Свинцовые аккумуляторы устройство и принцип работы. Особенности применения свинцово-кислотных аккумуляторов

  • Свинцово-кислотный аккумулятор - один из самых распространенных типов батарей, использующийся в качестве источника электроэнергии для автомобиля, мотоцикла, мопеда, или в случае необходимости создания запасных источников питания.

    Первая модель свинцово-кислотного аккумулятора была создана в середине XIX века ученым Гастоном Планте. Тогда его конструкция подразумевала две свинцовых пластины, стеклянную колбу с серной кислотой и обычное полотно в роли сепаратора. Это устройство обладало малой емкостью заряда и не получило достаточного распространения. Но идею оценили другие ученые и стали экспериментировать с составом электродов. В итоге самой удачной оказалась решетчатая конструкция из сплава с добавлением сурьмы. Изобретение генераторов постоянного тока решило проблему с подходящим источником энергии, и свинцово-кислотные аккумуляторные батареи наконец-таки получили широкое распространение.

    В конце ХХ века их конструкция усложнилась, появились , в электроды которых был добавлен кальций. Это нововведение позволило существенно сократить расход воды. В идеале, батареи такого типа способны работать без пополнения количества воды в электролите весь срок службы. Кстати, при необходимости утратившее работоспособность устройство можно попробовать восстановить, используя принцип действия кислотных аккумуляторов.

    По конструктивным особенностям современные батареи делятся на три типа:

    1. С жидким электролитом. Могут быть как обслуживаемыми, так и необслуживаемыми. Электролит - смесь серной кислоты и воды, находящаяся в жидком виде. В версии, требующей обслуживания, пластины изготавливаются из свинца с добавлением сурьмы и мышьяка. В таких батареях высок расход воды, что делает обслуживание аккумулятора не очень простой задачей. После замены сурьмы на кальций в состав сплава отрицательной пластины появились так называемые гибридные аккумуляторы, более удобные в эксплуатации, чем их предшественники. И, наконец, с добавлением кальция в обе пластины началась эра устройств, не требующих восстановления количества воды весь срок службы. Несмотря на совершенство конструкции, у них есть один минус - плохо переносят почти полный разряд, особенно в условиях отрицательной температуры.
    2. Гелевые АКБ. В этих конструкциях электролит находится в сгущенном состоянии благодаря добавлению кремния. Плюс такой конструкции в том, что батарея становится абсолютно герметичной. Газ, выделяющийся в процессе химических реакций, находит себе место в порах геля, а при обратных реакциях вновь присоединяется к раствору серной кислоты. Но это очень капризные батареи. Они требуют неукоснительного соблюдения условий эксплуатации, чувствительны к перепадам температур, справляются с высокой нагрузкой хуже, чем их жидкостные собратья. Но они хорошо справляются с сильной разрядкой, действительно не требуют дополнительного обслуживания. Гелевые АКБ чаще используются в качестве стационарно резервного источника питания и редко устанавливаются на транспорт.
    3. AGM-аккумуляторы. Это самый современный вид батарей, сочетающий все достоинства предыдущих вариантов. Электролит остается жидким, но циркулирует в пористой конструкции из тончайших стеклянных волокон. Два вида пор - большие и маленькие - обеспечивают свободное перемещение газа до того, как запустится обратная реакция. Конструкция устройства такова, что аккумулятор может работать, даже если его оболочка незначительно повреждена. Не боятся они и холода, глубокой разрядки, вибраций. Единственная уязвимость такого устройства - чувствительность к перепадам напряжения. Эту проблему можно решить, контролируя работу генератора и пользуясь надежным ЗУ.

    Емкость и напряжение

    У любого есть два основных параметра: емкость и напряжение. Емкость определяет количество энергии, которое аккумулятор может отдать при рабочем напряжении, измеряется в Ампер-часах. Она зависит от площади свинцовых пластин, участвующих в химических реакциях. При износе аккумулятора его емкость уменьшается из-за естественных потерь в размере пластин.

    Напряжение - количество электрического тока, отдаваемое батареей. Измеряется в вольтах, зависит от плотности электролита. Оба параметра необходимо контролировать, так как от них зависит работоспособность устройства.

    Для измерения напряжения используется вольтмер, правильные показатели - от 11 до 13 вольт (раньше производились аккумуляторы с напряжением 6 вольт, теперь они считаются устаревшими).

    Чтобы измерить емкость, существует несколько методов:

    • « » - измерение напряжения при эталонной нагрузке. Аккумулятор должен быть полностью заряжен.
    • Специальный индикатор, способный посылать сигнал, определяющий площадь свинцовых пластин, и преобразовывать его в цифры. Не требует особых условий использования.
    • В домашних условиях можно подключить мощную автомобильную галогеновую лампу и замерить в это время напряжение. Ели в течение 2 минут оно держится на уровне ~11 вольт, а свет лампы ровный и сильный - все в порядке.

    Эксплуатация и восстановление

    В зависимости от типа используемого аккумулятора, условия его эксплуатации будут сильно отличаться. Единственная общая черта - всех их необходимо вовремя заряжать. Так, обслуживаемая батарея требует долива воды в аккумулятор, что может представлять собой опасность - кислота нагревает воду, и кипяток может ощутимо обжечь автовладельца.

    Конструкция необслуживаемых аккумуляторов не предполагает возможности пополнения запаса воды в них. Но, даже если произвести небольшие изменения в конструкции, обжечься кипятком все равно будет проблематично. Для батарей такого типа важно не допускать больших колебаний напряжения. Это справедливо и для автомобильного, и для мотоциклетного аккумулятора. Но герметичный корпус уменьшает варианты восстановления устройства.

    Как ? Часто снижение емкости или напряжения аккумулятора происходит из-за того, что некоторые участки электролита слишком уплотнились. При многоразовой небольшой зарядке эти области разжижаются, и потенциал устройства восстанавливается. Существует несколько рецептов восстанавливающего раствора, который несколько улучшает состояние устройства. К сожалению, его использование несколько затруднено на батареях с герметизированным корпусом, так как слить из него этот раствор будет проблематично.

    Какой бы аккумулятор ни был установлен на транспортном средстве, важно соблюдать инструкцию по его использованию, вовремя заряжать и, при необходимости, пополнять запас воды в электролите. Тогда батареи будет максимально долгим.

    Главная > Конспект

    Лекция 3. Аккумуляторы

      Основные понятия. Электрические характеристики и классификация аккумуляторов. Свинцовые аккумуляторы. Щелочные аккумуляторы. Стартерные батареи. Аккумуляторы с расплавленным и твердым электролитом. Применение аккумуляторов на железнодорожном транспорте.

    1. Основные понятия. Электрические характеристики и классификация аккумуляторов.

    Аккумуляторами называются устройства, в которых электрическая энергия превращается в химическую, а химическая – снова в электрическую. То есть они служат для накопления химической энергии, превращаемой по мере необходимости в электрическую. Аккумуляторы или аккумуляторные батареи (АКБ) относятся к вторичным (перезаряжаемым) химическим источникам тока , характеризующимся многократностью использования и обратимостью. После работы (разрядки) аккумулятора его можно перевести в исходное состояние путём зарядки – пропускания через него постоянного электрического тока от внешнего источника. При заряде аккумулятор работает как электролизер, а при разряде – как гальванический элемент. Аккумулятор состоит из двух электродов (отрицательного заряженного анода и положительного заряженного катода) и электролита (ионного проводника) между ними. Анодом является электрод, на котором протекает окисление; катодом – электрод, на котором протекает восстановление. Ёмкость аккумулятора – такое количество электричества, которое можно получить при работе элемента в режиме разряда до достижения минимального значения напряжения: С = I·t (А·ч). Ёмкость зависит от природы и количества активных масс в электродах, их конструкции и состояния, тока разряда, концентрации электролита и так далее. ЭДС аккумулятора – разность электродных потенциалов катода и анода при разомкнутой внешней цепи: Е ак = φ к – φ а. ЭДС АКБ равна сумме ЭДС аккумуляторов. При разряде напряжение аккумулятора меньше ЭДС (из-за поляризации и омических потерь (внутреннего сопротивления)). В процессе его работы изменяется состав активных масс, и соответственно – ЭДС и напряжение. Кривые изменения напряжения аккумулятора во времени называют зарядными и разрядными кривыми. Зарядное напряжение увеличивается, а разрядное - уменьшается во времени (см. рисунок 3.1.). U, ЭДС, В U, ЭДС, В 2,5 2,2 1,8 1,7
    100 Степень 100 Степень заряда разряда

    Рисунок 3.1. Зарядные и разрядные кривые аккумуляторов

    Энергия аккумулятора – это произведение его ёмкости на напряжение: W = C·U (Вт·ч). Она определяет то количество энергии, которое при разряде передается во внешнюю цепь. Мощность аккумулятора – количество энергии, отдаваемое в единицу времени: Р = W / t (Вт). Часто используют удельные значения энергии и мощности аккумуляторов – на единицу массы или объема или в единицу времени. КПД аккумулятора – отношение энергии, полученной при разряде, к энергии, подведённой при заряде аккумулятора: η = W p / W з. Срок службы аккумулятора – чаще измеряется в годах или в количестве разрядно-зарядных циклов. На практике для оценки работы АКБ используют зависимость напряжения аккумулятора от силы тока (рисунок 3.2.). Резкое снижение напряжения на участках АВ и СД обусловлено электрохимической поляризацией электродов; на участке ВС изменение напряжения почти линейное (обусловлено ещё и омическими падениями). Чем меньше падение U с ростом I, тем лучше работает аккумулятор. Классификацию аккумуляторов проводят в основном по химической природе электролита (рисунок 3.3). Кроме этого, они различаются по типу электродов и по конструкции. U,В А В рисунок 3.2. Вольт-амперная кривая С Д I, А

    Аккумуляторы

    Кислотные Щелочные с твёрдым электролитом с расплавленным (свинцовые) Ni-Cd, Ni-Fe (S-Na) электролитом

    Рисунок 3.3. Классификация аккумуляторов по типу электролита

    2. Свинцовые аккумуляторы

    Свинцовые аккумуляторы в настоящее время являются наиболее распространёнными, в том числе на железнодорожном транспорте. Они состоят из двух решетчатых свинцовых пластин (для увеличения площади поверхности и ёмкости). Отрицательный электрод заполняется металлическим свинцом, положительный – диоксидом свинца PbO 2 . Электрохимическая схема:

    Анод (-) Pb / H 2 SO 4 / PbO 2 (+) Катод

    Электроды погружены в электролит – 25-30% раствор серной кислоты с плотностью 1,18 – 1,22 г/см 3 . Кроме электролита, решётки электродов разделяются пористыми сепараторами. Суммарная (токообразующая) реакция в аккумуляторе:

    2 PbSO 4 + 2 H 2 O ↔ Pb + PbO 2 + 2H 2 SO 4 .

    Прямая реакция в этой записи соответствует заряду аккумулятора, а обратная – его разряду (то есть его работе). При зарядке аккумулятора протекают следующие реакции: На аноде Pb +2 SO 4 + 2H 2 O – 2e - = Pb +4 O 2 + H 2 SO 4 , На катоде Pb +2 SO 4 + 2e - = Pb 0 + SO 4 2- . При разрядке аккумулятора (во время его работы): На аноде Pb +4 O 2 + 2H 2 SO 4 + 2e - = Pb +2 SO 4 + 2H 2 O + SO 4 2- ; На катоде Pb 0 + SO 4 2- - 2e - = Pb +2 SO 4 . Когда при разрядке напряжение падает до ≈ 1,8 В, дальнейшую разрядку производить нельзя – электроды покрываются толстым слоем сульфата свинца, аккумулятор выходит из строя. При работе кислотного свинцового аккумулятора нужно соблюдать ряд особенностей:

      Строго контролировать плотность электролита, с учётом условий работы аккумулятора; в частности, его концентрация зимой должна быть выше, чем летом. Следить за процессом заряда аккумулятора. Напряжение при заряде выше ЭДС (см рисунок 3.1.) и растёт в течение заряда, что ведёт в конце заряда к разложению воды по реакции 2Н 2 О = 2Н 2 + О 2 . Поэтому выделение пузырьков газа («кипение») служит признаком окончания заряда.
    Достоинства кислотных аккумуляторов: высокие значения КПД (≈ 80%) и ЭДС (≈ 2 В), малое изменение напряжения при разряде, простота, невысокая цена, высокая удельная мощность (до 300 Вт/кг). Недостатки кислотных аккумуляторов: небольшая удельная энергия, высокий саморазряд при длительном хранении, относительно малый срок службы (около 5 лет), токсичность свинца.

    3. Щелочные аккумуляторы

    Среди аккумуляторов с щелочным электролитом наиболее распространены никель-кадмиевые (Ni-Cd) и никель-железные (Ni-Fe) аккумуляторы. Здесь положительный электрод содержит гидроксид никеля (III) Ni(OH) 3 (или NiOOH), а отрицательный – соответственно кадмий или железо. В качестве электролита используется 20-23% раствор гидроксида калия КОН, с плотностью 1,21 г/см 3 . Так, при работе Ni-Fe аккумулятора суммарное уравнение

    Fe + 2Ni(OH) 3 ↔ Fe(OH) 2 + 2Ni(OH) 2 .

    При разрядке на аноде Fe – 2e - = Fe 2+ , на катоде Ni(OH) 3 + e - = Ni(OH) 2 + OH - . Достоинства щелочных аккумуляторов: большой срок службы (до 10 лет), высокая механическая прочность; недостатки – невысокие КПД и разрядное напряжение. В последнее время получили распространение серебряно-цинковые и серебряно-кадмиевые аккумуляторы. Их достоинства – малый объём и вес, небольшое падение мощности при интенсивной работе; недостатки – высокая стоимость и нестабильная работа при низких температурах.

    4. Стартерные батареи

    Аккумуляторные стартерные батареи собираются в одном моноблоке – многоячеечном пластмассовом или эбонитовом корпусе. В каждой ячейке разделенные сепараторами электроды собраны в блок. Каждый электрод состоит из активной массы и металлической решетки, которая служит каркасом и токоотводом. Сепараторы изготавливают из пористой кислотостойкой пластмассы. В пробке, закрывающей отверстие для заливки электролита, имеются вентиляционное отверстие (для выхода газов) и отражатель (для предотвращения выплескивания). В последнее время в электродные массы таких АКБ добавляют сурьму и сплавы на основе свинца и кальция. Это приводит к более низкому газовыделению, снижению скорости саморазряда и незначительному расходу электролита. Основные неисправности стартерных батарей.

      Внешние – трещины в моноблоках, крышках, повреждение пробок, окисление или излом токоотводов. Внутренние – разрушение электродов, коррозия, оплывание активной массы, короткое замыкание, переполюсовка электродов, их сульфатация, повышенный саморазряд и т.д.
    Для борьбы с внутренними неисправностями нужно избегать частых и длительных перезарядов АКБ, соблюдать плотность электролита, не допускать в нём посторонних примесей, применять для приготовления электролита только дистиллированную воду. Хранить заряженные АКБ с электролитом нужно в прохладных помещениях при постоянной температуре.

    5. Аккумуляторы с расплавленным и твёрдым электролитом

    В последние годы разрабатываются аккумуляторы с литиевым отрицательным электродом, неводным раствором электролита и положительным электродом на базе углерода, оксидов ванадия, никеля, кобальта и марганца. Представителем аккумуляторов с расплавленным электролитом является хлор-литиевый аккумулятор. На графитовом стержне адсорбирован газообразный хлор:

    (–) Li / LiCl, KCl / Cl 2 , C (+)

    Суммарный электрохимический процесс: 2Li + Cl 2 ↔ 2 LiCl. Преимущества такого аккумулятора – высокая удельная энергия (до 400 Вт*ч/кг) и мощность (до 2000 Вт/кг). Недостатки – высокая коррозионная активность электролита, токсичность хлора, взрывоопасность. Сейчас перспективными считаются аккумуляторы, где вместо чистого лития используются его сплавы с кремнием, алюминием, а катод состоит из хлористого теллура: (–) Li, Al / LiCl, KCl / TeCl 4 (+). Также активно разрабатываются аккумуляторы с твёрдыми и неводными электролитами (пропиленкарбонатом, фторуглеродами CF x , тионилхлоридом SOCl 2 и др.). Такие аккумуляторы уже сейчас дешевы, их ресурс составляет более 1000 циклов, у них высокая удельная энергия, однако пока они работают при малых токах.

    6. Применение аккумуляторов на железнодорожном транспорте

    Наиболее распространены и популярны на подвижном составе кислотные свинцовые аккумуляторы – этим они обязаны прежде всего стартерным батареям, предназначенным для различных средств передвижения. Они применяются для запуска двигателей внутреннего сгорания и являются тяговыми устройствами на маневровых электровозах, электрокарах и т.д. Закрытые свинцовые аккумуляторы (АБН-72, АБН-80 - антиблокировочные намазанные) используются в стационарных и напольных условиях для питания устройств железнодорожной автоматики, телемеханики и связи, а также на железнодорожных путях и сортировочных горках, имеющих электрическую и диспетчерскую централизацию. На их базе комплектуется большинство стационарных и вагонных батарей. Так, на тепловозах в основном применяют стартерные батареи 3-СТ-60 и 6-СТ-42 («3» или «6» - число последовательно соединенных аккумуляторов в АКБ, «60» или «42» - номинальная емкость при 10-часовом непрерывном режиме разряда). Щелочные аккумуляторы применяются также достаточно широко: на тепловозах, пассажирских вагонах, электрокарах, погрузчиках, рудничных электровозах, в переносной аппаратуре, для питания аппаратуры связи и электронной аппаратуры. Для переносных и портативных приборов и бытовой техники всё чаще используют литиевые аккумуляторы с расплавленным и твёрдым электролитом. Они имеют ёмкость до 10 А·ч и рассчитаны на длительный режим разрядки; являются многоцелевыми: обеспечивают работу радиоэлектронных и светотехнических изделий, переносных приборов и т.д. (транзисторных радиоприемников, карманных фонарей, тестеров, электрочасов, табло и пр.).

    Лекция 4. Топливные элементы

      Основные понятия. Устройство топливных элементов (ТЭ). Водородно-кислородные элементы с различными электролитами. Установки с электрохимическим генератором. Применение топливных элементов.

    1. Основные понятия

    Топливные элементы (ТЭ) – это химические источники тока, в которых электроэнергия возникает за счёт химической реакции между топливом (восстановителем) и окислителем. Такие элементы могут работать длительное время, так как окислитель и восстановитель хранятся отдельно, вне элемента, а в процессе работы подаются к электродам – непрерывно и раздельно. В качестве топлива используются жидкие и газообразные восстановители: водород, метан и другие углеводороды, метиловый спирт, гидразин; основные окислители – это кислород и перекись водорода. Удельная энергия топливных элементов выше, чем у обычных гальванических элементов. Для большинства ТЭ ЭДС равна 1,0 – 1,5 В. Для уменьшения внутреннего сопротивления в ТЭ применяют электроды с высокой электрической проводимостью. Для уменьшения поляризации используют электроды с высокоразвитой поверхностью, на которые наносят различные катализаторы: платину, палладий, серебро, борид никеля и другие.

      Устройство топливных элементов (ТЭ). Водородно-кислородные элементы с различными электролитами.

    Рассмотрим устройство ТЭ на примере наиболее распространенного кислородно-водородного элемента с щелочным электролитом. Превращение химической энергии в электрическую происходит при протекании реакции 2Н 2 +О 2 =2Н 2 О. При этом генерируется постоянный ток. К аноду подводится топливо (Н 2), к катоду – окислитель (О 2 или воздух). Между электродами находится электролит – раствор щелочи (в основном КОН).
    Н 2 О N 2 1 2 3 Н 2 О 2 (воздух)

    Рисунок 4.1. Устройство топливного элемента. 1 – анод, 2 – электролит, 3 – катод.

    Схема данного элемента:

    А (-) Н 2 , М / КОН/ М, О 2 (+) К

    Здесь М – катализатор (проводник первого рода). Анодный процесс: Н 2 + 2 ОН - - 2е - = 2 Н 2 О; Катодный процесс: О 2 + 2 Н 2 О + 4е - = 4 ОН - . Суммарный процесс: 2 Н 2 + О 2 = 2 Н 2 О. Во внешней цепи происходит движение электронов от анода к катоду, а в растворе – движение ионов от катода к аноду. На практике также широко применяется кислородно-гидразиновый элемент, схема которого:

    (-) Ni, N 2 H 4 / KOH / О 2 , С (+)

    Здесь анодом является никелевый электрод, а катодом – графитовый стержень. При работе такого ТЭ на аноде N 2 H 4 + 4 OH - = N 2 + 4H 2 O + 4 e - , на катоде О 2 + 2Н 2 О + 4е - = 4 ОН - . Суммарная реакция N 2 H 4 + O 2 = N 2 + 2H 2 O. Вышеперечисленные ТЭ способны работать уже при комнатной температуре (их ещё называют низкотемпературными). Другие ТЭ (с электролитами из фосфорной кислоты, полимерными ионообменными мембранами) работают при температурах от 100 до 300 0 С. У данных ТЭ на аноде: 2Н 2 – 4е - = 4 Н + ; на катоде О 2 + 2Н 2 О + 4е - = 4 ОН - . Основные проблемы при функционировании ТЭ: чистота топлива (влияющая на его окисляемость), выбор катализатора (с целью удешевления ТЭ), повышение срока службы ТЭ. Сейчас в основном водород для ТЭ получают конверсией метана: СН 4 + 2Н 2 О = СО 2 + 4Н 2 .

    3. Установки с электрохимическим генератором

    В отличие от гальванических элементов ТЭ не могут работать без вспомогательных устройств. Для повышения напряжения, силы тока и мощности ТЭ соединяют в батареи. Система, состоящая из батареи ТЭ, устройств для подвода топлива и окислителя (а также их хранения и обработки), отвода продуктов реакции, регулировки температуры и преобразования тока и напряжения называется электрохимическим генератором (ЭХГ), или электрохимической установкой. Схема ЭХГ показана на рисунке 4.2.

    Отвод продуктов реакции генератор отвод тепла Нагрузка Подача топлива батарея ТЭ подача окислителя

    Система контроля температуры

    Рисунок 4.2. Схема установки с ЭХГ.

    4. Применение топливных элементов

    ТЭ придаётся большое значение в связи с тем, что их КПД близок к 100%, и они могут применяться во многих отраслях хозяйства, не загрязняя окружающую среду. С каждым годом их применение всё шире. Основные сферы применения ТЭ: космические корабли и станции, электромобили и транспорт, стационарные энергоустановки. В настоящее время созданы кислородно-гидразиновые ЭХГ, имеющие мощность 50 кВт. Срок их службы – 2000 ч. Они производят электроэнергию в любое время суток, надёжны в эксплуатации, имеют малые размеры и способны выдерживать различные перегрузки. На космических кораблях и подводных лодках ЭХГ обеспечивают людей не только электроэнергией, но и водой. Наиболее распространены ЭХГ с щелочным электролитом, они обладают удельной энергией 400-800 Вт·ч/кг и КПД 70%, мощностью около 10 кВт. В последние годы всё больше уделяется внимание разработке ТЭ для различных мобильных приборов и устройств (ноутбуков, видеокамер и т.п.), а также ЭХГ для электромобилей, работающих на водороде или метаноле. Многочисленные публикации в научно-популярной прессе, сюжеты по ТВ подтверждают то, что дальнейшее совершенствование ТЭ является одним из самых перспективных направлений в развитии энергетики. ЭХГ ещё пока относительно дороги, однако сейчас ведутся интенсивные работы по их удешевлению с целью широкого использования экологически чистой энергии.

    Лекция 5. Коррозия.

    Теоретические вопросы в области коррозии

      Определение коррозии и значение коррозионной проблемы. Прямые и косвенные потери от коррозии. Причины возникновения коррозии. Химическая коррозия. Электрохимическая коррозия. Влияние водородного показателя среды на скорость коррозии. Оценка коррозионной стойкости металлов.

      Определение коррозии и значение коррозионной проблемы

    Коррозия – это разрушение металлов в результате химической или электрохимической реакции. Разрушение металла, происходящее по физическим причинам, не является коррозией, а известно как эрозия, износ или истирание. В некоторых случаях химическое воздействие сопровождается физическим разрушением и называется коррозионным износом или фреттинг-коррозией. Это определение не распространяется на неметаллические материалы (пластмасса, дерево, гранит, цемент и бетон). Ржавлением называется коррозия железа и его сплавов, с образованием продуктов, состоящих в основном из гидратированных оксидов железа. При коррозии цветных металлов о ржавлении обычно не говорят. Ввиду того, что коррозия включает в себя химические превращения, для понимания теории коррозии необходимо знать основы электрохимии, так как коррозионные процессы в большинстве своем являются электрохимическими. Значение коррозионных исследований определяется тремя аспектами. Первый аспект – экономический. Его цель – уменьшение материальных потерь (в результате коррозии трубопроводов, резервуаров, котлов, деталей машин, судов, мостов, железнодорожных рельсов, подвижного состава). Второй аспект – повышение надежности оборудования, которое в результате коррозии может разрушаться с катастрофическими последствиями (трубопроводы высокого давления, контейнеры для токсичных материалов, лопасти и роторы турбин, деталей самолетов, АЭС, систем захоронения радиоактивных отходов и т.п.). Третий аспект – сохранность металлического фонда.

    2. Прямые и косвенные потери от коррозии.

    Различают прямые и косвенные потери от коррозии. Под прямыми потерями понимают стоимость замены прокорродированных конструкций или их частей. Другими примерами прямых потерь могут служить затраты на перекраску конструкций для предотвращения ржавления или эксплуатационные затраты, нанесение защитных металлических покрытий. Прямые потери легко подсчитать. Гораздо труднее поддаются расчетам косвенные потери, даже по приближенным оценкам они исчисляются миллиардами долларов по всему миру. Так, в США общая сумма прямых потерь – 4,2 % валового национального продукта. В России ежегодно до 20 % всего выплавляемого металла подвергается коррозии. Примеры косвенных потерь от коррозии:

      Простои (например, замена прокорродированной трубы или участка железнодорожного пути) – учитывается недовыработка продукции за время простоя. Потеря готовой продукции (утечка нефти, газа, воды). Потеря мощности – из-за отложения продуктов коррозии, так как, например, нарушается теплообмен или уменьшается полезный рабочий просвет трубопроводов. А в результате коррозии поршневых колец и стенок цилиндров ДВС увеличивается расход бензина и масла. Загрязнение продукции. Небольшие количества металлов в результате коррозии могут испортить партию продукции – поменять цвет красителей, ухудшить качество (особенно продуктов питания). Допуски на коррозию. Речь идёт о том, что приходится в ряде случаев в расчёте на коррозию изготавливать толщину стенок изделий больше, чем надо, а это затраты средств.
    В ряде случаев косвенные потери не могут быть вообще выражены в денежных единицах – к ним можно отнести аварии, взрывы, пожары, крушения и пр., особенно связанные с человеческими жертвами. Как бы то ни было, коррозия приносит народному хозяйству огромные убытки. Коррозия сопровождается не только потерей металла, но и понижением его механической прочности.

    3. Причины возникновения коррозии.

    Основной причиной коррозии является термодинамическая неустойчивость металлов и сплавов в окружающей среде. Подавляющее большинство металлов в земной коре находится в виде оксидов, сульфидов и других соединений. При получении металлов в металлургии их переводят из такого стабильного состояния в элементарную форму, которая нестабильна. При контакте металла с внешней окислительной средой появляется движущая сила, стремящаяся превратить его в стабильные соединения, подобные тем, которые находятся в рудах. Примером является коррозия стали: железо переводится из элементарного состояния в окисленное (двух- и трехвалентное), которое соответствует таким минералам, как магнетит Fe 3 O 4 или лимонит Fe 2 O 3 ·H 2 O. Термодинамическая неустойчивость металлов количественно оценивается знаком и величиной изобарно-изотермического потенциала ΔG (энергии Гиббса). Самопроизвольно протекают те процессы, которые сопровождаются уменьшением энергии Гиббса, то есть для которых ΔG меньше нуля. Металлы, стоящие в ряду напряжений до водорода, имеют по сравнению с водородом более отрицательный потенциал, их окисленное состояние более устойчиво термодинамически, чем восстановленное. Для металлов, расположенных после водорода, восстановленное состояние термодинамически более устойчиво, то есть для них ΔG процесса окисления больше нуля. К этой группе металлов относятся коррозионно-стойкие золото, серебро, платина и др.

    Учебно-методический комплекс

    Основной целью преподавания дисциплины является формирование у студентов единого представления о процессе проектирования вагоноремонтного предприятия (вагонного депо или вагоноремонтного завода) как специализированного промышленного

  • Учебно-методический комплекс по дисциплине «Основы технической диагностики» (название)

    Учебно-методический комплекс
  • Учебно-методический комплекс по дисциплине «Холодильное оборудование вагонов» (название)

    Учебно-методический комплекс

    составлен в соответствии с требованиями Государственного образовательного стандарта высшего профессионального образования/основной образовательной программы по специальности/ направлению

  • История

    Свинцовый аккумулятор разработал в 1859-1860 годах Гастон Планте, сотрудник лаборатории Александра Беккереля . В 1878 году Камилл Фор усовершенствовал его конструкцию, покрыв пластины аккумулятора свинцовым суриком .

    Принцип действия

    Принцип работы свинцово-кислотных аккумуляторов основан на электрохимических реакциях свинца и диоксида свинца в сернокислотной среде.

    Энергия возникает в результате взаимодействия оксида свинца и серной кислоты до сульфата (классическая версия). Проведенные в СССР исследования показали, что внутри свинцового аккумулятора протекает как минимум ~60 реакций, порядка 20 из которых протекают без участия кислоты электролита (нехимические)

    Во время разряда происходит восстановление диоксида свинца на катоде и окисление свинца на аноде . При заряде протекают обратные реакции, к которым в конце заряда добавляется реакция электролиза воды, сопровождающаяся выделением кислорода на положительном электроде и водорода - на отрицательном.

    Химическая реакция (слева направо - разряд, справа налево - заряд):

    В итоге получается, что при разряде аккумулятора расходуется серная кислота из электролита (и плотность электролита падает, а при заряде, серная кислота выделяется в раствор электролита из сульфатов, плотность электролита растёт). В конце заряда, при некоторых критических значениях концентрации сульфата свинца у электродов, начинает преобладать процесс электролиза воды. При этом на катоде выделяется водород , на аноде - кислород . При заряде не стоит допускать электролиза воды, в противном случае необходимо её долить для восполнения потерянного в ходе электролиза количества.

    Устройство

    Элемент свинцово-кислотного аккумулятора состоит из электродов (положительных и отрицательных) и разделительных изоляторов (сепараторов), которые погружены в электролит . Электроды представляют собой свинцовые решётки. У положительных активным веществом является перекись свинца (PbO 2), у отрицательных активным веществом является губчатый свинец .

    На самом деле электроды выполнены не из чистого свинца, а из сплава с добавлением сурьмы в количестве 1-2 % для повышения прочности и примесей. Иногда в качестве легирующего компонента используются соли кальция, в обеих пластинах, или только в положительных. Применение солей кальция вносит не только положительные но и много отрицательных моментов в эксплуатацию свинцового аккумулятора, например, у такого аккумулятора при глубоких разрядах существенно и необратимо снижается емкость.

    Электроды погружены в электролит, состоящий из разбавленной дистиллированной водой серной кислоты (H 2 SO 4). Наибольшая проводимость этого раствора наблюдается при комнатной температуре (что означает наименьшее внутреннее сопротивление и наименьшие внутренние потери) и при его плотности 1,23 г/см³

    Однако на практике, часто в районах с холодным климатом применяются и более высокие концентрации серной кислоты, до 1,29 −1,31 г/см³.

    Существуют экспериментальные разработки аккумуляторов где свинцовые решетки заменяют вспененным карбоном , покрытым тонкой свинцовой пленкой. Используя меньшее количество свинца и распределив его по большой площади, батарею удалось сделать не только компактной и легкой, но и значительно более эффективной - помимо большего КПД, она заряжается значительно быстрее традиционных аккумуляторов.

    В результате каждой реакции образуется нерастворимое вещество - сернокислый свинец PbSO 4 , осаждающийся на пластинах, который образует диэлектрический слой между токоотводами и активной массой. Это один из факторов, влияющий на срок службы свинцово-кислотной аккумуляторной батареи.

    Основными процессами износа свинцово-кислотных аккумуляторов являются:

    Хотя батарею, вышедшую из строя по причине физического разрушения пластин, самому починить нельзя, некоторые источники описывают химические растворы и прочие способы способные «десульфатировать» пластины. Простой но вредный для жизни аккумулятора способ предполагает использование раствора сульфата магния . Раствор заливается в секции после чего батарею разряжают и заряжают несколько раз. Сульфат свинца и прочие остатки химической реакции осыпаются при этом на дно батареи, что может привести к замыканию секции поэтому обработанные секции желательно промыть и заполнить новым электролитом номинальной плотности. Это позволяет несколько продлить срок использования устройства. Если батарея имеет одну или несколько секций которые не работают (то есть не дают 2.17 вольта - например если корпус имеет трещины) возможно соединить две (или больше) батареи последовательно: к плюсовому контакту первой батареи подключаем плюсовой провод потребителя, к минусовому контакту второй батареи - минусовой провод потребителя, а две оставшихся контакта батареи соединяются кабелем. Такая батарея имеет суммарное напряжение работающих секций и поэтому количество работающих секций должно быть не более шести - то есть необходимо слить электролит из излишних секций. Такой вариант подходит для транспортных средств с большим моторным отсеком.

    Вторичная переработка

    Вторичная переработка для этого вида аккумуляторов играет важную роль, так как свинец, содержащийся в аккумуляторах является тяжелым металлом и наносит серьёзный вред при попадании в окружающую среду. Свинец и его соли должны быть переработаны на специальных предприятиях для возможности его вторичного использования.

    Выброшенные аккумуляторы часто используются как источник свинца для кустарной переплавки, например, в рыболовные грузила, дробь или гири. Для этого из аккумулятора сливается электролит, остатки нейтрализуются промыванием каким-либо безвредным основанием (например, гидрокарбонатом натрия), после чего корпус батареи разбивается и извлекается металлический свинец .

    См. также

    Примечания

    Ссылки

    • ГОСТ 15596-82
    • ГОСТ Р 53165-2008 Батареи аккумуляторные свинцовые стартерные для автотракторной техники. Общие технические условия. Взамен ГОСТ 959-2002 и ГОСТ 29111-91
    • Видео, демонстрирующее принцип работы аккумулятора на YouTube
    • Обслуживание и Восстановление свинцовых АКБ системы AGM"



    К атегория:

    Электрооборудование автомобилей



    -

    Cвинцово-кислотные аккумуляторные батареи


    Принцип действия свинцово-кислотного аккумулятора

    Аккумулятором называется электрический прибор, который при зарядке от источников постоянного тока накапливает электрическую энергию, а при разрядке отдает ее потребителям, являясь в этом случае источником тока.

    На автомобилях основное применение имеют свинцово-кислотные аккумуляторы. Кроме них, могут иметь применение также щелочные железо-никелевые аккумуляторы.

    Свинцово-кислотный простейший аккумулятор (элемент) представляет собой стеклянную или пластмассовую банку с опущенными в нее двумя свинцовыми пластинками и залитую электролитом- раствором из химически чистой крепкой серной кислоты и дистиллированной воды. Серная кислота, действуя на свинцовые пластины, окисляет их, и поверхность пластин покрывается налетом сернокислого свинца. Плотность раствора при этом уменьшается, и в электролите остается почти чистая вода.

    Для того чтобы аккумулятор мог давать ток, его необходимо предварительно зарядить, т. е. пропустить через него постоянный электрический ток. Вследствие прохождения электрического тока через электролит от положительной пластины к отрицательной в аккумуляторе происходит химическая реакция. При этом сернокислый свинец на положительной пластине преобразовывается в перекись свинца, а на отрицательной - в чистый губчатый свинец, в электролите снова появляется серная кислота, и плотность раствора возрастает.

    Когда химическое преобразование состава пластин полностью закончится, аккумулятор будет заряжен. Если продолжать пропускать через аккумулятор электрический ток, вода электролита начнет разлагаться на составные части - водород и кислород, которые в виде пузырьков будут выделяться из электролита. Бурное выделение пузырьков (кипение электролита) указывает на конец зарядки аккумулятора.

    При замыкании полюсов заряженного аккумулятора внешней цепью в нем будет происходить обратная химическая реакция, при которой пластины по своему составу будут возвращаться в первоначальное состояние. Вследствие этого аккумулятор будет разряжаться и отдавать запасенную электрическую энергию для питания включенных потребителей. При разрядке электрический ток во внешней цепи потечет от положительной пластины к отрицательной, т. е. в направлении, обратном направлению при зарядке. При этом положительная и отрицательная пластины аккумулятора опять будут покрываться налетом сернокислого свинца, а плотность электролита понизится, и он превратится в почти чистую воду. Когда химическая реакция полностью закончится, аккумулятор разрядится и больше электрического тока давать не сможет. Для дальнейшей работы аккумулятор необходимо вновь зарядить.

    Устройство аккумуляторной батареи

    Аккумуляторная батарея собирается из отдельных элементов - аккумуляторов в общем баке-моноблоке.

    Моноблок автомобильной аккумуляторной батареи разделен перегородками на отдельные камеры аккумуляторов. Каждая камера закрыта сверху эбонитовой крышкой с заливочным отверстием, завернутым пробкой. В камере установлен набор пластин (положительных и отрицательных), разделенных сепараторами.

    Моноблок изготовлен из асфальто-пековой массы или эбонита. В камеры асфальто-пекового моноблока обычно запрессовывают тонкостенные кислотостойкие вставки из пластмассы (полихлорвинил или винипласт), которые хорошо предохраняют стенки моноблока от разъедания кислотой, что значительно увеличивает сроки его службы.

    Для увеличения емкости аккумуляторной батареи, т. е. способности ее поглощать при зарядке большее количество электрической энергии, в каждую камеру устанавливают по нескольку положительных и отрицательных пластин специальной конструкции, в результате чего увеличивается общая рабочая поверхность пластин.

    Рис. 1. Схема действия свинцово-кислотного аккумулятора

    Основой каждой пластины является решетка, отлитая из чистого свинца с небольшой примесью (6-8%) сурьмы для увеличения механической прочности. В решетку впрессовывают активную массу, затем ее сушат. Эту массу приготовляют из порошкообразных окислов свинца - свинцового сурика и свинцового глета, размешанных на крепкой химически чистой серной кислоте. В активную массу положительных пластин обычно входит до 75% свинцового сурика, и пластины имеют поэтому красноватый оттенок. Активная масса отрицательных пластин содержит больше свинцового глета, пластины имеют серый или синеватый цвет.

    Рис. 2. Свинцово-кпслотная аккумуляторная батарея: а - трехэлементная; б - шестиэлементная

    Кроме указанных окислов свинца, в качестве набивки для пластин применяют также порошкообразный свинец, окисляющийся при размоле, размешиваемый на серной кислоте.

    После изготовления и сборки пластины подвергают формовке, т. е. многократным процессам зарядки электрическим током и разрядки.

    Все одноименные пластины соединяют путем сварки в блок общей перемычкой - бареткой с выводным штырем. В каждой камере положительные пластины расположены меяеду отрицательными. Блоки пластин имеют два выводных штыря (борна) - положительный (плюсовой) и отрицательный (минусовый). Отрицательных пластин в каждом блоке установлено на одну больше, чем положительных. Поэтому каждая положительная пластина закрыта с обеих сторон отрицательными пластинами, вследствие чего используется вся ее поверхность и устраняется возможность ее коробления при большом разрядном токе.

    Для устранения непосредственного соприкосновения одной пластины с другой или замыкания их выпадающей активной массой между ними установлены кислотоупорные прокладки - сепараторы. Сепараторы изготовляют двух типов:
    1) из древесины или комбинированные составные - из древесины и хлорвинила, или из древесины и стекловойлока;
    2) из микропористого эбонита (мипора) и микропористой пластмассы (мипласта) или комбинированные из мипласта и хлорвинила, или мипласта и стекло-войлока.

    Пластины с сепараторами установлены в отдельных камерах моноблока и опираются внизу на ребра днища, что предохраняет от замыкания нижние части пластины выпадающей с течением времени активной массой и накапливающейся между ребрами в шламовой камере. Сверху каждая камера плотно закрыта пластмассовой крышкой. Края камер моноблока в местах соединения с крышкой залиты кислотоупорной мастикой. На поверхность крышки каждой камеры выходят отрицательный и положительный штыри блоков (борны) пластин. Штыри уплотнены ребристыми свинцовыми втулками, заделанными в крышках. Бтулки припаяны к штырям вместе с междуэлементными перемычками. В некоторых типах батарей штыри с крышками уплотнены кислотостойкой массой. Крайние два штыря в батарее - плюсовый и минусовый - снабжены полюсными наконечниками, к которым с помощью зажимов и стяжных болтов присоединяются кабели внешней сети. В каждой камере над пластинами установлены предохранительные щитки из хлорвинила или другого кислотоупорного материала, служащие для защиты кромок сепараторов и пластин от механических повреждений. В крышке каждой камеры имеется наливное отверстие, закрываемое на уплотняющей прокладке пробкой 9 с вентиляционным отверстием, служащим для выхода газов. В пробке под отверстием установлена пластинка-отражатель, устраняющая выбрызгивание электролита. В новых аккумуляторах под пробкой ставится герметизирующий диск, который при эксплуатации батареи удаляется. В аккумуляторах некоторых типов отверстие в крышке для заливки электролита закрывают на прокладке глухой пробкой с уплотнительной резиновой втулкой внутри, а для выхода газов имеется специальный вентиляционный штуцер с отражателем внутри. Такое устройство заливного отверстия позволяет более удобно доливать электролит до необходимого уровня.

    Аккумуляторные батареи выпускаются с отформованными пластинами, но обычно в сухом виде без электролита. Поэтому новые батареи нужно заполнить электролитом и зарядить.

    Аккумуляторные батареи выпускаются с тремя или шестью элементами в одном блоке; в последнем случае выпускаются с поперечным или продольным расположением элементов. Батареи, предназначенные для грузовых автомобилей, обычно устанавливают в деревянном корпусе с крышкой. Батареи, используемые на автомобилях высокой проходимости, снабжаются герметизированными (гидростатическими) пробками, которые устраняют возможность проникновения воды в аккумулятор при преодолении автомобилем бродов.

    Основные показатели аккумуляторной батареи

    Основными показателями, определяющими работу аккумулятора и аккумуляторной батареи, являются ее напряжение и емкость.

    Один аккумулятор (элемент) аккумуляторной батареи, независимо от количества пластин в нем и их размера, в исправном и заряженном состоянии дает напряжение, равное в среднем 2 в. При полной разрядке напряжение в нем уменьшается до 1,7 в.

    Емкостью аккумулятора называется способность его при зарядке поглощать, а затем отдавать то или иное количество электрической энергии при разрядке током постоянной величины до предельно допустимого падения напряжения.

    Емкость зависит от числа пластин в банке (камере) и их размера и измеряется в ампер-часах (а ч). Емкость определяется умножением разрядного тока в амперах на время в часах, в течение которого аккумулятор может разряжаться при данном токе. Например, если аккумулятор в определенных условиях может отдавать при разрядке ток 4 а в течение 5 ч, то его емкость равна 20 а ч.

    Напряжения одного аккумулятора недостаточно для питания приборов электрооборудования автомобиля. Для получения большего напряжения несколько аккумуляторов объединяют в одном моноблоке в батарею и соединяют один с другим последовательно при помощи свинцовых перемычек. При этом положительный вывод одного элемента соединяют с отрицательным выводом другого элемента и т. д.

    При последовательном соединении аккумуляторов напряжение на крайних выводных клеммах батареи увеличивается пропорционально числу аккумуляторов, а емкость всей батареи остается равной емкости одного аккумулятора.

    Емкость, указываемая в марке батареи, называется номинальной емкостью и обеспечивается при вполне определенных условиях разрядки: при 10-часовом режиме и средней температуре электролита 30° (ГОСТ 959-51).

    Емкость батареи не является постоянной величиной. При увеличении разрядного тока и понижении температуры электролита емкость батареи значительно уменьшается. Это необходимо учитывать при эксплуатации батареи.

    На автомобилях с напряжением в сети электрооборудования 12 в ставят батареи того же напряжения, состоящие из шести аккумуляторов или двух батарей с напряжением 6 в, соединенных последовательно. На автомобилях, имеющих напряжение в сети, равное 24 в, ставят две батареи с напряжением 12 в, соединенные последовательно (МАЗ -500, КрАЗ-257). В том случае, когда напряжение 24 в используется только в момент включения стартера, применяют две батареи с напряжением 12 в, включенные параллельно, с автоматическим переключением их на последовательное соединение в момент пуска двигателя (МАЗ -200, КрАЗ-214). На легковых автомобилях батарея обычно расположена под капотом двигателя. У грузовых автомобилей батарея часто устанавливается или под сиденьем водителя, или на подножке кузова.

    В электрооборудовании автомобилей применяют однопроводную систему проводки, при которой одним из проводов служат металлические части автомобиля, его масса, поэтому одну клемму батареи (обычно минусовую) замыкают на массу, а другую (плюсовую) соединяют с сетью,

    У некоторых моделей автомобилей соединение минусовой клеммы батареи на массу осуществлено через специальный выключатель. Это позволяет отключать батарею от сети в нерабочем состоянии, что предохраняет батарею от возможной утечки тока.

    В корпусе (рис. 3) выключателя типа ВБ-318 установлен шток с кнопкой. На нижнем конце штока установлены основные подвижные контакты с пружинами и вспомогательный контакт. Подвижные контакты расположены над неподвижными контактами, закрепленными в корпусе. Контакт соединен с массой, а изолированный контакт соединен с клеммой, к которой крепится провод от минусовой клеммы батареи. Шток с контактами отжимается кверху пружинами. Вверху на корпусе установлена стопорная пластина с пружиной и малой кнопкой.

    Рис. 3. Выключатель батареи

    Включение батареи в сеть производится нажатием на основную кнопку. При этом неподвижные контакты замыкаются сначала вспомогательным подвижным контактом, а затем основными контактами, и батарея соединяется на массу. При этом шток 6 во включенном положении фиксируется стопорной пластиной 8, заходящей под действием пружины в выточку на штоке.

    Выключение батареи производится нажатием на боковую кнопку, которая сдвигает стопорную пластину и освобождает основной шток 6. Шток, поднимаясь вместе с контактами, размыкает цепь батареи. Некоторая неодновременность последовательного замыкания и размыкания вспомогательного и основных контактов снижает подгорание контактов.

    Аккумуляторные батареи имеют определенную маркировку (в соответствии с ГОСТ ом 959-51). Например, на автомобиле ГАЗ -51А установлена батарея марки 3-СТ-70-ВД. Первое число обозначает количество аккумуляторов (элементов) в батарее, а следовательно, и общее напряжение, считая, что каждый элемент имеет напряжение 2 в. Второе число обозначает номинальную емкость батареи в а ч. Буквы СТ означают, что батарея - чартерного типа. Материал бака обозначают буквами: Э - эбонит, П - асфаль-то-пековая масса с кислотоупорными вставками, В - асфальто-пековая масса без кислотоупорных вставок. Материал сепараторов обозначают буквами: Д - дерево, ДС - дерево и стекловойлок, М - мипласт, МС - мипласт и стекловойлок, Р - мипор. Буква 3 означает, что батарея сухо-заряженная.

    Подготовка батареи к эксплуатации

    Новые сухие батареи нужно заполнить электролитом и зарядить.

    Электролит готовится из аккумуляторной кислоты и дистиллированной воды. Для приготовления электролита применяется стойкая против действия серной кислоты посуда - керамическая, эбонитовая, стеклянная. В посуду сначала заливают дистиллированную воду, а затем осторожно и постепенно - кислоту.

    Электролит для заливки батареи применяют определенной плотности (1,27-1,34), зависящей от типа батареи, климатических условий и времени года.

    Необходимая плотность электролита устанавливается в соответствии с заводской инструкцией.

    Плотность электролита измеряют специальным ареометром с пипеткой.

    Электролит в элементы батареи ^необходимо заливать до уровня на 10-15 мм выше предохранительного щитка, установленного над сепараторами. Уровень проверяют стеклянной трубкой, которую опускают до упора в щиток, и, закрыв верхнее отверстие, вынимают. По высоте столбика электролита, находящегося в трубке, определяют его уровень.

    В батареях с автоматической регулировкой уровня нужно вывернуть пробки и надеть их плотно резиновыми втулками на предварительно вытертые вентиляционные штуцеры, после чего залить электролит в элементы до уровня на 15-20 мм ниже верхнего края горловины заливного отверстия. При снятии пробок со штуцеров электролит в элементах установится на нормальном уровне.

    Через 3-6 ч (в зависимости от типа батареи) после заливки электролита батарею ставят на зарядку, соединяя положительную клемму батареи с положительным полюсом источника тока, а отрицательную - с отрицательным.

    Зарядку ведут при нормальном для каждого типа батареи токе, указанном в заводской инструкции. Зарядку продолжают до тех пор, пока во всех аккумуляторах (элементах) батареи не наступит обильное газовыделение (кипение), а напряжение и плотность электролита не останутся постоянными в течение 3 ч.

    При зарядке следует следить, чтобы температура электролита не повышалась выше 45 °С.

    К концу первой зарядки проверяют плотность электролита, и в случае необходимости доводят ее во всех элементах до нормальной, для чего отсасывают часть электролита из элемента резиновой грушей и доливают дистиллированную воду или электролит повышенной плотности.

    После первой зарядки новые батареи могут быть пущены в эксплуатацию. В целях удлинения срока службы батареи при эксплуатации полезно провести несколько зарядных циклов, разряжая после зарядки батарею номинальным разрядным током до падения напряжения одного элемента до 1,7 в.

    Уход за батареей и ее неисправности

    К основным элементам ухода относятся:
    1) проверка креплений и очистка батареи;
    2) очистка и затяжка клемм;
    3) проверка уровня электролита и доливка его;
    4) проверка степени заряженности батареи;
    5) проверка зарядного тока;
    6) предохранение батареи от быстрой разрядки и коротких замыканий.

    Проверка креплений батареи необходима для избежания поломок батареи

    от тряски при ослабевших креплениях. Крепление батареи в гнезде должно быть плотным. На грузовых автомобилях под батарею следует установить резиновые прокладки. Периодически необходимо проверять, нет ли трещин в моноблоке и утечки из него электролита. Также следует проверять целость заливочной мастики на крышке.

    Очистка батареи нужна для устранения замыкания аккумуляторов (элементов) по загрязненной поверхности батареи, обычно смачиваемой расплескивающимся электролитом. Поверхность батареи следует очищать чистой тряпкой. Электролит, пролитый на поверхность батареи, надо вытереть чистой ветошью, смоченной в растворе нашатырного спирта или кальцинированной соды (10%-ный раствор). Следует также прочищать вентиляционные отверстия во избежание повреждения банок от скапливающихся в них газов.

    Очистка и затяжка клемм необходимы для обеспечения надеяшого контакта в клеммах. Клеммы надо хорошо зачищать, плотно затягивать и снаружи смазывать тонким слоем технического вазелина или солидола для предотвращения их окисления. Также необходимо подтягивать крепление провода к массе. Нельзя допускать сильного натяжения проводов, так как это может привести к повреждению выводных клемм и образованию трещин в мастике.

    Проверка уровня электролита необходима вследствие того, что уровень электролита может понижаться в результате испарения и выкипания электролита. При уменьшении уровня электролита в банки батареи доливают дистиллированную воду, так как выкипает только вода.

    Периодически следует проверять плотность электролита при полностью заряженной батарее и следить за тем, чтобы она была одинакова во всех банках, доводя плотность электролита в случае необходимости до нормы.

    Степень разряженности батареи можно проверять по плотности электролита или с помощью вольтметра с нагрузочной вилкой.

    Батарея всегда должна быть в заряженном состоянии. Если при проверке батарея окажется неполностью заряженной, необходимо принять меры к ее зарядке, установив причины, нарушающие нормальную работу батареи.

    Батарею, разряженную более чем на 25% зимой и более чем на 50% летом, необходимо снять и подзарядить.

    Если батарея находится длительное время в неполностью заряженном состоянии, то это приводит к порче ее пластин. В зимнее время электролит в разряженной батарее может замерзнуть и разрушить батарею.

    Контроль величины зарядного тока и режима зарядки батареи можно ориентировочно проводить по показаниям амперметра, имеющегося в системе электрооборудования автомобиля.

    Если батарея заряжена, стрелка амперметра почти не отклоняется от среднего положения даже при повышенном числе оборотов коленчатого вала двигателя. При разряженном состоянии батареи, в случае повышения числа оборотов вала двигателя, стрелка амперметра значительно отклоняется в сторону зарядного тока вследствие возрастания тока, идущего на зарядку батареи. Отклонение стрелки амперметра при работе автомобиля в обратную сторону или включение сигнальной лампы указывает на разряд батареи.

    Предохранение батареи от быстрой разрядки и коротких замыканий необходимо для избежания коробления пластин и выкрашивания активной массы. Поэтому нельзя на продолжительное время и несколько раз подряд включать стартер, который потребляет очень сильный ток. Не рекомендуется пускать стартером сильно охлажденный двигатель в зимнее время при низкой температуре. Необходимо двигатель предварительно прогреть и вручную несколько раз провернуть коленчатый вал.

    При осмотре батареи нельзя подносить к ней открытый огонь, так как может произойти вспышка газов над электролитом.

    При переходе с летней эксплуатации на зимнюю или обратно необходимо доводить плотность электролита до рекомендуемого значения.

    В зимнее время открытые батареи следут утеплять.

    При установке батареи на автомобиль надо правильно соединить ее клеммы с массой и цепью. Правильность соединения можно проверить по амперметру. При разрядке батареи стрелка должна отклоняться в соответствующую сторону (к знаку плюс). Полярность клемм батареи можно определить по знакам плюс и минус на клеммах, а при их отсутствии - путем опускания проводов от клемм в подкисленную воду или с помощью сырой картофелины. В подкисленной воде на отрицательном (минусовом) проводе происходит бурное выделение пузырьков газа, а вокруг положительного (плюсового) провода, воткнутого в картофель, появится зеленое пятно.

    Хранение аккумуляторной батареи. Если батарея снята с автомобиля и поставлена на сравнительно непродолжительное хранение, ее необходимо предварительно полностью зарядить, проверить уровень электролита, довести плотность электролита до нормального значения (не выше 1,280 при 15 °С), тщательно очистить, протерев снаружи моноблок и крышки, зачистить клеммы и поставить в чистое вентилируемое помещение с постоянной температурой.

    В целях избежания внутреннего саморазряда и устранения усиленной коррозии положительных пластин хранение батарей с электролитом предпочтительнее производить в холодном помещении при постоянной температуре не ниже -25 °С и не выше 0 °С. При хранении батарей в таких условиях необходимо ежемесячно проверять плотность электролита, подзаряжая батареи только в случае падения плотности ниже допустимого значения (ниже 1,230 при 15 °С). При нормальном состоянии батарей при этом способе хранения заряжать их необходимо только перед пуском в эксплуатацию.

    При хранении батарей при температуре выше 0 °С их необходимо ежемесячно заряжать для восстановления емкости, теряемой в результате саморазряда.

    При указанных способах хранения батареи всегда подготовлены к работе.

    При длительном хранении, например более полугода, а также при невозможности производить частую подзарядку батареи, необходимую при первом способе хранения, практикуют способ хранения батарей без электролита. В этом случае батарею следует полностью разрядить током, соответствующим 1/20 емкости, до падения напряжения на один аккумулятор до 1,7 в, затем, сняв батарею, вылить из нее электролит и тщательно промыть банки дистиллированной водой. Промывку надо производить до тех пор, пока вода не перестанет окисляться. После промывки и тщательной просушки батареи надо закупорить плотно отверстия ее банок и очистить снаружи и в таком виде ставить батарею на длительное хранение.

    Неисправности аккумуляторной батареи. Основными неисправностями аккумуляторной батареи являются: недостаточная заряженность, перезарядка, сульфатация пластин, уменьшение емкости, внутренний саморазряд, коробление пластин, подтекание батареи.

    Недостаточная заряженность батареи получается вследствие малого зарядного тока, плохого крепления проводов и окисления клемм, утечки или большого расхода тока при неработающем двигателе, неумелого пользования стартером. Недостаточный зарядный ток может иметь место при неправильной регулировке реле-регулятора или плохой работе генератора. Признаками недостаточной заряженности батареи являются малая плотность электролита в ней и недостаточное напряжение батареи.

    Перезарядка батареи происходит при чрезмерно сильном зарядном токе вследствие неправильной регулировки реле-регулятора. Признаком перезарядки являются частое кипение электролита и быстрое понижение его уровня.

    Сульфатация пластин заключается в том, что пластины покрываются белым кристаллическим налетом, который затрудняет прохождение электрического тока и проникновение электролита к активной массе пластин. Вследствие этого замедляются химические процессы и уменьшается емкость батареи.

    Внешним признаком сульфатации является сильное падение напряжения батареи при увеличении нагрузки. Например, при включении стартера или даже сигнала электрические лампочки, горевшие достаточно ярко, почти гаснут. При проверке нагрузочной вилкой элементов батареи, подвергшихся сульфатации, напряжение на полюсах элементов быстро снижается.

    Сульфатация происходит в результате сильной разрядки батареи или длительной ее работы в неполностью заряженном состоянии. Чтобы предохранить батареи от сульфатации, необходимо систематически контролировать и поддерживать их в заряженном состоянии, а также периодически проводить контрольно-тренировочные циклы на зарядной станции. Вследствие сильной сульфатации пластины батареи выходят из строя и не поддаются ремонту и восстановлению.

    Уменьшение емкости происходит из-за уменьшения рабочей поверхности пластин, вызванного выкрашиванием активной массы пластин или понижением уровня электролита. Признаком уменьшения емкости является быстрое закипание электролита во время зарядки при незначительном повышении его плотности, а также быстрая разрядка батареи при ее работе. Выкрашивание активной массы получается в результате сильной перезарядки батареи или при разрядке батареи большим током, например при длительном пользовании стартером.

    Внутренний саморазряд батареи происходит в случае применения для электролита недистиллированной воды. Признаком неисправности является быстрая разрядка даже неработающей батареи. Для устранения этой неисправности батарею разряжают и тщательно промывают дистиллированной водой с последующим заполнением ее электролитом надлежащего качества и плотности и зарядкой.

    Короткое замыкание внутри банок батареи возникает из-за разрушения деревянных сепараторов вследствие применения электролита слишком большой плотности. При этом выпадающая активная масса замыкает пластины. При внутреннем замыкании батареи быстро снижается ее напряжение, уменьшаются плотность электролита и емкость батареи.

    Коробление пластин получается при чрезмерном разрядном токе в случае пользования стартером длительное время и при коротких замыканиях в цепи. В этом случае батарея выходит из строя.

    Неисправности аккумуляторной батареи

    В процессе эксплуатации в аккумуляторной батарее могут возникать следующие неисправности: окисление полюсных штырей, подтекание электролита через трещины бака, повышенный саморазряд, короткое замыкание и сульфатация пластин.

    Окисление полюсных штырей приводит к увеличению сопротивления во внешней цепи и даже к прекращению тока. Для устранения неисправности нужно снять со штырей наконечники проводов (клеммы), зачистить штыри и клеммы и укрепить последние на штырях. После этого штыри и клеммы снаружи надо смазать тонким слоем технического вазелина.

    Подтекание электролита через трещины бака обнаруживают осмотром. Для устранения неисправности батарею сдают в ремонт. При вынужденной временной эксплуатации батареи с этой неисправностью необходимо периодически добавлять в неисправное отделение бака электролит, а не дистиллированную воду.

    Саморазряд аккумуляторной батареи при ее эксплуатации и хранении возникает вследствие образования в активной массе пластин местных токов. Местные токи появляются за счет возникновения электродвижущей силы между окислами активной массы и решеткой пластин. Кроме того, при длительном хранении электролит в аккумуляторе отстаивается и плотность электролита в нижних слоях становится больше, чем в верхних. Это приводит к появлению разности потенциалов и возникновению уравнительных токов на поверхности пластин. Нормальный саморазряд исправной батареи составляет 1-2% в сутки. Причинами ускоренного саморазряда могут быть: загрязнение поверхности батареи, применение для доливки обычной (не дистиллированной) воды, содержащей щелочи и соли, попадание внутрь аккумуляторов металлических частиц и других веществ, способствующих образованию гальванических пар. Для устранения неисправности следует протереть поверхность батареи или заменить электролит.

    Признаками короткого замыкания внутри аккумулятора являются «кипение» электролита и резкое падение напряжения аккумулятора; чаще всего оно вызывается осыпанием активной массы и разрушением сепараторов. В том и другом случаях аккумуляторную батарею разбирают и устраняют неисправности, заменяя неисправные элементы.

    Сульфатация пластин заключается в том, что на пластинах образуется крупнокристаллический сернокислый свинец в виде белого налета. При этом увеличивается сопротивление аккумуляторов. Крупные кристаллы сульфата свинца закрывают поры активной массы, препятствуя проникновению электролита и формированию активной массы при заряде. Вследствие этого активная поверхность пластин уменьшается, вызывая снижение емкости батареи. Признаком сульфатации пластин является то, что при заряде батареи быстро повышаются напряжение и температура электролита и происходит бурное газовыделение («кипение»), а плотность электролита повышается незначительно. При последующем разряде и особенно при включении стартера батарея быстро разряжается из-за малой емкости. Основные причины, вызывающие сульфатацию: разряд батареи ниже 1,7 В на один аккумулятор, оголение пластин вследствие понижения уровня электролита, длительное хранение батареи без подзарядки (особенно разряженной), большая плотность электролита, продолжительное пользование стартером при пуске.

    Если действительная емкость будет не менее 80% номинальной, батарею снова заряжают и устанавливают на автомобиль; если емкость окажется ниже, весь цикл повторяют вновь. Приведенный цикл рекомендуется применять также после хранения батареи более 6 месяцев и перед длительным хранением.

    Техническое обслуживание аккумуляторной батареи

    Срок службы и исправность аккумуляторной батареи во многом зависят от своевременного и правильного ухода за ней. Батарея должна содержаться в чистоте, так как загрязнение ее поверхности приводит к повышенному саморазряду. При техническом обслуживании необходимо протирать поверхность батареи 10%-ным раствором нашатырного спирта или кальцинированной соды, после чего протирать чистой сухой ветошью.

    Во время заряда в результате химической реакции выделяются газы, значительно повышающие давление внутри аккумуляторов. Поэтому вентиляционные отверстия в пробках нужно постоянно прочищать тонкой проволокой. Учитывая, что при работе батареи образуется гремучий газ (смесь водорода с кислородом), нельзя осматривать батарею с открытым огнем во избежание взрыва.

    Периодически необходимо зачищать штыри и клеммы проводов. Через 2-2,5 тыс. км пробега, а в жаркое время через каждые 5-6 дней проверять уровень электролита через заливные отверстия аккумуляторов стеклянной трубкой внутренним диаметром 3-5 мм. Столбик электролита в трубке указывает высоту его уровня над предохранительным щитком, которая должна быть 12-15 мм. При отсутствии стеклянной трубки уровень электролита можно проверить чистой эбонитовой или деревянной палочкой; нельзя применять для этой цели металлический стержень. При понижении уровня следует долить дистиллированную воду, а не электролит, так как в процессе работы батареи вода в электролите разлагается и испаряется, а кислота остается.

    Периодически проверяют плотность электролита с целью определения степени заряженности аккумуляторной батареи. Для этого кислотомер опускают в наливное отверстие аккумулятора, засасывают электролит с помощью резиновой груши и по делениям ареометра, помещенного внутри стеклянной колбы, определяют величину плотности электролита.

    Рис. 1. Проверка состояния аккумуляторной батареи:
    а - проверка уровня электролита; б - проверка плотности электролита; 1 - резиновая груша кислотомера; 2 - стеклянная колба; 3 - ареометр

    Для длительного хранения батареи в зимнее время ее нужно снять с автомобиля, полностью зарядить и хранить в сухом месте при температуре не выше 0 °С и не ниже - 30°, имея в виду, что чем ниже температура электролита, тем меньше саморазряд батареи. Через каждые три месяца батарею необходимо подзаряжать для восстановления емкости, потерянной на саморазряд. При-хранении батареи непосредственно на автомобиле необходимо отсоединить провода от полюсных штырей. Следует помнить, что температура замерзания электролита плотностью 1,1 г/см3 минус 7 °С, плотврстью 1,22 г/см3 минус 37 °С и плотностью 1,31 г/см3 минус 66 °С.

    Добавить сайт в закладки

    Механизм работы аккумулятора

    Аккумуляторы - это химические источники тока с обрати­мым процессом: они могут отдавать энергию, преобразуя хими­ческую энергию в электрическую, или накапливать энергию, преобразуя электрическую энергию в химическую. Та­ким образом, аккумулятор попеременно то разряжается, отдавая электрическую энергию, то заряжается от какого-либо соответствующего источника постоянного тока.

    Аккумуляторы, в зависимости от применяемого в них электро­лита, подразделяются на кислотные и щелочные. Кроме того, аккумуляторы различаются, в зависимости от материала электродов. Широкое применение имеют лишь свинцовые, кадмиево-никелевые, железо-никелевые и серебряно-цинковые акку­муляторы.

    Емкость аккумулятора определяется количеством электри­чества q p , которое он может отдать при разряде в питаемую цепь.

    Это количество электричества измеряется не в кулонах, а в более крупных единицах - ампер-часах (а-ч). 1 а-ч = 3600 кл. Но для заряда аккумулятора требуется большее количество электричества q 3 , чем отдаваемое при разряде. Отношение q p: q 3 =n e называется отдачей аккумулятора по емкости.

    Напряжение, необходимое для заряда аккумулятора, значи­тельно выше того напряжения на зажимах аккумулятора, при котором он отдает длительно разрядный ток.

    Важной характеристикой аккумулятора являются его средние зарядное и разрядное напряжения.

    Ясно, что из-за ряда потерь энергии аккумулятор отдает при разряде значительно меньшее количество энергии W p , чем полу­чает при заряде. Отношение W p: W 3 = n есть коэффициент полезного действия или отдача по энергии аккумулятора.

    Наконец, весьма важной для характеристики аккумулятора величиной является его удельная э н е р г и я, т. е. количество энергии, отдаваемой при разряде, приходящееся на 1 кг веса аккумулятора. Особенно существенно, чтобы удельная энергия была возможно больше у нестационарных аккумуляторов, уста­навливаемых, например, на самолетах. В подобных случаях обычно она важнее, чем коэффициент полезного действия и от­дача по емкости.

    Следует иметь в виду, что при медленном разряде процесс в аккумуляторе протекает равномерно во всей массе пластин, бла­годаря чему при длительном разряде малым током емкость акку­мулятора больше, чем при кратковременном разряде большим током. При быстром разряде процесс в массе пластин отстает от процесса на их поверхности, что вызывает внутренние токи и уменьшение отдачи.

    Напряжение аккумулятора существенно изменяется во время разряда. Желательно, чтобы оно было возможно более постоян­ным. В расчетах обычно указывается среднее разрядное напря­жение U p . Но для заряда аккумулятора нужен источник тока, дающий значительно большее зарядное напряжение U з (на 25- 40%). В противном случае невозможно зарядить аккумулятор полностью.

    Если напряжение одного аккумуляторного элемента недоста­точно для данной установки, то необходимое число аккумулятор­ных элементов соединяется последовательно. Конечно, последо­вательно соединять можно только аккумуляторы, рассчитанные на одну и ту же разрядную силу тока.

    Если разрядный ток одного элемента недостаточен, то приме­няется параллельное соединение нескольких одинаковых элемен­тов.

    Из числа кислотных аккумуляторов практическое значение имеют лишь свинцовые аккумуляторы. В них на положительном электроде активным веществом служит двуокись свинца РЬ0 2 , на отрицательном электроде - губчатый свинец РЬ. Положительные пластины имеют бурый цвет, отрицатель­ные- серый, в качестве электролита применяется раствор сер­ной кислоты H 2 S0 4 с с удельным весом 1,18-1,29.

    Химический процесс разряда и заряда свинцового аккумуля­тора относительно сложен. В основном он сводится к восстановлению свинца на положительном электроде и окислению губча­того свинца на отрицательном электроде в закисную соль серной кислоты. При этом образуется вода и, следовательно, плотность электролита уменьшается. При разря­де сначала напряжение аккумулятора быстро падает до 1,95 В, а затем медленно понижается до 1,8 В. После чего необходимо прекратить разряд.

    При дальнейшем разряде имеет место необратимый процесс образования кристаллического сернокислого свинца PbS 4 . По­следний покрывает пластины белым налетом. Он обладает боль­шим удельным сопротивлением и почти не растворим в электро­лите. Слой сернокислого свинца увеличивает внутреннее сопро­тивление активной массы пластин. Такой процесс называется сульфатацией пластин.

    При заряде аккумулятора процесс идет в обратном направ­лении: на отрицательном электроде восстанавливается металли­ческий свинец, а на положительном электроде свинец окисляется до двуокиси РЬ0 2 . Ион S0 4 переходит в электролит, поэтому плотность серной кислоты при заряде увеличивается, следова­тельно, возрастает и удельный вес электролита. Для измерения удельного веса электролита применяется специальный арео­метр. По его показаниям можно ориентировочно судить, в какой мере аккумулятор заряжен. Среднее разрядное напряжение свинцового аккумулятора 1,98 В, а среднее зарядное напряжение 2,4 В.

    Внутреннее сопротивление r B н свинцовых аккумуляторов, бла­годаря малому расстоянию между пластинами и большой пло­щади их соприкосновения с электролитом, весьма мало: порядка тысячных долей ома у стационарных аккумуляторов и сотых до­лей у небольших переносных аккумуляторов.

    Вследствие малого внутреннего сопротивления и относительно большого напряжения КПД этих аккумуляторов достигает 70- 80 %, а отдача - 0,85-0,95 %.

    Однако из-за малого внутреннего сопротивления в свинцовых аккумуляторах при коротких замыканиях возникают токи очень большой силы, что приводит к короблению и распаду пластин.

    Из числа щелочных аккумуляторов широкое при­менение в настоящее время имеют кадмиево-никелевые, железо- никелевые и серебряно-цинковые. Во всех этих аккумуляторах электролитом служит щелочь - примерно двухпроцентный ра­створ едкого калия КОН или едкого натра NaOH. При заряде и разряде этот электролит почти не претерпевает изменений. Сле­довательно, от его количества емкость аккумулятора не зависит. Это дает возможность свести к минимуму количество электроли­та во всех щелочных аккумуляторах и таким путем существенно их облегчить.

    Остовы положительной и отрицательной пластин этих акку­муляторов делаются из стальных никелированных рамок с пакетами для активной массы. Благодаря такой конструкции активная масса прочно удерживается в пластинах и не выпадает при толчках.

    В кадмиево-никелевом КН аккумуляторе ак­тивным веществом положительного электрода служат окислы никеля, смешанные для увеличения электропроводности с графи­том; активным веществом отрицательного электрода является губчатый металлический кадмий Cd. При разряде на положи­тельном электроде расходуется часть активного кислорода, со­держащегося в окислах никеля, а на отрицательном электроде окисляется металлический кадмий. При заряде обратно обога­щается кислородом положительный электрод: гидрат закиси никеля Ni(OH) 2 переходит в гидрат окиси никеля Ni(OH) 3. На отрицательном электроде гидрат закиси кадмия восстанавли­вается в чистый кадмий. Приближенно процесс в этом аккумуля­торе может быть выражен химической формулой:

    2Ni (ОН) 3 + 2КОН + Cd ? ? 2Ni (ОН) 2 + 2КОН + Cd (ОН) 2 .

    Как показывает формула, из электролита при разряде выде­ляется частица (ОН) 2 на отрицательной пластине и такая же частица переходит в электролит на положительной пластине. При заряде процесс идет в обратном направлении, но в обоих случаях электролит не изменяется.

    Устройство железо-никелевого аккумулятора отличается лишь тем, что в нем в отрицательных пластинах кадмий заменен мелким порошком железа (Fe). Химический процесс этого аккумулятора можно просле­дить по вышеприведенному для кадмиево-никелевого аккумуля­тора уравнению путем замены Cd на Fe.

    Применение железа вместо кадмия удешевляет аккумуля­тор, делает его более прочным механически и увеличивает срок его службы. Но с другой сторо­ны, у железо-никелевого акку­мулятора при том же примерно разрядном напряжении зарядное напряжение на 0,2 В выше, вследствие чего КПД этого аккумулятора ни­же, чем кадмиево-никелевого. Затем очень важным недостат­ком железо-никелевого аккуму­лятора является относительно быстрый саморазряд. У кадмиево-никелевого аккумулятора саморазряд мал, и поэтому ему отдается предпочтение в тех случаях, когда аккумулятор должен длительно находиться в заряженном со­стоянии, например для питания радиоустановок. Среднее разрядное напряже­ние обоих этих аккумуляторов равно 1,2 В.

    Герметически закрытые сосуды вышеописанных щелочных аккумуляторов выполняются из листовой никелированной стали. Болты, через которые пласти­ны аккумуляторов соединяются с внешней целью, пропускаются через отвер­стия в крышке сосуда, причем болт, с которым соединены отрицательные пла­стины, тщательно изолирован от стального корпуса; но болт, соединенный с положительными пластинами, от корпуса не изолируется.

    Внутреннее сопротивление щелочных аккумуляторов значи­тельно больше, чем кислотных, благодаря этому они лучше пере­носят короткие замыкания. Но по той же причине КПД щелоч­ных аккумуляторов (порядка 45%) значительно ниже, чем кис­лотных, также существенно меньше их удельная энергия и отда­ча по емкости (0,65). Так как состояние электролита у щелочных аккумуляторов при работе не изменяется, то определить их степень заряженности по внешним признакам нельзя. Вследствие чего за зарядом приходится следить на основании их емкости и напряжения. При заряде нужно сообщить аккумулятору количество электричества It=q значительно большее, чем его емкость, примерно в 1,5 раза. Например, аккумулятор емкостью 100 а-ч желательно заряжать током силой в 10 а в течение 15 час.

    Серебряно-цинковые аккумуляторы являются новей­шими из числа современных аккумуляторов. Электролитом в них служит вод­ный раствор едкого калия КОН с удельным весом 1,4, с активным веществом положительного электрода (окисью серебра Ag 2 0) и отрицательного электро­да (цинком Zn). Электроды изготавливаются в виде пористых пластин и отделяют­ся друг от друга пленочной перегородкой.

    При разряде аккумулятора окись серебра восстанавливается до металли­ческого серебра, а металлический цинк окисляется до окиси цинка ZnO. Об­ратный процесс происходит при заряде аккумулятора. Основная химическая реакция выражается формулой

    Ag s O + КОН + Zn ? ? 2Ag + КОН + ZnO.

    http://сайт/www.youtube.com/watch?v=0jbnDTRtywE
    Устойчивое разрядное напряжение составляет около 1,5 В. При небольших токах разряда это напряжение почти не изменяется в течение примерно 75- 80% времени работы аккумулятора. Затем оно довольно быстро падает, и при напряжении 1 в разряд следует прекращать.

    Внутреннее сопротивление серебряно-цинковых аккумуляторов сущест­венно меньше, чем остальных щелочных аккумуляторов. При равной емкости первые значительно легче. Они удовлетворительно работают как при пониженной (-50° С), так и при повышенной (+ 75° С) температурах. Наконец, они допускают большие разрядные токи. Например, некоторые типы таких акку­муляторов можно разогреть током короткого замыкания в течение одной минуты.

    Выше изложены только основные сведения по аккумуляторам. При практической работе с аккумуляторами, в особенности со свинцовыми, необходимо тщательно выполнять соответствующие заводские инструкции. Нарушение их вызывает быстрое разрушение аккумуляторов.