел трения
Наименование смазки
Регулируемые подшипники ступицы, нерегулируемые подшипники полуоси
Литол-24, ЛСЦ-15, Зимол, Лита
Подшипники промежуточной опоры карданного вала
Литол-24, ЛСЦ-15
Подшипники генератора, стартера и других электродвигателей, оси октан-корректора распределителя зажигания
Фиол-2М*, Литол-24, Зимол, № 158, ЦИАТИМ-201
Игольчатые подшипники карданных шарниров
Фиол-2У*, ШРУС-4*, № 158
Шарниры равных угловых скоростей
ШРУС-4
Шарниры подвески и рулевого управления, имеющие пресс-масленки
ШРБ-4, ШРУС-4, Литол-24
Герметизированные разборные шарниры подвески
ШРБ-4*
Герметизированные шарниры рулевого управления
ЛСЦ-15*
Герметизированные неразборные шарниры подвески
ШРБ-4*
Шлицевые соединения
ЛСЦ-15*, Литол-24
Оси, валики, подшипники скольжения, петли, тросы в оболочках
ЛСЦ-15*, Литол-24, ЦИАТИМ-201
Гибкий вал спидометра
ЦИАТИМ-201
Переключатель указателей поворота
КСБ*
Шарниры и оси привода педалей газа, выключения сцепления
ЛСЦ-15*
Шарниры подвески и рулевого управления легковых автомобилей ГАЗ
ВНИИ НП-242*, Фиол-2У
Рессоры
Графитная, Лимол, ВНИИ НП-232
Монтаж деталей, работающих в контакте резина – металл
ДТ-1
Стеклоподъемники, замки, стопорные механизмы дверей
ЛСЦ-15*

* Применяется в качестве несменяемой на весь период эксплуатации.

Подделка или смазка, не соответствующая названию на упаковке, выявляется в некоторых случаях достаточно просто.

Встретив в розничной торговле смазку в банке или тюбике с обозначением неизвестной вам фирмы, обратите внимание на товарный знак изготовителя. Если таковой отсутствует на упаковке, желательно посмотреть на сертификат соответствия, где должен быть обязательно указан изготовитель смазки и другая ценная информация (срок действия сертификата, данные об испытательной лаборатории, проводившей анализ, информация об органе, выдавшем сертификат).

Например, вы взяли смазку Литол-24, вызывающую у вас сомнение. Попробуйте опустить небольшую емкость с небольшим количеством смазки в кипящую воду. Плавление проверяемой смазки означает, что это не Литол-24 и ее применение обязательно вызовет нежелательные последствия для узлов автомобиля.

Подавляющее большинство современных смазок (в т. ч. литиевые) имеют температуру каплепадения значительно выше +100 °С. Специалистам известны случаи продажи банок с наименованием ШРУС-4, которые были наполнены дешевой графитной смазкой, представляющей собой смесь порошкообразного графита и Солидола, с максимальной температурой применения +65 °С.

Зарубежные производители пластичных смазок – это в основном крупные нефтеперерабатывающие корпорации, известные автолюбителям по производимым ими качественным моторным и трансмиссионным маслам.

Масло Тип передачи Срок смены масла, тыс. км Минимальная температура применения, °С
ТСгип Ведущие мосты старых моделей легковых автомобилей 24...30 -20
ТАД-17И Коробки передач и ведущие мосты легковых и грузовых автомобилей 60...80 -30
ТАп-15В Коробки передач грузовых автомобилей с карбюраторными двигателями; ведущие мосты с негипоидными передачами легковых и грузовых автомобилей 24...72 -25
ТСп-15К Коробки передач, ведущие мосты грузовых автомобилей с негипоидными передачами 36...72 -30
ТСп-14гип Ведущие мосты грузовых автомобилей с гипоидными передачами -30
ТСп-10 Коробки передач грузовых автомобилей с карбюраторными двигателями; ведущие мосты грузовых автомобилей с негипоидными передачами 35...50 -45
ТСз-9гип Коробки передач и ведущие мосты автомобилей при эксплуатации на Севере Зимний период -50
ТМ5-12рк Коробки передач и ведущие мосты грузовых автомобилей -50

За рубежом для маркировки трансмиссионных масел используют классификации SAE и API.

По классификации SAE масла подразделяются на летние (например, SAE140), зимние (75W) и всесезонные (75W90). Соответствие классов вязкости по ГОСТУ и SAE приведено в табл. 23.

Таблица 23

Примерное соответствие классов вязкости трансмиссионных масел по ГОСТ и SAE

По классификации API трансмиссионные масла подразделяются по уровню противоизносных и противозадирных свойств:

GL-1 - применяются в зубчатых зацеплениях при невысоких давлениях и скоростях скольжения (не содержат присадок);



Всего 5 классов, которые соответствуют группам, обозначенным по ГОСТ ТМ-1,-2,-3,-4,-5 .

Пластичные смазки используют для уменьшения трения и износа узлов, в которых создавать принудительную циркуляцию масла нецелесообразно или невозможно. Легко проникая в зону контакта трущихся деталей, смазки удерживаются на трущихся поверхностях, не стекая с них, как это происходит с маслом. Смазки применяются также в качестве защитных или уплотнительных материалов.

Достоинства и недостатки смазок

К достоинствам следует отнести способность удерживаться, не вытекать и не выдавливаться из негерметизированных узлов трения, более широкий, чем у масел, температурный диапазон применения. Перечисленные достоинства позволяют упростить конструкцию узлов трения, следовательно, уменьшить их металлоемкость и стоимость. Некоторые смазки обладают хорошей герметизирующей способностью и хорошими консервационными свойствами.

Основными недостатками являются удерживание продуктов механического и коррозионного износа, которые увеличивают скорость разрушения трущихся поверхностей, и плохой отвод тепла от смазываемых деталей.

Состав пластичных смазок. Масло является основой смазки, и на него приходится 70-90 % от ее массы. Свойства масла определяют основные свойства смазки. Загуститель создает пространственный каркас смазки. Упрощенно его можно сравнить с поролоном, удерживающим своими ячейками масло. Загуститель составляет 8-20 % от массы смазки.

Добавки необходимы для улучшения эксплуатационных свойств. К ним относятся:

Присадки - преимущественно те же, что используются в товарных маслах (моторных, трансмиссионных и т. п.). Представляют собой маслорастворимые поверхностно-активные вещества и составляют 0,1-5 % от массы смазки;

Наполнители - улучшают антифрикционные и герметизирующие свойства. Представляют собой твердые вещества, как правило, неорганического происхождения, нерастворимые в масле (дисульфид молибдена, графит, слюда и др.), составляют 1-20 % от массы смазки;

Модификаторы структуры - способствуют формированию более прочной и эластичной структуры смазки. Представляют собой поверхностно-активные вещества (кислоты, спирты и др.), составляют 0,1- 1 % от массы смазки.

Основные показатели качества смазок

Пенетрация (проникновение) - характеризует консистенцию (густоту) смазки по глубине погружения в нее конуса стандартных размеров и массы. Пенетрация измеряется при различных температурах и численно равна количеству миллиметров погружения конуса, умноженному на 10.

Температура каплепадения - температура падения первой капли смазки, нагреваемой в специальном измерительном приборе. Практически характеризует температуру плавления загустителя, разрушения структуры смазки и ее вытекания из смазываемых узлов (определяет верхний температурный предел работоспособности не для всех смазок).

Предел прочности при сдвиге - минимальная нагрузка, при которой происходит необратимое разрушение каркаса смазки и она ведет себя, как жидкость.

Водостойкость - применительно к пластичным смазкам обозначает несколько свойств: устойчивость к растворению в воде, способность поглощать влагу, проницаемость смазочного слоя для паров влаги, смываемость водой со смазываемых поверхностей.

Механическая стабильность - характеризует тиксотропные свойства, т.е. способность смазок практически мгновенно восстанавливать свою структуру (каркас) после выхода из зоны непосредственного контакта трущихся деталей. Благодаря этому уникальному свойству, смазка легко удерживается в негерметизированных узлах трения.

Термическая стабильность - способность смазки сохранять свои свойства при воздействии повышенных температур.

Коллоидная стабильность - характеризует выделение масла из смазки в процессе механического и температурного воздействия при хранении, транспортировке и применении.

Химическая стабильность - характеризует в основном устойчивость смазок к окислению.

Испаряемость - оценивает количество масла, испарившегося из смазки за определенный промежуток времени, при ее нагреве до максимальной температуры применения.

Коррозионная активность - способность компонентов смазки вызывать коррозию металла узлов трения.

Защитные свойства - способность смазок защищать трущиеся поверхности металлов от воздействия коррозионно-активной внешней среды (вода, растворы солей и др.).

Вязкость - определяется величинами потерь на внутреннее трение в смазке. Фактически определяет пусковые характеристики механизмов, легкость подачи и заправки в узлы трения.

Пластичные смазки по консистенции занимают промежуточное положение между маслами и твердыми смазочными материалами (графитами). Несмотря на отсутствие в качестве критериев разбивки на классы других характеристик смазок, эта классификация признана основополагающей во всех странах. Некоторые производители указывают в документации не только класс смазки, но и уровень пенетрации.

Пластичные смазки (ПС) - это густые мазеобразные продукты. Имеют два основных компонента - масляную основу (дисперсионная среда) и твердый загуститель (дисперсная среда). Для улучшения консервационных, противоизносных свойств, химической стабильности, термостойкости в смазки вводят присадки в количестве 0,001...5 %.

Следует отметить, что не все нижеперечисленные классификации являются общепринятыми для отечественных и зарубежных производителей.

В классификационном обозначении указывают:

Дисперсионную среду;

Консистенцию.

Загуститель обозначается первыми двумя буквами входящего в состав мыла металла: "Ка" - кальциевое; "На" - натриевое; "Ли" - литиевое.

Тип дисперсионной среды и присутствие твердых добавок обозначают строчными буквами: "у" - синтетические углеводороды, "к" -кремнийорганические жидкости, "г" - добавки графита, "д" - добавка дисульфита молибдена. Смазки на нефтяной основе индекса не имеют.

Классификация по типу масла (основы):

На нефтяных маслах (полученных переработкой нефти);

На синтетических маслах (искусственно синтезированных);

На растительных маслах;

На смеси вышеперечисленных масел (в основном нефтяных и синтетических).

Классификация по природе загустителя.

Мыльные - это смазки, для производства которых в качестве загустителя применяют мыла (соли высших карбоновых кислот). В свою очередь, их подразделяют на натриевые (созданы в 1872 г.), кальциевые и алюминиевые (созданы в 1882 г.), литиевые (созданы в 1942 г.), комплексные (например, комплексные кальциевые, комплексные литиевые) и др. На мыльные приходится более 80 % всего производства смазок.

Углеводородные - смазки, для производства которых в качестве загустителя используются парафины, церезины, петролатумы и др.

Неорганические - смазки, для производства которых в качестве загустителя используются силикагели, бентониты и др.

Органические - смазки, для производства которых в качестве загустителя используются сажа, полимочевина, полимеры и др.

Классификация по области применения в соответствии с ГОСТ 23258-78 делит смазки на следующие группы.

Антифрикционные - снижают силу трения и износ различных трущихся поверхностей.

Консервационные - предотвращают коррозию металлических поверхностей механизмов при их хранении и эксплуатации. Консервационные - предназначены для предотвращения коррозии металлических поверхностей при хранении и эксплуатации, обозначаются индексом "З".

Уплотнительные - герметизируют и предотвращают износ резьбовых соединений и запорной арматуры (вентили, задвижки, краны). Уплотнительные делятся на три группы: А - арматурные; Р -резьбовые; В - вакуумные.

Канатные - предотвращают износ и коррозию стальных канатов. Канатные смазки обозначаются индексом "К".

В свою очередь, антифрикционная группа делится на подгруппы: С - общего назначения для температур до 70 °С, О - для повышенной температуры (до 110 °С), М - многоцелевые (-30...130 °С); Ж - термостойкие (150 "С и выше), Н - морозостойкие (ниже -40 0 С); И - противозадирные и противоизносные; П - приборные; Д - приработочные; Х - химически стойкие.

Пример. ПС Литол-24 (товарная марка) имеет следующее классификационное обозначение МЛи4/13-3: "М" - многоцелевая антифрикционная, работоспособна в условиях повышенной влажности; "Ли" - загущена литиевыми мылами; "4/13" - работоспособна в интервале температур от -40 до 130 "С, отсутствие индекса дисперсионной среды -приготовлена на нефтяном масле; "3" - условная характеристика густоты смазки.

Кальциевые смазки (солидолы) - антифрикционные пластические смазки. Они нерастворимы в воде, поэтому в условиях высокой влажности и при контакте с водой хорошо защищают металлические детали от коррозии. Недостаток - работоспособны при температурах до 60 0 С.

Солидолы синтетические (солидол С) - применяется в подшипниках качения и скольжения, в шарнирах, винтовых и цепных передачах. Их недостатки - низкая механическая стабильность, работоспособность при температурах до 50 °С.

Применение

В шарнирах рулевого управления, шкворнях поворотных кулаков, для пальцев рессор, оси педалей сцепления и тормоза, рычагов коробки передач, раздаточной коробки, валов разжимных кулаков тормозов, в механизмах лебедки, буксирных и седельных механизмах, шлицах и подшипниках карданных шарниров используются Литол-24, солидол С, пресс-солидол С.

Для карданных шарниров равных угловых скоростей используется AM карданная, Униол-1.

Подшипники ступиц колес, промежуточная опора карданного вала, выжимной подшипник сцепления, подшипники водяного насоса, передний подшипник первичного вала коробки передач, вал привода распределителя зажигания смазываются Литолом-24, ПС 1-13.

В подшипниках генератора, стартера, электродвигателей стеклоочистителя и отопителя используются Литол-24, N 158.

Шарниры привода стеклоочистителя, петли дверей смазываются Литолом-24, солидолом С.

Для рессор используется графитная смазка УСсА.

Клеммы аккумулятора смазываются Литолом-24, солидолом С, ВТВ-1, пушечной смазкой.

Для гибкого вала спидометра используются ЦИАТИМ-201, моторное масло.

Тросы стояночного тормоза, замка капота смазываются Литолом-24, ЦИАТИМ-201 .

Узлы трения и применяемые в них смазки представлены в табл. 24.


А. Скобельцин

Пластичные смазки – самостоятельный вид материалов, обеспечивающих надежность и долговечность техники (ранее их называли консистентными). Их мировое производство составляет около миллиона тонн в год, что значительно меньше выпуска смазочных масел (около 40 млн. т/год).

Итак, пластичная смазка – это структурированная высокодисперсная система, которая состоит, как правило, из базового масла и загустителя. При обычных температурах и малых нагрузках она проявляет свойства твердого тела, т. е. сохраняет первоначальную форму, а под нагрузкой начинает деформироваться и течь подобно жидкости. После снятия нагрузки пластичная смазка вновь застывает. Основное ее назначение – уменьшить износ поверхностей трения и продлить тем самым срок службы деталей машин и механизмов. В отдельных случаях смазки не столько уменьшают износ, сколько упорядочивают его, предотвращают трение и заклинивание смежных поверхностей, препятствуют проникновению агрессивных жидкостей, абразивных частиц, газов и паров. Смазки, которые практически не изменяют своих показателей качества весь период работы в узле трения, относятся к «вечным» (т. е. закладываются одноразово на весь период работы техники) или долго работающим (с большим периодом замены).

Почти все смазки обладают антикоррозийными свойствами. Для защиты металлических поверхностей от коррозии при транспортировке и длительном хранении разработаны консервационные смазки. Для герметизации зазоров в механизмах и оборудовании, а также соединений трубопроводов и запорной арматуры созданы уплотнительные смазки с лучшими герметизирующими свойствами, чем у масел.

Некоторые смазки специального назначения увеличивают коэффициент трения, изолируют или, наоборот, проводят ток, обеспечивают работу узлов трения в условиях радиации, глубокого вакуума и т. п. По составу это сложные коллоидные системы, состоящие из жидкой основы, которая называется дисперсионной средой, и твердого загустителя – дисперсной фазы, а также наполнителей и присадок. В качестве дисперсионной среды используют различные масла и жидкости. Около 97% пластичных смазок готовят из нефтяных продуктов. Применяются и синтетические масла для смазок, работающих в специфичных и экстремальных условиях: сложные эфиры, фторуглероды и фторхлоруглероды, полиалкиленгликоли, полифениловые эфиры, кремнийорганические жидкости. Изза высокой стоимости такие масла растространены не очень широко.

В отдельных случаях используют растительные масла. Работы в этом направлении весьма перспективны, поскольку материалы на основе компонентов биосферного происхождения значительно безопаснее для окружающей среды, чем минеральные аналоги.

Область применения смазки во многом определяется температурой плавления и разложения дисперсной фазы, а также ее концентрацией и растворимостью в масле. От природы загустителя зависят антифрикционные и защитные свойства, водостойкость, коллоидная, механическая и антиокислительная стабильность смазки. Для придания этих свойств в состав вводят соли высших карбоновых кислот, высокодисперсные органические и неорганические вещества, тугоплавкие углеводороды.

В связи с ужесточением режимов эксплуатации узлов трения в большую часть современных пластичных смазок вводят добавки – присадки и наполнители. Используют присадки следующих типов: противоизносные, противозадирные, антифрикционные, защитные, вязкостные и адгезионные. Многие из них – многофункциональные, т.е. улучшают несколько свойств одновременно.

В качестве наполнителей используются высокодисперсные, нерастворимые в маслах вещества, улучшающие эксплуатационные характеристики смазки, но не образующие в ней коллоидной структуры. Чаще применяют наполнители с низким коэффициентом трения: графит, дисульфид молибдена, сульфиды некоторых металлов, полимеры, комплексные соединения металлов и др. Оксиды цинка, титана и одновалентной меди, алюминия, олова, бронзы и латуни широко используют в резьбовых, уплотнительных и антифрикционных смазках для тяжелонагруженных узлов трения скольжения. Обычно эти наполнители добавляют в объеме от 1 до 30% количества смазки.

За рубежом широко используется две классификации, разработанные Национальным институтом по пластичным смазкам (NLGI). Классификация по вязкости группирует все смазки на 9 классов по диапазону пенетрации. Величину пенетрации определяют методом погружения стандартного металлического конуса в пластичную смазку в течение определенного времени. Чем глубже погрузится конус, тем меньше класс NLGI, мягче смазка и, соответственно, тем легче она будет выдавливаться из зоны трения. Смазки с высоким номером NLGI, напротив, будут создавать дополнительное сопротивление и плохо возвращаться в зону трения. Другая, достаточно широко признанная классификация группирует пластичные смазки в 5 классов, основываясь на областях применения на автомобилях.

В России используется несколько систем классификации – по консистенции, по составу и областям применения. По консистенции смазки разделяют на полужидкие, пластичные и твердые. Пластичные и полужидкие представляют собой коллоидные системы, состоящие из дисперсионной среды, дисперсной фазы, присадок и добавок. Твердые смазки до отвердения остаются суспензиями, состоящими из смолы или другого связующего и растворителя. В них в качестве загустителя используют дисульфид молибдена, графит, технический углерод и т. п. После отверждения (испарения растворителя) твердые смазки превращаются в золи с низким коэффициентом сухого трения.

По составу смазки разделяют на четыре группы.

1. Мыльные. В качестве загустителя используются соли высших карбоновых кислот (мыла). Наиболее распространены кальциевые, литиевые, бариевые, алюминиевые и натриевые смазки. Мыльные смазки в зависимости от жирового сырья называют условно синтетическими, на основе синтетических жирных кислот, или жировыми – на основе природных жирных кислот, например синтетические или жировые солидолы.

2. Неорганические. В качестве загустителя использованы термостабильные высокодисперсные неорганические вещества. Это силикагелевые, бентонитовые, графитные смазки и др.

3. Органические. Для их получения используют термостабильные, высокодисперсные органические вещества. Это полимерные, пигментные, полимочевинные, сажевые смазки и др.

4. Углеводородные. В качестве загустителей используют тугокоплавкие углеводороды: петролатум, церезин, парафин, различные природный и синтетический воск.

По области применения ГОСТ 23258–78 разделяет смазки на антифрикционные, консервационные, уплотнительные и канатные. Такая классификация более удобна для разработчиков техники. Антифрикционные смазки уменьшают износ и трение сопряженных деталей. Консервационные смазки снижают коррозионное разрушение металлоизделий. Уплотнительные смазки герметизируют зазоры и неплотности узлов и деталей. Канатные смазки наряду со снижением коррозионного разрушения стальных канатов также снижают износ отдельных проволок при их трении друг о друга.

Немаловажная проблема – совместимость смазок разного состава. При замене смазочного материала в узле трения не всегда полностью удаляется предыдущая закладка. Так, в шарнирах рулевого управления автомобилей после четырехкратного шприцевания остается до 40% «старой» смазки. При смешении «старой» и «новой» смазок ухудшаются эксплуатационные характеристики смеси по сравнению с исходным продуктом. Эта смесь вытекает из узла трения либо чрезмерно уплотняется, снижая надежность узла. Следовательно, при выборе новой смазкизаменителя потребителю полезно знать, можно ли смешивать смазки разных марок. Основным фактором, определяющим совместимость смазок, является природа загустителя. Жидкая основа, присадки и добавки существенного влияния на совместимость не оказывают. Со смазками всех марок совместимы консервационные материалы, загущенные тугоплавкими углеводородами (парафином, церезином). Совместимы почти все продукты, загущенные стеаратом натрия и оксистеаратом лития. Плохо совместимы смазки с силикагелем, стеаратом лития и полимочевиной.

Совместимость пластичных смазок с различным загустителем
Загуститель Стеарат кальция Комплекс кальциевого мыла Стеарат лития Оксистеарат лития Стеарат натрия Силика­гель Полимоче­вина Церезин, парафин
Стеарат кальция С Н Н С С Н Н С
Комплекс кальциевого мыла Н С Н С С С С С
Стеарат лития Н Н С С Н Н Н С
Оксистеарат лития С С С С С С Н С
Стеарат натрия С С Н С С С С
Силикагель Н С Н С С С С
Полимочевина Н С Н Н С С
Церезин, парафин С С С С С С С С

Условные обозначения: С – совместимы; Н – несовместимы; «–» – нет данных.

Сейчас в России вырабатывается примерно 150 наименований пластичных материалов в количестве 45…50 тыс. т/год. По структуре производства мыльных смазок Россия значительно отстает от Западной Европы и США, где основными являются литиевые смазки – в США 60% общего объема и в Западной Европе 70%. В России их доля невелика – 23,4%, или около 10 тыс. т/год.

Современные смазки на 12-гидроксистеарате лития, например типа Литол24, хорошо работают в широком диапазоне температур – от –40 до +120 °С, имеют хорошие эксплуатационные свойства, заменяют многие устаревшие продукты, такие как консталин, 113, солидолы и др. Это перспективные и конкурентоспособные материалы.

Более перспективны смазки, приготовленные на комплексном литиевом мыле. Они работают в более широком диапазоне температур (от –50 до +160…200 °С), нагрузок и скоростей. Комплексная литиевая смазка ЛКСметаллургическая в ряде случаев заменяет ИП1, 113, ВНИИНП242, Литол24. Комплексные литиевые смазки также применяются в оборудовании текстильной, станкостроительной, автомобильной и других отраслей промышленности, в подшипниках ступиц колес автомобилей.

Основу отечественного ассортимента – 44,4% – составляют устаревшие гидратированные кальциевые смазки (солидолы), доля которых в развитых странах, например в США, не превышает 4%. Производство натриевых и натриевокальциевых смазок в России составляет 31% общего объема, или до 12,5 тыс. т/год. Эти материалы имеют хорошие характеристики и применяются при температурах от –30 до +100 °С. Доля прочих мыльных смазок в России невелика – 0,3%, или 89 т/год. Это продукты на алюминиевых, цинковых, смешанных мылах (литиевокальциевых, литиевоцинковых, литиевоцинковосвинцовые, бариевосвинцовые и др.), а также получаемые путем смешения готовой смазки с металлическим порошком.

Доля немыльных смазок, приготовленных на неорганических загустителях (аэросилы, силикагели, сажа, бентонит), в России всего 0,2%, или менее 10 т/год. Главным образом это узкоспециализированные термостойкие (до 200…250 °С) и химически стойкие смазки. В США доля этих материалов – 6,7%. Немыльные смазки готовят на органических загустителях – полиуреатах, пигментах. Полиуреатные продукты нового поколения, приготовленные на нефтяных и синтетических углеводородных маслах, работают при температурах до 220 °С и по этому показателю близки к термостойким тефлоновым смазкам на основе перфторполиэфиров, выгодно отличаясь от последних значительно меньшей ценой. В США доля производства этих материалов составляет 6% и непрерывно увеличивается. В России полиуретановые смазки не выпускают.

Объемы производства отечественных углеводородных материалов составляют 3 тыс. т/год. В основном это консервационные и канатные смазки. Полужидкие смазки типа Трансол200, Редукторная вырабатывают в России в объеме всего около 20 т/год.

Структура производства пластичных смазок в России
Тип смазки 1992 г. 2000 г.
% тыс. т % тыс. т
Мыльные
Литиевые 17,23 16,8 21,75 9,83
Литиевые комплексные 0,16 0,16 0,09 0,04
Натриевые и натриево-кальциевые 2,28 2,22 28,83 13,03
Кальциевые гидратированные 62,67 61,1 41,42 18,72
Кальциевые комплексные 0,42 0,41 0,93 0,42
Прочие мыльные 1,36 1,33 0,29 0,1316
Неорганические 0,08 0,08 0,02 0,008
Органические 0,0004
Углеводородные 6,46 6,3 6,64 3,0
Полужидкие 9,23 9 0,04 0,02
Всего 100,00 97,5 100,00 45,2

Анализ отечественного ассортимента смазок позволяет сделать следующие выводы. В России сохраняется неблагоприятная структура ассортимента: большая доля низкокачественных гидратированных кальциевых смазок и незначительная доля высокоэффективных литиевых. Комплексные литиевые смазки выпускают в малых количествах. Большинство пластичных материалов массового применения морально устарело еще 20…30 лет назад, ассортимент практически не обновляется.

Экономический рост, особенно в автомобильной, металлургической, нефтегазодобывающей отраслях промышленности, стимулирует рост потребления пластичных материалов, в том числе высококачественных автомобильных смазок, смазок для металлургического оборудования, работающего при максимальной температуре до 150 °С, а также арматурных и резьбовых.

Пластические смазки – материалы представляющие смесь смазочного масла и твёрдого вещества загустителя для образования структурного каркаса.

По назначению можно выделить две основные функции пластических смазок: уменьшение износа и защиту деталей от коррозии.

В соответствии с классификацией по назначению предусмотрено четыре группы пластических смазок: антифрикционные, консервационные, уплотнительные и канатные. По составу смазки, в зависимости от типа загустителя делятся на углеводородные, мыльные, неорганические и органические.

По сравнению с жидкими смазочными материалами (маслами) смазки обладают рядом преимуществ, уступая им в то же время по некоторым свойствам.

Преимуществами смазок перед маслами являются:

– хорошее удержание на наклонных и вертикальных поверхностях;

– меньшее изменение вязкости в зависимости от температуры;

– лучшие показатели противоизносных и противозадирных свойств;

– лучшая защита металлических поверхностей от коррозионного воздействия внешней среды;

– высокая герметичность узлов трения, предохранение их от проникновения нежелательных продуктов;

– более надёжная и эффективная работа в жестких условиях эксплуатации при одновременном воздействии высоких температур, давлений, ударных нагрузок, переменном режиме скоростей и так далее;

– экономичность в применении благодаря более продолжительной работоспособности, меньшему расходу и меньшим затратам на обслуживание техники.

К недостаткам смазок следует отнести отсутствие отвода тепла от смазываемых деталей, более сложную систему подачи пластической смазки к узлу трения и низкую стабильность мыльных смазок к окислению.

Маркировка пластических смазок характеризует их назначение состав и свойства (Таблица 4.2).

Она состоит из пяти буквенных и цифровых индексов, расположенных в порядке, указывающем подгруппу классификации, загуститель, рекомендуемый (условный) температурный режим применения, дисперсную среду, консистенцию смазки.

Таблица 4.2. – Подгруппы пластических смазок

Буква Назначение Буква Назначение
С Общего назначения для обычных температур (солидолы) Т Редукторные трансмиссионные
О Общего назначения для повышенных температур Д Приработочные (графитовые и другие)
М Многоцелевые У Узкоспециальные (отраслевые)
Ж Термостойкие Б Брикетные
Н Морозостойкие З Консервационные
И Противоизносные и противозадирные К Канатные
Х Химически стойкие А Арматурные
П Приборные Р Резьбовые
В Вакуумные

Рекомендуемый температурный режим применения обозначают округленно до 10°С дробью. В числителе уменьшенная в 10 раз минимальная температура без знака минус, а в знаменателе, также уменьшенная в 10 раз максимальная температура без знака плюс.

Пример: СКа 2/8 – 2:

С – смазка общего назначения;

Ка – загущена кальциевым мылолм;

2/8 – температурный режим от –20 до +80°С;

2 – пенетрация 265-295 при 25°С.

Тугоплавкие смазки и солидолы заменяют по пенетрации, температуре каплепадения и основе. Заменяющая смазка должна иметь пенетрацию не выше, а температуру каплепадения не ниже, чем у заменяемой смазки.

Рабочие жидкости

Требования к рабочим жидкостям, используемым в гидросистемах, отличаются от требований к смазочным маслам, так как они служат передатчиком энергии от двигателя к рабочим органам и одновременно должны смазывать и охлаждать движущиеся детали гидросистемы. Большие давления в гидросистеме (35 МПа) и большой перепад рабочих температур (–60°..+50°С) предъявляют определённые требования к гидравлическим жидкостям.

Рабочие жидкости для гидросистем должны:

– обладать высокими смазывающими и антикоррозионными свойствами;

– иметь высокую противопенную стойкость;

– иметь низкую температуру застывания;

– обладать достаточной вязкостью;

– обеспечивать минимальные потери (утечки при высоких температурах и минимальные потери давления при низких температурах);

– обладать совместимостью с материалами гидросистемы;

– не взаимодействовать с заменяемой жидкостью;

– быть долговечными, экономичными и недефицитными.

Рабочие жидкости в зависимости от эксплуатационных свойств делятся на группы, каждая из которых разделяется на классы по кинематической вязкости.

Таблица 4.3. – Группы гидравлических масел по эксплуатационным свойствам

Условные обозначения рабочих гидрожидкостей включает буквы и цифры:

· Первая группа знаков – МГ (минеральные гидравлические;

· Вторая группа знаков – цифры, обозначающие класс кинематической вязкости;

· Третья группа знаков обозначается буквами и указывает принадлежность к группе по эксплуатационным свойствам.

Пример обозначения: МГ – 15 – В.

Изучить самостоятельно тормозные и охлаждающие жидкости.

Лекция 5

СПОСОБЫ ОБЕСПЕЧЕНИЯ ЗАДАННОГО УРОВНЯ

ДОЛГОВЕЧНОСТИ И БЕЗОТКАЗНОСТИ МАШИН

ТРЕБОВАНИЯ К НАДЕЖНОСТИ МАШИН

Для потребителей дорожных машин, как и многих технических объектов, важнейшим показателем является сокращение суммарных затрат на их приобретение и поддержание в технически исправном состоянии. В связи, с этим приведенные затраты рассматривают совместно.

Повышение надежности не может являться самоцелью и используется для снижения суммарных затрат перераспределением составляющих между сферами производства и эксплуатации. По мере повышения надежности затраты на производство машин растут, а на ремонты и обслуживание в процессе использования снижаются. При недостаточной надежности будет обратное соотношение. На современном этапе развития техники можно изготовлять машины с любой, в том числе и самой высокой, надежностью. Однако это может привести к чрезмерно большим затратам в производстве, не соответствующим снижению затрат в эксплуатации.

Надежность в конечном итоге оценивают соотношением затрат на производство объекта и поддержание его в технически исправном состоянии. Это соотношение анализируют одновременно с суммарными затратами и с учетом других показателей, оно может рассматриваться как уровень надежности.

Для выбора оптимального уровня надежности принят критерий, удельные приведенные затраты с уд :

где С – затраты на производство (изготовление) машины и поддержание её в технически исправном состоянии;

П – производительность объекта.

В этом случае возможны два варианта:

1) Для народного хозяйства общим критерием является максимум производительности П при требуемом приемлемом уровне затрат С.

2)Или минимум затрат С при требуемой производительности П.

Поскольку строительные объемы должны быть выполнены, обеспечим производительность машин условно постоянной и будем минимизировать затраты с уд в удельном исчислении (то есть будем рассматривать второй вариант).

Уровень надежности, представляющий собой отношение затрат на приобретение и поддержание в работоспособном (исправном) состоянии, необходимо находить за определенную наработку t, так как t влияет на затраты, связанные с поддержанием надежности. Примем за наработку ресурс до капитального ремонта t p – ресурс от начала эксплуатации до первого капитального ремонта. Будем иметь в виду, что одновременно с уровнем надежности необходимо выявить ресурс t p машины, а его определяют по критерию снижения эффективности.

С учетом сделанных предпосылок преобразуем соотношение (5.1). Если рассматривать производительность П как функцию только надежности машины, то П зависит в основном от коэффициента К т. и технического использования. Поскольку по мере увеличения наработки коэффициент К т . и уменьшается, необходимо вводить резерв для обеспечения прежней производительности, что связано с затратами c npo ст (t) на приобретение (изготовление) дополнительного числа машин, компенсирующих простои.

Если принять за меру измерения максимально возможную производительность машины стоимостью С о и ресурсом t p в данных условиях, характеризуемую с позиций надежности максимальным коэффициентом технического использования К т.и max . , то затраты на компенсацию простоев

(5.2)

где К т.и .(t) – средний коэффициент за наработку t.

Удельные затраты на приобретение прямо пропорциональны стоимости машины (без остаточной стоимости при списании и стоимости шин) С о и обратно пропорциональны общей производительности или общей наработке t. Следует иметь в виду, что все показатели, влияющие на производительность, кроме t в данном случае надо принимать постоянными. Следовательно, средние удельные затраты на приобретение (изготовление)

Поддержание надежности связано со стоимостями, во-первых, устранения отказов и неисправностей, частота появления которых меняется в зависимости от общей наработки (переменные затраты), и, во-вторых, проведения регулярных работ, например, таких, как смазочные (постоянные затраты). Первые из перечисленных затрат превалируют.

Переменные затраты с п. н (t ) являются функцией наработки t и зависят от стоимости запасных частей с з. ч и материалов с м трудовых затрат на устранение отказов с тр, а также от соответствующей части косвенных расходов. Потери от простоев с прост (t) также учитывают при определении с п.н (t ).

Учитывая сделанные предпосылки, критерий можно записать в виде

(5.4)

где с пн.ср.общ (t ) – общие средние удельные затраты на устранение отказов и неисправностей и на техническое обслуживание,

где с пн.ср (t) – средние удельные затраты на устранение отказов и неисправностей;

с т.о – затраты на техническое обслуживание.

Сформулируем теперь рассматриваемый критерий в окончательном виде. За критерий оптимизации принимают минимальную сумму средних удельных затрат на изготовление (приобретение) машин и поддержание их в работоспособном состоянии, обеспечивающем постоянную, максимально возможную в данных условиях производительность.

Соотношение (5.4) описывает средние удельные затраты в сферах производства (первый член) и эксплуатации (второй член). Но экспериментально определить можно не средние, а удельные интервальные затраты на поддержание надежности в эксплуатации

С пн.ин (t)=с з.ч (t) + с тр (t) + с м (t) + с прост (t). (5.6)

Удельные интервальные затраты, описываемые уравнением (5.6), повышаются по мере увеличения наработки, что объясняется характером изменения параметра потока отказов машины, и коэффициента технической готовности как функций наработки.

Наблюдение за эксплуатацией машин позволяет выявить удельные затраты на поддержание надежности по интервалам наработки с пн.ин (t). Закономерность протекания кривой c n н. н (t) как функции общей наработки определяется аппроксимированием этих данных. Для этого используют формулу степенной функции (в тн./ч)

(5.7)

где b – угловой коэффициент, тн/ч n +1 .

На рис. 5.1 соотношение (5.7) отражено кривой 1 показывающей удельные затраты на поддержание надежности при их интервальной оценке. Однако для использования уравнений (5.4) и (5.5) необходимо определить средние удельные затраты с начала эксплуатации.

Для этого определим площадь под кривой 1 на интервале наработки от 0 до t и поделим ее на t :

(5.8)

Рис.5.1. Удельных затрат на приобретение и поддержание надежности от наработки t

Уравнение (5.8) отражено кривой 2 на рис. 5.1. Ее ординаты меньше ординат кривой 1 в 1/(п + 1) раз, что видно из сопоставления соотношений (5.7) (5.8).

Затем отразим кривой 3 средние удельные затраты на приобретение в соответствии с соотношением (5.3).

Средние суммарные удельные затраты (в тн/ч) на приобретение с пр (t) и поддержание надежности с пн.ср (t) определяются уравнением

(5.9)

и кривой 4.

Поскольку затраты с пн. (t) уменьшается, а с пн. ср (t) повышается по мере увеличения наработки t, то имеется наработка, при которой сумма этих затрат минимальна. Эта наработка и является ресурсом, отклонение от которого приводит к повышению удельных затрат.

Для определения минимальных затрат с уд. min , соответствующих оптимальному ресурсу t p , возьмем производную уравнения (5.9) и приравняем ее нулю (вторая производная положительная)

(5.10)

тысч.ч (5.11)

чем и решается задача определения ресурса по избранному критерию. Однако равенство (5.10) позволяет определить не только ресурс t p ,но и соотношение между затратами на изготовление машины и переменными затратами на поддержание надежности при наработке t = t p .

(5.12)

Правая часть равенства (5.12) отражает суммарные переменные затраты с пн (t p) на поддержание надежности за ресурс t p:

(5.13)

что позволяет использовать равенство (5.12) для нахождения n :

(5.14)

Соотношение (5.14) показывает, что при оптимальном ресурсе t p переменные затраты на поддержание надежности за ту же наработку в п раз меньше стоимости изготовления машины.

В связи с этим можно преобразовать для случая t = t p и с уд = с уд. min уравнения (5.4) и (5.5)

(5.15)

и представить графически (рис. 5.2.) как площади S o суд . min R = А и S otpR = В затраты в производстве и переменные в эксплуатации за ресурс t p .

Отношение этих площадей согласно уравнению (5.14) численно равно п. Чем больше п при прочих равных условиях, тем выше уровень надежности, и наоборот

Рис. 5.2. Затраты на приобретение и поддержание надежности машин

Как показал анализ экспериментальных данных, у моделей машин довоенного выпуска показатель п < 1, послевоенного выпуска п = 1, а текущего производства п = 1,5 с тенденцией увеличения до п = 2.

Уравнение (5.15) позволяет совместно рассматривать п и стоимость объекта С о , выявляя методом последовательного приближения минимальное значение с уд. min . То же относится и к соотношению величин с то, C 0 и с уд. min .

Изменение показателя степени п при t [уравнение (5.7)] приводит к соответствующему изменению соотношения площадей А и В отражающих затраты в производстве и эксплуатации, т. е. изменению уровня надежности. Для увеличения показателя п необходимо снизить затраты на поддержание надежности на наработке от 0 до t < t p .

Это может быть достигнуто увеличением среднего ресурса деталей, лимитирующих надежность, и снижением разброса их ресурса, а также улучшением ремонтопригодности машины, снижающей трудоемкость работ и простои.

Совершенствование показателей долговечности элементов, как правило, повышает затраты на их изготовление. В соответствии с этим увеличивается и стоимость объекта С о . Целесообразность повышения затрат на производство машин проверяют уравнением (5.15) при предварительном выявлении межремонтного ресурса по уравнению (5.11).

Затраты на техническое обслуживание с т. о [уравнение (5.15)] также следует снижать. Но при этом необходимо учитывать, что, во-первых, объем технического обслуживания влияет на скорость изнашивания и, следовательно, на ресурс t p , а во-вторых, снижение с т. о без изменения t p может повысить стоимость машины С о. Проверкой вариантов выявляют оптимальное решение по критерию минимума удельных затрат, что принципиально возможно с использованием электронно-вычислительных машин.

Методика данного расчета, как и вообще сложных инженерных расчетов, связана с применением ряда коэффициентов. Кроме того, прогнозируется эффективность технологических и конструктивных мероприятий, которые отражены в распределениях ресурсов деталей. Поэтому возникает необходимость в опытной эксплуатации и испытаниях, в процессе которых конструкция должна доводится до ранее установленных показателей.

5.2 ОПРЕДЕЛЕНИЕ МЕЖРЕМОНТНОГО РЕСУРСА. УПРАВЛЕНИЕ НАДЕЖНОСТЬЮ МАШИН В ЭКСПЛУАТАЦИИ

Межремонтный ресурс - ресурс между смежными капитальными ремонтами машин. Определяют его принципиально так же, как и ресурс до первого капитального ремонта, но с тем отличием, что стоимость машины С 0 в уравнении (5.11) принимают условно равной стоимости капитального ремонта, что оправдано отсутствием фактических данных по стоимостям машин, направляемым в капитальный ремонт. Межремонтный ресурс меньше, примерно на 20% ресурса до первого капитального ремонта.

Управление надежностью преследует цель полной реализации свойств надежности машин, заложенных при конструировании и обеспеченных производством как новых, так и капитально отремонтированных машин.

Для достижения этого необходимо при регламентированных затратах С пн (t p), определяемых по соотношению (5.13), обеспечить выполнение ресурса по значению не менее t p , рассчитанного по соотношению (5.11). Это требует минимизировать скорость изнашивания деталей и сборочных единиц, что уменьшает удельные затраты на устранение отказов и неисправностей, а следовательно, при одних и тех же суммарных затратах на устранение отказов можно обеспечить больший ресурс t p .

Рис. 5.3. Области допустимых состояний машины

На рис. 5.3 кривые 1 и 4 и ресурс t p отражают результаты подконтрольной эксплуатации и расчетов по аналогии с рис. 5.1. Рассмотрим рис. 5.3 с позиций управления. Под кривой 1 находится пространство (плоскость) возможных состояний управляемой системы – надежности машины, а область допустимых состояний – заштрихованная площадь соответствует затратам С пн (t p).

Основная задача управления заключается в таком воздействии на управляемую систему, чтобы отражающая ее точка не находилась выше кривой 1 , т. е. не занимала положение, показанное кривой 1" , так как в этом случае регламентированные затраты С пн (t p ) будут исчерпаны за ресурс t" p и t" p < t р (заштрихованные площади равны), а суммарные удельные затраты с" уд. min > с уд. min

Последующая задача управления заключается в минимизации ординат отражающей точки. В результате получим кривую 1" и t" p , при этом t" p > t p и c" y д min < с уд min , a площадь под кривой 1", ограниченная абсциссой t" p , вновь будет численно равна С пн (t р ). Для решения этой задачи требуется минимизировать угловой коэффициент b в соотношении (5.7). При этом имеется в виду, что уровень надежности п = const.

Для решения рассмотренных задач необходима информация о состоянии управляемой системы.

В интересах точности желательно располагать систематической информацией о расходе средств на каждую машину по всем составляющим уравнения (5.6). Это практически сложно или даже невозможно.

В реальных условиях эксплуатации в достаточно полной мере учету поддаются лишь затраты на запасные части. Точность и достоверность информации здесь обеспечиваются бухгалтерским учетом. Но именно запасные части, как правило, лимитируют техническое состояние машин. Существует тесная связь (коэффициент корреляции r>= 0,7 ) между затратами на запасные части и поочередно трудовыми затратами А, затратами на материалы В и компенсацию простоев С. Поэтому критерием, характеризующим нормальное использование ресурса, можно считать расход запасных частей как функцию наработки.

Поэтому для управления процессом использования ресурса следует рассчитывать суммарные стоимости С з.ч (t р ) за ресурс и удельные расходы запасных частей с з.ч (t р) по интервалам наработки и рассматривать их в качестве норматива. С учетом сделанных предпосылок преобразуем уравнение (5.6)

с пн. ин (t) = C з. ч + C тр + C м + C прост = C з. ч (1 + A +B + C), (5.16)

затем уравнение (5.12)

(5.17)

и, на конец, уравнение (5.7)

(5.18)

Затем фактические расходы, информация о которых должна быть систематической (например, ежеквартальной), необходимо сопоставить с расчетными нормативными данными по интервалам наработки. Если фактические расходы не превышают нормативных, то процесс эксплуатации данной машины протекает нормально. В противном случае необходимо выявить причину перерасхода (неквалифицированное управление, низкое качество технического обслуживания, применение топлив, масел и смазок, не соответствующих конструкции машины и т. п.) и принять соответствующие меры.

Таким образом, метод управления надежностью машин в эксплуатации сводится к следующему.

1. Устанавливают норму расхода запасных частей (в денежном выражении) по моделям машин и соответствующий ей ресурс. Эта норма является основной, при достижении суммарного нормативного расхода машину направляют в капитальный ремонт или списывают. Ресурс дает возможность судить, правильно ли эксплуатируется машина.

2. Нормы расхода запасных частей устанавливают по интервалам ресурса. Это позволяет обеспечить систематический контроль за техническим состоянием машины, использованием ее ресурса, выявить факты неправильной эксплуатации и своевременного принятия, соответствующих мер

3. Фактический расход запасных частей сопоставляют с нормативным расчетным.

Лекция 6

6. Система планово-предупредительного технического обслуживания и ремонта техники

6.1. Основные понятия и определения системы ППР

Для поддержания машин в исправном и работоспособном состоянии при их эксплуатации используется система планово-предупредительного технического обслуживания и ремонта техники (система ППР и ТО). Система ППР и ТО основана на непрерывном контроле состояния машин, профилактическом характере основных мероприятий и на жестком планировании их по времени выполнения и по объему работ.

Система называется плановой потому, что все её мероприятия осуществляются по заранее разработанному плану, и предупредительной потому, что мероприятия носят предупредительный характер (восстановление работоспособности машины или её узлов не дожидаясь их выхода из строя).

Система ППР – это совокупность взаимосвязанных технических средств, документации и исполнителей, необходимых для поддержания и восстановления качества машин. Система ППР представляет собой комплекс организационно-технических мероприятий, проводимых в плановом порядке для обеспечения работоспособности и исправности машин в течении всего срока их службы при соблюдении заданных условий и режимов эксплуатации.

Система ППР построена на периодичности чередования технических обслуживаний и ремонтов, виды которых, а также периодичность и состав работ установлены заводом изготовителем в эксплуатационной и ремонтной документации для каждой машины

В системе ППР и ТО используются следующие основные понятия и определения .

Межремонтный цикл – время работы машины в часах от начала эксплуатации до первого капитального ремонта или между двумя очередными капитальными ремонтами.

Периодичность ремонтов и ТО – время работы машины в часах между 2-мя очередными одноименными ремонтами или ТО.

Техническое обслуживание – комплекс работ для поддержания исправности или работоспособности машины (объекта) при подготовке и использовании по назначению, при хранении и транспортировке. Комплекс работ должен быть минимальным, но достаточным для решения задач ТО.

Задачами ТО являются:

1) снижение скорости изнашивания;

2) обеспечение требуемого уровня вероятности, безотказной работы в периоды между обслуживаньями;

3) эффективное использование топлива, шин и других эксплуатационных материалов с позиций исправности машин.

Структура межремонтного цикла – количество, периодичность и наименование ремонтов и ТО за межремонтный цикл.

Рис. 6.1. График структуры ремонтного цикла одноковшового экскаватора: периодичности ТО-1, ТО-2, ТО-3 и Т, и К соответственно – 60, 240, 960 и 5760 м.ч.