Принцип действия электродвигателя. Асинхронный двигатель презентация к уроку на тему

Электродвигатели постоянного тока

План лекции: 1. Основные понятия. 2. Пуск двигателя. 3. Двигатель параллельного возбуждения. 4. Двигатель последовательного возбуждения. 5. Двигатель смешанного возбуждения.

1. Основные понятия Коллекторные машины обладают свойством обратимости, т.е. они могут работать как в режиме генератора, так и в режиме двигателя. Поэтому если машину постоянного тока подключить к источнику энергии постоянного тока, то в обмотке возбуждения и в обмотке якоря машины появятся токи. Взаимодействие тока якоря с полем возбуждения создает на якоре электромагнитный момент М, который является не тормозящим, как это имело место в генераторе, а вращающим.

Под действием электромагнитного момента якоря машина начинает вращаться, т.е. машина будет работать в режиме двигателя, потребляя из сети электрическую энергию и преобразуя ее в механическую. В процессе работы двигателя его якорь вращается в магнитном поле. В обмотке якоря индуцируется ЭДС Еа, направление которой можно определить по правилу «правой руки». По своей природе она не отличается от ЭДС, наводимой в обмотке якоря генератора. В двигателе же ЭДС направлена против тока Iа, и поэтому ее называют противоэлектродвижущей силой (противо­ЭДС) якоря (рис. 1).

Рис. 1. Направление противо­ЭДС в обмотке якоря двигателя Направление вращения якоря зависит от направлений магнитного потока Ф и тока в обмотке якоря. Поэтому, изменив направление какой­либо из указанных величин, можно изменить направление вращения якоря. При переключении общих зажимов схемы у рубильника не дает изменения направления вращения якоря, так как при этом одновременно изменяется направление тока и в обмотке якоря, и в обмотке возбуждения.

2. Пуск двигателя При непосредственном подключении двигателя к сети в обмотке его якоря возникает пусковой ток: Ia’ = U/ = Σr. Обычно сопротивление Σr невелико, поэтому значение пускового тока достигает недопустимо больших значений, в 10 – 20 раз превышающих номинальный ток двигателя. Такой большой пусковой ток опасен для двигателя, он может вызвать в машине круговой огонь, при таком токе в двигателе развивается чрезмерно большой пусковой момент, который оказывает ударное действие на вращающиеся части двигателя и может механически их разрушить.

Рис. 2. Схема включения пускового реостата Перед пуском двигателя необходимо рычаг Р реостата поставить на холостой контакт 0 (рис. 2). Затем включают рубильник, переводя рычаг на первый промежуточный контакт 1 и цепь якоря двигателя оказывается подключенной к сети через наибольшее сопротивление реостата rп р = r1 + r2 + r3 + r4.

Для пуска двигателей большей мощности применять пусковые реостаты нецелесообразно, так как это вызвало бы значительные потери энергии. Кроме того, пусковые реостаты были бы громоздкими. Поэтому в двигателях большой пуск мощности двигателя напряжения. Примерами тяговых двигателей электровоза переключением их с последовательного соединения при пуске на параллельное при нормальной работе или пуск двигателя в схеме «генератор – двигатель». применяют путем этого безреостатный понижения являются пуск

3. Двигатель параллельного возбуждения Схема включения в сеть двигателя параллельного возбуждения показана на рис. 3, а. Характерной особенностью этого двигателя является то, что ток в обмотке возбуждения не зависит от тока нагрузки. Реостат в цепи возбуждения rрг служит для регулирования тока в обмотке возбуждения и магнитного потока главных полюсов. двигателя определяются его регулировочными характеристиками, под которыми понимают зависимость частоты вращения n, тока I, полезного момента М2, вращающегося момента М от мощности на валу двигателя Р2 при U = const и Iв = const (рис. 3, б). Эксплуатационные свойства

Рис. 3. Схема двигателя параллельного возбуждения (а) и его рабочие характеристики (б) Изменение частоты вращения двигателя при переходе от номинальной нагрузки к ХХ, выраженное в процентах, называют номинальным изменением частоты вращения:

собой прямую Если пренебречь реакцией якоря, то (так как Iв = const) можно принять Ф = const. Тогда механическая характеристика двигателя параллельного возбуждения представляет несколько наклоненную к оси абсцисс (рис. 4, а). Угол наклона механической характеристики тем больше, чем больше значение сопротивления, включенного в цепь якоря. при Механическую отсутствии дополнительного сопротивления в цепи якоря 1). Механические характеристики двигателя, полученные при введении дополнительного сопротивления в цепь якоря, называют искусственными (прямые 2 и 3). естественной характеристику двигателя линию, называют (прямая

Рис. 45.4. Механические характеристики двигателя параллельного возбуждения: а – при введении в цепь якоря добавочного сопротивления; б – при изменении основного магнитного потока; в – при изменении напряжения в цепи якоря Вид механической характеристики зависит также от значения основного магнитного потока Ф. Так, при увеличении Ф увеличивается частота вращения ХХ n0 и одновременно увеличивается Δn.

4. Двигатель последовательного возбуждения В этом двигателе обмотка возбуждения включена последовательно в цепь якоря (рис. 5, а), поэтому магнитный поток Ф в нем зависит от тока нагрузки I = Ia = Iв. При необходимых нагрузках магнитная система машины не насыщена и зависимость магнитного потока от тока нагрузки прямо пропорциональна, т.е. Ф = kфIa. В этом случае найдем электромагнитный момент: М = смkфIaIa = см’ Ia2.

Рис. 5. Двигатель последовательного возбуждения: а – принципиальная схема; б – рабочие характеристики; в – механические характеристики, 1 – естественная характеристика; 2 – искусственная характеристика Вращающий момент двигателя при ненасыщенном системы пропорционален а частота вращения обратно состоянии магнитной квадрату пропорциональна току нагрузки. тока,

5, б На рис. представлены рабочие характеристики М = f(I) и n = f(I) двигателя последовательного возбуждения. При больших нагрузках наступает насыщение магнитной системы двигателя. В этом случае магнитный поток при возрастании нагрузки почти не изменится, и характеристики двигателя приобретают почти прямолинейный характер. Характеристика частоты последовательного, вращения возбуждения показывает, что частота вращения двигателя значительно меняется при изменениях нагрузки. Такую характеристику принято называть мягкой. двигателя

2) обеспечивают n характеристики возбуждения Механические двигателя = f(M) последовательного представлены на рис. 5, в. Резко падающие кривые механических характеристик (естественная 1 и искусственная двигателю последовательного возбуждения устойчивую работу при любой механической нагрузке. Свойство этих двигателей развивать большой вращающий момент, пропорциональный квадрату тока нагрузки, имеет важное значение, особенно в тяжелых условиях пуска и при перегрузках, так как с постепенным увеличением нагрузки двигателя мощность на его входе растет медленнее, чем вращающий момент.

Рис. 6. Регулирование частоты вращения двигателей 2) обеспечивают последовательного возбуждения характеристики возбуждения двигателя Механические f(M) = последовательного представлены на рис. 5, в. Резко падающие кривые механических характеристик (естественная 1 и двигателю искусственная последовательного возбуждения устойчивую работу n

Частоту вращения двигателей последовательного возбуждения можно регулировать изменением либо напряжения U, либо магнитного потока обмотки возбуждения. В первом случае в цепь якоря последовательно включают регулировочный реостат Rрг (рис. 6, а). С увеличением сопротивления этого реостата уменьшаются напряжение на входе двигателя и частота его вращения. Этот метод регулирования применяют в двигателях небольшой мощности. В случае способ значительной мощности двигателя неэкономичен из­за больших потерь энергии в Rрг. Кроме того, реостат Rрг, рассчитываемый на рабочий и ток дорогостоящим. громоздким этот двигателя, получается

При совместной работе нескольких однотипных двигателей частоту вращения регулируют изменением схемы их включения относительно друг друга (рис. 6, б). Так при параллельном включении двигателей каждый из них оказывается под полным напряжением сети, а при последовательном включении двух двигателей каждый двигатель приходится половина напряжения сети. При одновременной работе большего числа двигателей возможно большее количество вариантов включения. Этот способ регулирования частоты вращения применяют в электровозах, где установлено несколько однотипных тяговых двигателей. на

Изменение подводимого к двигателю напряжения возможно также при питании двигателя от источника постоянного тока с регулируемым напряжением (например, по схеме, аналогичной рис. 7, а). При уменьшении подводимого к двигателю напряжения его механические характеристики смещаются вниз, практически не меняя своей кривизны (рис. 8). частоту вращения rрг; Регулировать двигателя изменением магнитного потока можно тремя способами: шунтированием обмотки возбуждения обмотки реостатом якоря возбуждения; шунтированием реостатом rш. секционированием обмотки

«Статическое электричество» - Лишнее электричество обязательно должно выводиться из организма способом заземления. Одежда. Результаты заземления. На протяжении тысячелетий наши предки ходили по земле босиком, заземляясь естественным путем. Нормализация давления. «Лишнее» электричество может привести к серьёзным сбоям в работе органов и систем.

«Силы тела» - Сила действует на связь, а реакция связи на тело. Окружность. Гладкой считается поверхность, трением о которую можно пренебречь. Принцип Даламбера. Теорема о скорости точки в сложном движении. Сила является скользящим вектором. Цилиндрический шарнир. Теорема Вариньона. Теорема о сложении пар сил. Жесткая заделка.

«История электричества» - XX век - появление и бурное развитие электроники, микро/нано/пико-технологий. История освоения электричества. XIX век - Фарадей вводит понятие электрического и магнитного полей. XXI век - электрическая энергия окончательно стала неотъемлемой частью жизни. XXI век - отключение электроснабжения в бытовой и производственной сетях.

«Атомные ядра» - Схема устройства атомной электростанции. Сверхтяжелые ядра (A > 100). Размеры ядер. Ядерные силы. Деление ядер. Магнитное поле создается сверхпроводящими обмотками. N ? Z диаграмма атомных ядер. Рассеяние?-частицы в кулоновском поле ядра. Опыт Резерфорда. Модели атомных ядер. Синтез ядер. Масса и энергия связи ядра.

«Что изучает физика» - Вступительное слово учителя. Пуск ракеты. Техника. Что изучает физика? Извержение вулкана. Горение. Физика. Аристотель –величайший мыслитель древности. Тепловые явления природы. Магнитные явления природы. Аристотель ввёл понятие «физика» (от греческого слова «фюзис» - природа). Знакомство учащихся с новым предметом школьного курса.

«Игорь Васильевич Курчатов» - Его мать была учительницей, отец - землемером. Белоярская АЭС носит имя Курчатова. И.В.Курчатов - депутат Верховного Совета СССР третьего и пятого созывов. Биография Курчатова И.В, как выдающегося советского физика. Именем Курчатова, в 1960 году, назван основанный им Институт атомной энергии. Кто же такой КурчатовИ.В?

Всего в теме 19 презентаций

Электрический двигатель - электрическая машина
(электромеханический преобразователь), в которой электрическая
энергия преобразуется в механическую, побочным эффектом
является выделение тепла.
Электродвигатели
Переменного тока
Синхронные
Асинхронные
Постоянного тока
Коллекторные
Бесколлекторные
Универсальные
(могут питаться
обоими видами
тока)

В основу работы любой электрической машины положен
принцип электромагнитной индукции.
Электрическая машина состоит из:
неподвижной части - статора (для асинхронных и синхронных
машин переменного тока) или индуктора (для машин
постоянного тока)
подвижной части - ротора (для асинхронных и синхронных
машин переменного тока) или якоря (для машин постоянного
тока).

Обычно ротор – это расположение магнитов в форме цилиндра,
часто образованного катушками тонкой медной проволоки.
Цилиндр имеет центральную ось и называется “ротором” потому,
что ось позволяет ему вращаться, если мотор построен
правильно. Когда через катушки ротора пропускается
электрический ток, весь ротор намагничивается. Именно так
можно создать электромагнит.

8.2 Электродвигатели переменного тока

По принципу работы двигатели переменного тока разделяются
на синхронные и асинхронные двигатели.
Синхронный электродвигатель - электродвигатель
переменного тока, ротор которого вращается синхронно
с магнитным полем питающего напряжения. Данные двигатели
обычно используются при больших мощностях (от сотен киловатт
и выше).
Асинхронный электродвигатель- электродвигатель
переменного тока, в котором частота вращения ротора отличается
от частоты вращающего магнитного поля, создаваемого питающим
напряжением. Эти двигатели наиболее распространены в
настоящее время.

Принцип действия трехфазного асинхронного электродвигателя
При включении в сеть в статоре возникает круговое вращающееся
магнитное поле, которое пронизывает короткозамкнутую обмотку
ротора и наводит в ней ток индукции. Отсюда, следуя закону
Ампера, ротор приходит во вращение. Частота вращения ротора
зависит от частоты питающего напряжения и от числа пар
магнитных полюсов. Разность между частотой вращения
магнитного поля статора и частотой вращения ротора
характеризуется скольжением. Двигатель называется асинхронным,
так как частота вращения магнитного поля статора не совпадает с
частотой вращения ротора. Синхронный двигатель имеет отличие в
конструкции ротора. Ротор выполняется либо постоянным
магнитом, либо электромагнитом, либо имеет в себе часть беличьей
клетки (для запуска) и постоянные или электромагниты. В
синхронном двигателе частота вращения магнитного поля статора и
частота вращения ротора совпадают. Для запуска используют
вспомогательные асинхронные электродвигатели, либо ротор с
короткозамкнутой обмоткой.

Трёхфазный асинхронный двигатель

Для расчета характеристик асинхронного двигателя и
исследования различных режимов его работы удобно использовать
схемы замещения.
При этом реальная асинхронная машина с электромагнитными
связями между обмотками заменяется относительно простой
электрической цепью, что позволяет существенно упростить
расчет характеристик.
С учетом того, что основные уравнения асинхронного двигателя
аналогичны таким же уравнениям трансформатора,
схема замещения двигателя такая же, как и у трансформатора.
T-образная схема замещения асинхронного двигателя

При расчете характеристик асинхронного двигателя с
использованием схемы замещения ее параметры должны быть
известны. Т-образная схема полностью отражает физические
процессы, происходящие в двигателе, но сложна при расчете
токов. Поэтому большое практическое применение для анализа
режимов работы асинхронных машин находит другая схема
замещения, в которой намагничивающая ветвь подключена
непосредственно на входе схемы, куда подводится напряжение U1.
Данная схема называется Г-образной схемой замещения.

Г-образная схема
замещения асинхронного
двигателя (а) и ее
упрощенный вариант (б)

У разных механизмов в качестве электропривода служит
асинхронный двигатель, который прост и надежен. Эти двигатели
несложны в изготовлении и дешевы по сравнению с другими
электрическими двигателями. Они широко применяются как в
промышленности, в сельском хозяйстве, так и в строительстве.
Асинхронные двигатели используются в электроприводах
различной строительной техники, в подъемных странах.
Способность работы такого двигателя в режиме повторнократковременного, дает возможность его использования в
строительных кранах. Во время отключения от сети двигатель не
охлаждается и во время работы не успевает нагреться.

8.3. Электродвигатели
постоянного тока

Коллекторный электродвигатель
Самые маленькие двигатели данного типа (единицы ватт)
применяются, в основном, в детских игрушках (рабочее
напряжение 3–9 вольт). Более мощные двигатели (десятки ватт)
применяются в современных автомобилях (рабочее напряжение
12 вольт): привод вентиляторов систем охлаждения и
вентиляции, дворников.

Коллекторные двигатели могут преобразовывать, как
электрическую энергию в механическую, так и наоборот. Из этого
следует, что он может работать, как двигатель и как генератор.
Рассмотрим принцип действия на электродвигателе.
Из законов физики известно, что, если через проводник,
находящийся в магнитном поле пропустить ток, то на него начнет
действовать сила.
Причем, по правилу правой руки. Магнитное поле направлено от
северного полюса N к южному S, если ладонь руки направить в
сторону северного полюса, а четыре пальца по направлению тока
в проводнике, то большой палец укажет направление
действующей силы на проводник. Вот основа работы
коллекторного двигателя.

Но как мы знаем маленькие правила и создают нужные вещи. На
этой основе была создана рамка вращающаяся в магнитном поле.
Для наглядности рамка показана в один виток. Как и в прошлом
примере, в магнитном поле помещены два проводника, только ток в
этих проводниках направлен в противоположные стороны,
следовательно и силы то же. В сумме эти силы дают крутящий
момент. Но это еще теория.

На следующем этапе был создан простой коллекторный двигатель.
Отличается он от рамки наличием коллектора. Он обеспечивает
одинаковое направление тока над северным и южным полюсами.
Недостаток данного двигателя в неравномерности вращения и
невозможности работать на переменном напряжении.
Следующим этапом неравномерность хода устранили путем
размещения на якоре еще нескольких рамок (катушек), а от
постоянного напряжения отошли заменой постоянных магнитов
на катушки, намотанные на полюс статора. При протекании
переменного тока через катушки изменяется направление тока, как
в обмотках статора, так и якоря, следовательно, крутящий момент,
как при постоянном, так и при переменном напряжении будет
направлен в одну и ту же сторону, что и требовалось доказать.

Устройство коллекторного электродвигателя

Бесколлекторный электродвигатель
Бесколлекторные двигатели постоянного тока называют так же
вентильными. Конструктивно бесколлекторный двигатель состоит
из ротора с постоянными магнитами и статора с обмотками. В
коллекторном двигателе наоборот, обмотки находятся на роторе.

Чтобы пользоваться предварительным просмотром презентаций создайте себе аккаунт (учетную запись) Google и войдите в него: https://accounts.google.com


Подписи к слайдам:

КОЛЛЕКТОРНЫЙ ЭЛЕКТРОДВИГАТЕЛЬ Разработал учитель технологии высшей категории, Почетный работник Начального Профессионального Образования Российской Федерации МБОУ «СОШ № 7» г. Калуги Герасимов Владислав Александров

Что общего между этими электроприборами?

КОЛЛЕКТОРНЫЙ ЭЛЕКТРОДВИГАТЕЛЬ

ИСТОРИЯ. Первый коллекторный электродвигатель был сконструирован в России русским ученым Якоби Борисом Семеновичем в 1838 году. К 70-м годам 19 века электродвигатель был уже на столько усовершенствован, что в таком виде сохранился до наших дней.

Борис Семёнович Якоби

Назначение: Преобразование электрической энергии в механическую. Механическая энергия приводит в движение рабочие части машин и механизмов.

Принцип действия: Электрический ток от источника (батареи гальванических элементов) подается в обмотку через специальные скользящие контакты – щетки. Это две упругие металлические пластины, которые соединены проводниками с полюсами источника тока и прижаты к коллектору. Когда по обмотке якоря идет электрический ток, ротор под действием магнита начинает вращаться.

Общее устройство электродвигателя 1-подшипники, 2-задняя крышка статора, 3-обмотка, 4-якорь, 5-сердечник, 6-обмотка якоря, 7-коллектор, 8-передняя крышка, 9-вал, 10-крыльчатка.

Самые маленькие двигатели данного типа. трёхполюсной ротор на подшипниках скольжения; коллекторный узел из двух щёток - медных пластин; двухполюсной статор из постоянных магнитов. Применяются, в основном, в детских игрушках (рабочее напряжение 3-9 вольт).

Мощные двигатели (десятки Ватт), как правило, имеют: многополюсный ротор на подшипниках качения; коллекторный узел из четырёх графитовых щёток; четырёхполюсный статор из постоянных магнитов. Именно такой конструкции большинство электродвигателей в современных автомобилях (рабочее напряжение 12 или 24 Вольт): привод вентиляторов систем охлаждения и вентиляции, «дворников», насосов омывателей.

Коллекторное мотор -колесо, 24вольта 230 ватт.

Двигатели мощностью в сотни Ватт В отличие от предыдущих, содержат четырёхполюсный статор из электромагнитов. Обмотки статора могут подключаться несколькими способами: последовательно с ротором (так называемое последовательное возбуждение), преимущество: большой максимальный момент, недостаток: большие обороты холостого хода, способные повредить двигатель.

параллельно с ротором (параллельное возбуждение) преимущество: большая стабильность оборотов при изменении нагрузки, недостаток: меньший максимальный момент часть обмоток параллельно с ротором, часть последовательно (смешанное возбуждение) до некоторой степени совмещает достоинства предыдущих типов, пример - автомобильные стартёры. отдельным источником питания (независимое возбуждение) характеристика аналогична параллельному подключению, однако обычно может регулироваться.

Электродвигатель постоянного тока с параллельным возбуждением

Электродвигатель постоянного тока с последовательным возбуждением

Способы изменение частоты вращения вала электродвигателя Путём изменения величины тока возбуждения статора. Чем больше сила тока в статоре, тем выше частота вращения вала электродвигателя

Преимущества электродвигателей. Отсутствие во время работы вредных выбросов Не требуют постоянного обслуживания Можно установить в любом месте Работают в условиях вакуума Не используют легковоспламеняющиеся вещества (бензин, дизельное топливо) Простота использования

Отказы в работе коллекторного электродвигателя Условия эксплуатации и сроки службы двигателей в бытовых машинах различны. Различны и причины выхода их из строя. Установлено, что 85-95% отказывают в работе из за повреждений изоляции обмоток распределяемых следующим образом: 90% межвитковых замыканий и 10% повреждений и пробоев изоляции на корпус. Затем идет износ подшипников, деформация стали ротора или статора и изгиб вала.

Технологический процесс ремонта включает следующие основные операции:

Предремонтные испытания Наружную очистку от грязи и пыли Разборку на узлы и детали Удаление обмоток Мойку узлов и деталей Дефектовку узлов и деталей Ремонт и изготовление узлов и деталей Сборку ротора Изготовление и укладку обмоток Сушильно-пропиточные работы Механическую обработку ротора в собранном виде и его балансировку Комплектовку узлов и деталей Сборку электродвигателей Испытания после ремонта Внешнюю отделку

Подведение итогов урока. Что такое электродвигатель? В каких устройствах применяются коллекторные электродвигатели? Из каких частей состоит коллекторный электродвигатель? Какой принцип лежит в основе работы коллекторного электродвигателя?


Электродвигатели

  • Цель: изучить устройство и принцип действия эл. двигателей различных конструкций; ознакомиться с принципом работы асинхронного двигателя (однофазного)
Электродрель
  • Где в быту и промышленности применяют электродвигатели?
  • Электродрель
  • Стиральная машина
  • Пылесос
  • Электробритва
  • Швейная машина
  • Электротранспорт и т.д.
В электродрели применяется коллекторный электродвигатель
  • Электродрель
  • В электродрели применяется коллекторный электродвигатель
  • Электродвигатель
На стиральных машинах применяется асинхронный однофазный электродвигатель
  • Стиральная машина
  • На стиральных машинах применяется асинхронный однофазный электродвигатель
  • электродвигатель
В пылесосах применяется коллекторный электродвигатель
  • пылесос
  • В пылесосах применяется коллекторный электродвигатель
  • электродвигатель
Для движения трамваев, троллейбусов, электропоездов, используются электродвигатели большой мощности.
  • электротранспорт
  • Для движения трамваев, троллейбусов, электропоездов, используются электродвигатели большой мощности.
Коллекторный электродвигатель является универсальным и может работать как от постоянного так и от переменного тока.
  • Устройство коллекторного электродвигателя
          • Коллекторный электродвигатель является универсальным и может работать как от постоянного так и от переменного тока.
  • якорь
  • коллектор
  • Станина
  • индуктора
Изменяя напряжение на щётках двигателя можно регулировать скорость вращения ротора. Благодаря этому коллекторный двигатель используют в тех машинах, где необходимо изменять скорость вращения механизмов. а также электротранспорт)
  • Особенности работы коллекторного электродвигателя.
  • Изменяя напряжение на щётках двигателя можно регулировать скорость вращения ротора. Благодаря этому коллекторный двигатель используют в тех машинах, где необходимо изменять скорость вращения механизмов. (кухонные электроприборы; электродрель; электробритва; фен; магнитофоны; швейная машина; электрические столярные инструменты и т.д., а также электротранспорт)
  • щётки
  • коллектор
  • Обмотка ротора
Принцип действия двигателя основан на взаимодействии
  • Как работает коллекторный электродвигатель?
  • Принцип действия двигателя основан на взаимодействии
  • проводника (якоря) с электрическим током и магнитным полем,
  • создаваемым электромагнитом (индуктором) . Механическая сила,
  • возникающая при таком взаимодействии, заставляет вращаться
  • якорь (ротор).
  • Такие двигатели подразделяются на:
  • Двигатели переменного тока, станина и сердечник у которых выполнены из листов электротехнической стали;
  • Двигатели постоянного тока, у которых названные детали изготавливаются сплошными.
  • Обмотка возбуждения электромагнита в двигателях переменного тока включается последовательно с обмоткой якоря, что обеспечивает большой пусковой момент.
Далее рассмотрим принцип работы асинхронного двигателя.
  • Устройство асинхронного электродвигателя
  • Далее рассмотрим принцип работы асинхронного двигателя.
  • ротор
  • статор
Принцип работы асинхронного двигателя основан на взаимодействии вращающегося магнитного поля с токами, которые наводятся полем в проводниках коротко замкнутого ротора.
  • Работа асинхронного двигателя
  • Принцип работы асинхронного двигателя основан на взаимодействии вращающегося магнитного поля с токами, которые наводятся полем в проводниках коротко замкнутого ротора.
  • Ротор укреплён в подшипниках и поэтому приходит в движение в направлении вращающегося ротора.
  • конструктивно асинхронный двигатель состоит из двух основных частей:
  • - неподвижной – статора;
  • - подвижной – ротора.
  • Статор имеет три обмотки, намотанные под углом 120°. Ротор имеет обмотку ь в виде беличьего колеса.
Асинхронные двигатели имеют свои:
  • Работа асинхронного двигателя
  • Асинхронные двигатели имеют свои:
  • * преимущества – просты по устройству, надёжны в работе и применяются во всех отраслях народного хозяйства;
  • * недостатки – невозможность получения постоянного числа оборотов (по сравнению с коллекторными); при пуске имеет большой ток, чувствительны к колебаниям напряжения в сети.
  • Из общего количества выпускаемых электродвигателей - 95% - асинхронные.
В отличии от коллекторного двигателя, где происходит трение угольных щёток по коллектору, в асинхронном двигателе обмотки расположены в статоре, поэтому не имея трущихся деталей срок службы асинхронного двигателя значительно выше коллекторного, а спектр применения его значительно шире.
  • Особенности работы асинхронного электродвигателя
  • В отличии от коллекторного двигателя, где происходит трение угольных щёток по коллектору, в асинхронном двигателе обмотки расположены в статоре, поэтому не имея трущихся деталей срок службы асинхронного двигателя значительно выше коллекторного, а спектр применения его значительно шире. (стиральные машины, пылесосы, деревообрабатывающие и металлообрабатывающие станки, вентиляторы, насосы, компрессоры и т. д.
  • Я к о р ь
  • обмотки
Для использования трёхфазного двигателя в быту, где однофазная электропроводка, в схему необходимо подключать конденсатор. Недостатком такого способа является использование дорогостоящих бумажных конденсаторов.
  • Использование трёхфазного двигателя в быту
  • Для использования трёхфазного двигателя в быту, где однофазная электропроводка, в схему необходимо подключать конденсатор. Недостатком такого способа является использование дорогостоящих бумажных конденсаторов. (на каждые 100Вт мощности 10Мкф на напряжение 250-450В.
  • Включение асинхронного однофазного двигателя в сеть
  • В бытовых машинах применяются однофазные асинхронные двигатели которые имеют две обмотки:
  • # рабочую; # пусковую; Обмотки расположены под углом 90°. При включении в сеть образуется вращающееся магнитное поле, и короткозамкнутый ротор приходит во вращение, после чего пусковую обмотку отключают.
  • пусковая обмотка
  • ~ 220В
  • Определите, какой вид электродвигателя используется в данной бытовой технике.
  • Определите какой вид электродвигателя используется в промышленной технике.