Как работает турбина в автомобиле. Эксплуатация и техническое обслуживание автомобильных турбин

Читая описания новых спортивных моделей от того или иного автопроизводителя, часто встречаешь термин "турбонаддув". Турбокомпрессоры, динамика, скоростные качества - это одна из самых будоражащих тем для каждого автолюбителя. Можно много говорить о респектабельности и комфорте, но классный спорткар просто притягивает к себе взгляды.

Давайте рассмотрим, в чём заключается главная особенность и как работает турбонаддув?

Различные производители постоянно внедряют новые технологии, направленные на повышение производительности двигательных агрегатов. И надо признать, что есть определённый прогресс, так как появляется всё больше и больше новых технологий. Хотя при этом многие признают, что суть остаётся та же.

Технология "наддува"

Термин "наддув" обозначает процесс повышения свежего заряда топлива в двигателе внутреннего сгорания, благодаря искусственному повышению давления. Данная технология предназначается в первую очередь для повышения мощности. При самых удачных раскладах, показатель улучшается до 45%.

Наиболее распространённым является так называемый агрегатный наддув, известный в широких кругах как "турбонаддув". И ключевым элементом в данном случае является турбокомпрессор.

Правда механический компрессор постепенно уходит в прошлое, вместо него производители применяют турбину.

Он основывается на более продуманной утилизации отработанных газов. Их энергия за счёт нагнетания давления используется для повышения мощности. В итоге удаётся заметно повысить производительность.

При работе в двигателе сгорает топливо, за счёт чего вырабатывается энергия для движения. Однако выхлопные газы после этого просто выходят наружу. Турбонаддув позволяет использовать их для повышения мощности.

Для этого используется турбина.

    Газы попадают на крыльчатку, приводя её в движение.

    На одном валу с ней располагается компрессор, который непосредственно нагнетает давление в цилиндрах.

В обычной системе воздух попадает естественным путём, за счёт разрежения при открытии поршня.

Искусственное нагнетания приводит к тому, что внутрь цилиндра попадает больше воздушно-топливной смеси. А это в свою очередь приводит к выработке большей мощности при сгорании. Именно так работает турбонаддув в машине.

Агрегатный турбонаддув предназначается исключительно для того, чтобы повысить мощность двигателя и его КПД.

Технология применяется в тех случаях, когда требуется сделать мотор более мощным, сохраняя при этом его габариты и размеры. Главное достоинство заключается в том, что повышается мощность без повышения оборотов двигателя.

Компрессор позволяет искусственно нагнетать давление в системе, за счёт чего увеличивается объём сгораемого топлива, и соответственно повышается мощность. Автомобиль начинает на тех же оборотах двигаться гораздо быстрее.

Недостатки турбонаддува

У турбокомпрессора есть и свои минусы. За скорость необходимо платить. В первую очередь, конечно, это выражается в расходе топлива. В зависимости от регулировки наддува и особенностей той или иной модели расход топлива может значительно возрастать.

Повышенная мощность и увеличенный объём сгораемого топлива приводит к тому, что температура при такте сжатия повышается в разы. Это в свою очередь создаёт опасность возникновения детонации. И чтобы избежать этого требуется установка дополнительных элементов - промежуточных охладителей, регуляторы степени сжатия и т.д.

Система включает в себя несколько элементов:

    Турбокомпрессор;

    Интеркулер;

    Регулировочный клапан (поддерживающий заданное давление);

    Перепускной клапан;

    Выпускной коллектор.

Также современные системы турбонаддува оснащаются многочисленными датчиками, позволяющими лучше контролировать весь процесс.

Многие производители сейчас устанавливают свои собственные версии турбонаддува, в том числе и на дизельные версии. В целом они демонстрируют довольно неплохие результаты. Автомобилисты при покупке получают возможность выбрать ту версию, которая им подходит больше всего. Это касается не только наличия дополнительных опций, но и двигателя. Производители же постоянно работают над повышением эффективности - снижение расхода топлива и одновременное улучшение динамических характеристик автомобиля.

Видео

Подробнее о работе турбины смотрите следующий видеоматериал:

Всё большее количество производителей автомобилей устанавливают турбину или турбокомпрессор. Популярность этого агрегата в последнее время значительно возросла. Но чем обусловлен столь высокий интерес производителей машин к установке турбин?

Турбина представляет собой технически сложный агрегат, позволяющий существенно увеличить мощность мотора машины даже с небольшим объёмом двигателя. Сегодня все производители автомобилей озадачились ввиду его значительного подорожания.

Но установка мотора малой мощности на машину среднего и премиум диапазона со значительной массой способна превратить езду в настоящее мучение. Удовольствие от поездок на маломощном автомобиле будет сомнительным. Именно турбина своим появлением позволила решить проблему повышения мощности мотора без увеличения его объёма.

Как работает турбина?

Турбина нагнетает большое количество воздуха в цилиндры двигателя машины. Всё это даёт возможность получить обогащённую воздушно-топливную смесь, значительно увеличивающую мощность мотора. После нажатия на педаль газа автомобиль словно получает невидимый «пинок» значительно ускоряясь. Именно так работает агрегат.

С одинаковой эффективностью турбина может использоваться как на дизельном, так и бензиновом моторе. Конструктивно турбокомпрессор и двигатель транспортного средства представляют собой единое целое. Принцип работы агрегата достаточно простой. Именно поэтому ресурс эксплуатации турбины одинаков с ресурсом мотора машины при условии правильной эксплуатации и своевременного ухода.

Основные причины выхода из строя турбины?

Причины выхода из строя автомобильных турбин могут быть различные и зависят от одного или совокупности факторов:

  • механическое повреждение корпуса или крыльчатки;
  • люфт крыльчатки;
  • недостаточный уровень моторного масла;
  • коррозийные процессы;
  • неправильная установка турбины;
  • редкая замена моторного масла.

Турбокомпрессор автомобиля достаточно требователен к уходу и нуждается в правильной эксплуатации. Необходимо помнить, что ремонт турбины достаточно дорогое удовольствие.

Как можно определить выход из строя турбины?

Опытные водители достаточно просто могут определить неисправность турбины автомобиля. Но зачастую подобная диагностика не может установить, что именно привело к поломке агрегата.

Среди основных признаков неисправности турбокомпрессора можно выделить следующие:

  • появление неприятного свиста под капотом машины при разгоне;
  • значительные в районе установки турбины или ;
  • включение значка неисправности двигателя на панели приборов;
  • значительное снижение мощности мотора.

При выявлении вышеперечисленных признаков необходимо как можно быстрее обратиться за помощью к специалистам. Они, используя специальное оборудование, смогут установить причину выхода из строя турбокомпрессора. Сегодня необязательно приобретать новую турбину можно провести капитальный ремонт неисправного агрегата.

Спасибо за внимание, удачи вам на дорогах.

В этой статье мы ознакомимся с ответом на вопрос, что такое турбина. Здесь читатель найдет информацию о ее характеристике, видах и способах эксплуатации человеком, а также рассмотрим исторические сведенья, связанные с развитием этого механического устройства.

Введение

Что такое турбина и как она действует? Это лопаточная система (машина), которая занимается преобразованием энергий: внутренней и/или кинетической. Этот ресурс дает рабочее тело и позволяет выполнять валу его механическое предназначение. На лопатки оказывают воздействие посредством струи рабочего тела, что закрепляют около окружностей роторов. Она же приводит к их движению.

Может находить свое применение в качестве турбины электростанций (АЭС, ТЭС, ГЭС), фрагмента приводов для различного типа транспортов, а также может служить составной частью гидронасосов и газотурбинных двигателей. Настоящая энергетическая промышленность не способна обходиться без этих устройств. Вид теплопередачи вращения турбины на тепловых электростанциях, обладает высокой производительностью, он очень энергоемкий. Это позволяет человеку использовать различные ресурсы в относительно малых количествах, в сравнение с объемом получаемого электричества.

Исторические данные

Множество попыток создать устройство, схожее с современной турбиной, было совершено еще задолго до ее полноценного вида, приобретенного ею в конце девятнадцатого века. Первая попытка принадлежит Герону Александрийскому (1 век н.э.).

И. В. Линде утверждал, что именно в XIX веке была рождена масса планов и проектов, позволивших человеку превзойти «материальные трудности», мешающие выполнению и созданию такой техники. Главными событиями тех годов являлось развитие термодинамической науки, а также металлургической и машиностроительной отраслей. В конце XIX два ученых, по отдельности и независимо, смогли создать паровую турбину, пригодную в различных отраслях промышленности. Это были Густав Лаваль родом из Швеции и Чарлз Парсонс родом из Великобритании.

Хронологические данные событий

А теперь ознакомимся с некоторыми событиями, связанными с историей изобретения турбины :

  • В I в. н. э. паровую турбину попытался создать Герон Александрийский, однако несколько столетий после этого ее не изучали в силу ошибочного мнения о несостоятельности идеи.
  • В 1500 г. можно найти упоминание о «дымовом зонте» - приборе, поднимающем горячие потоки воздуха от пламени через лопасти, соединенные между собой и вращающие вертел.
  • Джованни Бранкой в 1629 г., было совершено создание турбины, лопатки которой поднимались за счет действия сильной струи пара.
  • В 1791 г., Джоном Барбером родом из Англии было приобретено право на владение патентом, который позволил ему стать первым обладателем и создателем современной газовой турбины.
  • Турбины, работающие на воде, впервые были созданы в 1832 г. французским ученым Бюрденом.
  • В 1894 г. была запатентована идея о корабле, который заставляла двигаться паровая турбина, а его обладателем стал Сэр Ч. Парсонс.
  • 1903 год: Эджидиус Эллинг из Норвегии сконструировал первую в своем роде турбинную систему на газе, которая смогла передавать больше энергии, чем затрачивать на внутреннее обслуживание компонентов самой турбины. Эта технология стала значительным прорывом тех времен. Проблемы обуславливались недостаточным уровнем развития термодинамических знаний, однако были преодолены.
  • В 1913 году Никола Тесла стал обладателем патента на турбину, работающую на основе эффекта пограничного слоя.
  • 1920 год: практическая теория протекания газового потока через каналы позволила сформулировать четкие данные для развития теоретического представления о процессе протекания, в котором газ движется вдоль аэродинамической плоскости. Эта работа была проделана доктором А. А. Грифицем.
  • Для самолета турбина реактивного движения была создана Сэром Ф. Уиттлом, а сам двигатель тестировали с успехом в апреле 1937 г.

Труды Густава Лаваля

Первым создателем турбины на пару стал Густав Лаваль, изобретатель родом из Швеции. Бытует мнение о том, что к конструированию такого механизма его привело желание обеспечить собственноручно сделанный сепаратор для молока механическим действием, выполняющимся без прямого вмешательства человеком. Двигатели тех времен не позволяли создавать необходимую скорость вращения.

Рабочим телом в машине Лаваля послужил пар. В 1889 году он сделал дополнение сопла турбин, на которые поставил конические расширители. Его труд стал инженерным прорывом, и это ясно, ведь анализ величины нагрузки, которую оказывали на рабочее колесо, показывает, что она была сверхсильной. Такое воздействие даже при малейшем нарушении привело бы к сбою в удержании центра тяжести и вызвало бы незамедлительное возникновение неполадок в работе подшипников. Избежать такой проблемы изобретатель смог при помощи использования тонкой оси, прогибающейся при вращении.

Чарлз Парсонс и его работа

Чарлзу Парсонсу был присвоен патент на изобретение первой многоступенчатой турбины, а сделал он это в 1884 году. Работа механизма приводила в действие устройство электрогенератора. Годом позже, в 1885-м, он модифицировал свою же версию, начавшую масштабно распространяться и применяться на электростанциях. Устройство обладало выравнивающим аппаратом, который образовывался из венцов, с лопатами турбины, которые направлялись в обратную сторону. Сами венцы оставались неподвижными. Механизм имел 3 ступени с разными показателями силы давления и геометрическими параметрами лопаток, а также путями их установления. Турбина использовала как активную, так и реактивную силу.

Устройство турбины

Теперь мы рассмотрим вопрос, что такое турбина, углубившись в механизм ее действия.

Турбинная ступень образуется при помощи двух главных частей:

  1. Рабочего колеса (лопатки на роторе, непосредственно создающие вращение);
  2. Соплового механизма (лопатки стартера, отвечающие за поворот рабочего тела, который придаст потоку нужный угол для атаки в отношении к рабочему колесу).

В зависимости от направления движения потоков рабочие тела можно разделить на аксиальные и радиальные турбинные механизмы. У первых поток р. т. движется по направлению вдоль турбинной оси. Радиальными называют турбины, у которых поток направляется перпендикулярно валовой оси.

Количество контуров позволяет разделять такие механизмы на одно-, двух- и трехконтурные. Иногда можно встретить турбины с четырьмя или пятью контурами, но это крайне редкое явление. Многоконтурное устройство турбины дает возможность пользоваться большими скачками в тепловых перепадах энтальпии. Это обуславливается размещением большого числа ступеней с разным давлением, а также влияет на мощность турбины.

В соответствии с количеством валов можно различать одно-, двух- и иногда трехвальные турбины. Они связываются общими параметрами тепловых явлений или механизмом редуктора. Валы могут располагаться коаксиально и параллельно.

Устройство и принцип действия турбины следующие: в местах, где происходит проход вала через стенки корпуса, располагаются утолщения, которые предупреждают утечку рабочего тела наружу и засасывание воздуха в корпус.

Передний конец вала оборудован предельным регулятором, который в случае необходимости автоматически остановит турбину. Это случается, например, в результате повышения показателя вращательной частоты, которая допустима для конкретного устройства.

Преобразование энергии газа

Что такое турбина? В общем виде - это машина, предназначение которой заключается в преобразовании энергии в работу. Их существует несколько видов, и одним из таких является газовая турбина.

Устройство газовой турбины основано на переводе энергетического потенциала газа в сжатом или нагретом состоянии в работу, которую выполняет механизм вала. Главные элементы - это ротор и статор. Свое применение находит в качестве детали газотурбинного двигателя, ГТУ и ПГУ.

Механизм газовой турбины

Работа турбины осуществляется, когда сопловой аппарат пропускает газы под давлением внутрь корпуса, в те места, где оно небольшое. При этом молекулы газа расширяются и ускоряются. Далее они попадают на поверхность рабочих лопаток и отдают им процент своего кинетического заряда энергии. Происходит сообщение крутящего момента лопаток.

Механическое устройство газовой турбины может быть гораздо проще, чем поршневого двигателя внутреннего сгорания. Современные турбореактивные двигатели могут обладать несколькими валами и сотнями лопаток как на стартере, так и на валу. Примером могут служить турбины самолетов. Их характеристикой также является наличие сложной системы расположения трубопровода, теплообменников и камер, предназначенных для сгорания.

Подшипники как радиального, так и упорного типа служат критическим элементом в этой разработке. Традиционно применялись гидродинамические или охлаждаемые маслом шарикообразные подшипники, однако в скором времени их обошли воздушные. По сей день их применяют для создания микротурбин.

Тепловые двигатели

Тепловая турбина преобразовывает работу, выполняемую паром, в механическую. Внутри лопаточного аппарата происходит превращение потенциальной энергии пара в нагретом и сжатом состоянии в кинетическую форму. Последняя, в свою очередь, преобразуется в механическую и обуславливает вращение вала.

Поступление пара происходит посредством парокотельного устройства и направляется на каждую криволинейную лопатку, закрепленную по окружности ротора. Далее пар воздействует на нее, и все вместе лопатки заставляют ротор вращаться. Турбина на пару является элементом ПТУ. Турбоагрегат образуется при помощи совмещения работы паровой турбины и электрогенератора.

Основная часть парового двигателя

Паровые механизмы образуются, так же, как и газовые, при помощи ротора и статора. На первом закрепляются способные к движению лопатки, а на последнем - не способные.

Движение потока протекает в соответствии с аксиальной или радиальной формой, что зависит от типа направления потоков пара. Аксиальная форма характеризуется перемещением пара периметра оси, котором обладает турбина. Радиальная турбина обладает потоками паров, которые двигаются перпендикулярно. При этом лопатки располагают параллельно к оси, по которой происходит вращение. Могут иметь от одного до пяти цилиндров. Число валов также может варьироваться. Существуют устройства, располагающие одним, двумя или тремя валами.

Корпус - это неподвижная часть, которую именуют статором. Он обладает рядом выточек, в которые устанавливаются диафрагмы, с соответствующими плоскости разъема турбинного корпуса разъемами. По их периферии размещают ряд сопловых каналов (решеток), которые образуются посредством криволинейных лопаток, залитых в диафрагму или приваренных к ней.

Турбокомпрессор

Существует механизм, который использует отработавшую часть газов с целью увеличения показателя давления в пространстве впускной камеры. Такой агрегат называют турбокомпрессором.

Основные части представлены доцентровым или осевым компрессором и газовой турбиной, необходимой для приведения его в действие. Обладает одним валом. Главная функция заключается в повышении давления, оказываемого рабочим телом. Это становится возможным в силу нагревания газотурбинного двигателя работой самого компрессора, приобретающего мощность благодаря турбине.

В заключение

Теперь читатель располагает общими представлениями об устройстве, принципе работы, механизме действия, способах эксплуатации турбин. Здесь также были рассмотрены конкретные виды турбин, отличающиеся видом рабочего тела, и исторические сведенья, показывающие общий ход развития данных механизмов. Подведя итоги, можно сказать, что турбины - это устройства, преобразовывающие энергию. Попытки их создания были совершены еще задолго до нашей эры. В настоящее время они широко используются человеком в различных отраслях промышленности, что значительно упрощает процесс работы, усиливает производительность и позволяет совершать механические действия, ранее недоступные человечеству.

Турбокомпрессор является решением, которое устанавливается как на бензиновый, так и практический на каждый современный дизельный двигатель автомобиля. в обиходе называются турбодизелями. Указанный компрессор представляет собой своеобразный насос для воздуха, который приводится в действие турбиной. Турбину дизельного двигателя вращает энергия выхлопных газов.

Главной задачей устройства является нагнетание воздуха в цилиндры дизельного под давлением. Чем больше воздуха поступит в камеру сгорания, тем большее количество солярки дизель сможет сжечь. Результатом становится значительное увеличение мощности двигателя без необходимости физически увеличивать объем цилиндров.

Читайте в этой статье

Принцип работы и конструкция дизельного турбонагнетателя

Турбокомпрессор дизельного двигателя состоит из двух колес: турбинного и компрессорного. Данные колеса еще могут называться крыльчаткой. Крыльчатка турбины напрямую и жестко соединена с компрессорным колесом посредством оси. Устройство нагнетателя можно разделить на главные составные части:

  • корпус компрессора (1);
  • компрессорное колесо (2);
  • вал ротора или ось (3);
  • корпус турбины (4),
  • турбинное колесо(5);
  • корпус подшипников;

Турбина имеет в основе ротор (крыльчатку), который закреплен на оси и заключен в специальный корпус. Постоянный контакт всех элементов турбины с раскаленными газами обуславливает необходимость изготовления ротора и корпуса турбины из особых жаропрочных материалов.

Крыльчатка и ось вращаются в противоположных направлениях с высокой частотой, в результате чего осуществляется плотный прижим одного элемента к другому. Поток отработавших газов проникает в выпускной коллектор, после чего оказывается в специальном канале. Данный канал находится в корпусе турбонагнетателя. Корпус имеет своеобразную форму-улитку. После прохождения улитки, отработавшие газы разгоняются и подаются на ротор. Так осуществляется вращение турбины.

Конструкция устройства может отличаться на разных типах дизельных двигателей. Главным отличием выступает разное количество каналов для движения выхлопных газов в корпусе. Также могут дополнительно присутствовать решения, которые позволяют управлять потоком отработавших газов внутри корпуса (турбина с изменяемой геометрией) и т.п.

Устройство компрессора

Компрессор имеет корпус и колесо (ротор). Корпус компрессора алюминиевый. Ротор крепится на оси турбины аналогично крыльчатке. Колесо компрессора имеет лопасти, материалом изготовления которых также является алюминий. Задачей компрессорного колеса становится забор воздуха, который проходит через его центр.

Форма лопастей заставляет воздух отбрасываться к стенкам корпуса компрессора, благодаря чему происходит его сжатие. Далее поток сжатого воздуха подается во впускной коллектор двигателя.

Ось турбокомпрессора

Ось является центральной частью турбонагнетателя и закреплена внутри корпуса на подшипниках скольжения. Смазка оси реализована при помощи подачи . С обеих сторон устанавливаются специальные уплотнительные кольца и прокладки.

Данные элементы препятствуют обильным утечкам масла, чтобы смазка не попадала в область нахождения компрессора и турбины. Сами масляные уплотнения не обеспечивают полной герметичности. Данные решения являются уплотнителями, которые функционируют благодаря разнице давлений, которые возникают в процессе работы турбокомпрессора.

Также уплотнения минимизируют прорыв воздуха из компрессора и газов из турбины в корпус оси. Стоит отметить, что полностью исключить попадание выхлопа и сжатого компрессором воздуха не удается. Излишки удаляются по сливному маслопроводу вместе с маслом и оказываются в картере дизельного двигателя.

Турбояма и турбоподхват

Крыльчатка турбины и компрессорное колесо закреплены на одной общей оси. По этой причине наблюдается определенная зависимость, которая заключается в увеличении подачи воздуха компрессором только с ростом оборотов турбины. Специалисты выделяют понятие турбоямы (турболаг), что означает задержку прироста мощности дизеля при резком нажатии на акселератор.

Турбояма возникает в результате инерционности всей системы турбонаддува. Дело в том, что для раскручивания турбинного колеса поступающими на крыльчатку выхлопными газами нужно определенное время. Турбоподхват является резким увеличением оборотов ДВС, который возникает следом за турбоямой.

Крыльчатка турбины раскручивается выхлопными газами для создания эффективного давление наддува турбокомпрессором. При определенных условиях турбина может вращаться с очень большой частотой, что зависит от конструктивных особенностей корпуса устройства и интенсивности потока отработавших газов.

Читайте также

Самостоятельная проверка турбокомпрессора дизельного двигателя. Проверка нагнетателя без снятия. Наличие масла в корпусе турбины, люфт вала, крыльчатка.

  • Когда и почему возникает необходимость настроить актуатор турбокомпрессора. Принцип работы устройства, особенности и доступные способы настройки вестгейта.


  • Часто новички мне задают вопрос – а как работает турбина? Конечно же, это применительно к машинам (однако они применяются много где). Интерес к этому агрегату растет день ото дня, все потому что сейчас на рынок выходит все больше турбированных моторов. Обусловлено это увеличение производительности, а также экологическими нормами. Как не прискорбно, но думаю — через лет так скажем 10 – 15, обычных атмосферников уже и не останется …


    Для начала небольшое определение.

    Турбина автомобиля – это агрегат, который призван повысить производительность двигателя внутреннего сгорания, за счет увеличения крутящего момента – следовательно, и лошадиных сил. Даже при малом объеме такая силовая установка может обойти обычный атмосферный двигатель большего объема.

    Как видите устройство «вроде как» полезное, причем оно поднимает , примерно на 10 – 20%, что очень существенно!

    Если сказать простыми словами — то при малом объеме, мы получаем больше мощности!


    Отличить обычный и турбированный двигатель, можно даже на слух, достаточно запустить их и послушать. Турбина издает небольшой свист, который будет все сильнее, если обороты двигателя растут. Если положить руку на сердце, турбину, возможно установить на любой обычный атмосферный двигатель, главное правильно ее настроить, поэтому для начала давайте вспомним обычный вариант.

    Двигатель внутреннего сгорания – атмосферный

    Принцип давно уже изучен и я бы сказал «избит»! Большинство моторов имеют четырехтактный цикл, конечно есть и двухтактные, но они на автомобилях применяются редко. Как мы можем знать, работа основана на компрессии, вот почему это такой важный показатель, и он должен быть всегда в норме.

    ИТАК (4 такта):

    1 такт – поршень идет вниз, открываются впускные клапана и в цилиндры поступает воздушно-топливная смесь.

    2 такт — сжатие – поршень идет «максимально» вверх, сжимая смесь.

    3 такт – воспламенение – сжатая смесь воспламеняется от свечей зажигания, происходит мини взрыв, который толкает поршень вниз.

    4 такт — выход отработанных газов – открываются другие клапана, которые выводят эти газы, выталкивает их поршень, который также идет наверх.


    Эта «классика» работает вот уже много лет, с момента основания двигателя внутреннего сгорания. Сразу хочется отметить мощность у такого классического строения – повышается за счет увеличения объема цилиндров. ТО есть двигатель объемом в 1,4 литра будет заведомо слабее, чем вариант в 2,0 литра. Но относительно недавно (если брать историю моторостроения), появились первые турбины, которые устанавливаются на этот классический двигатель, и меняют расклад сил.

    Как работает турбина?

    Завораживающее слово «ТУРБО», для многих мальчишек это просто предел мечтаний – некоторые так и хотят прокачать свою ПРИОРУ и «лихачить» по городу. Однако чтобы тюнинговать свой автомобиль, нужно знать устройство турбины.


    Итак – основная задача, этого аппарата нагнетать в двигатель как можно больше воздуха. Я бы даже сказал нагнетать с силой!

    Для чего это делается – как мы уже поговорили сверху, поршни приводятся в движение за счет сжигания воздушно – топливной смеси, которая поступает в цилиндры. Чем больше ее поступило, чем больше мощность может развить силовой агрегат. Сам мотор может засосать ограниченное количество воздуха – вот бы было хорошо, если бы кто-то его туда закачал в большем объеме!

    И этим как раз и занимается турбина. Она раскручивается до безумных значений, порядка 200 – 240 000 оборотов в минуту. И под давлением подает максимально много воздушной смеси в цилиндры двигателя. Это означает что при одинаковом объеме, можно сжигать намного больше этой смеси, что напрямую передается и мощности!

    Если взять строение турбины – то здесь можно выделить две крыльчатки .


    Первая вращается от давления отработанных газов, которые идут через глушитель, к ней жестко подсоединен вал.

    Вторая крыльчатка, также сидит на валу, только с другой стороны и ей передается это вращение. Она начинает засасывать воздух (если хотите как пылесос), и под давлением нагнетать его в двигатель.


    Вал, на котором сидят две крыльчатки (условно назовем их «горячая» и «холодная»), имеет подшипники, которые смазываются маслом двигателя (помимо смазывания, оно забирает и лишнюю температуру), чтобы масло не уходило в отсеки с крыльчатками, за подшипниками есть специальные изоляторы, которые тормозят его расход.


    Как видите принцип работы очень простой. Если все же не поняли, посмотрите мое видео с разъяснением.

    Турбо-яма

    Минусом работы турбированного агрегата, является такое явление как «турбо-яма» (). При низких оборотах турбина раскручивается не сильно, а поэтому не способна нагнетать большое количество воздуха. Если вы резко давите на педаль газа — то нужно какое-то время чтобы отработанные газы дошли до крыльчатки турбины и раскрутили ее! Однако пройдет немного времени, 1 – 2 секунды, прежде чем произойдет «выстрел» динамики.

    В народе это явление называется турбо-ямой, то есть прежде чем резко ускориться, нужно подождать 1 или 2 секунды, пока раскрутится турбина.

    Конечно, сейчас есть такое понятие как – к обычной турбине подсоединяют еще одну, как правило – механическую (а с недавнего времени и ), которая работает на низких оборотах, нагнетая нужное количество воздуха на низах, затем когда обороты вырастают, включается основная. Таким образом, турбо – яма побеждается.


    Про него также у меня есть статья (). Воздух, который нагнетается в цилиндры, под «бешеными» оборотами крыльчатки – нагревается. А при нагреве падает плотность и концентрация кислорода. Чтобы его охладить применяется такое устройство как – интеркуллер, он охлаждает поток, делая его более плотным, что положительно сказывается на производительности.


    Минусы турбин

    Минусы у этого агрегата также существенны:

    1) Это более частая замена масла, потому как подшипники очень требовательны к качеству смазки (все же там просто огромные обороты).

    2) Ресурс не такой большой, обычно ходят по 150 000 километров.

    3) Дорогостоящий ремонт, если менять на немецком автомобиле, то это примерно от 70 000 рублей.

    4) Топливо – с турбиной нужно заправляться высокооктановыми бензинами, не ниже 95, что «бьет» по кошельку.

    5) Охлаждение турбины – старые варианты таких устройств, нужно было правильно охлаждать. Иначе если вы просто заглушите машину, то от перепада температур, крыльчатку просто может «покоробить», далее ремонт. Поэтому, они не дают двигателю сразу заглохнуть, а несколько минут работают на низких оборотах – охлаждая крыльчатку.

    Вот такой вот агрегат эта турбина, из сегодняшней статьи вы поняли – как она работает, теперь вы «подкованы».

    НА этом заканчиваю, думаю было интересно.