От чего зависит кпд двигателя. Какой КПД электродвигателя? Как повысить эффективность электродвигателя? КПД дизельного двигателя – заметная эффективность

Коэффицие́нт поле́зного де́йствия (КПД ) - характеристика эффективности системы (устройства, машины) в отношении преобразования или передачи энергии. Определяется отношением полезно использованной энергии к суммарному количеству энергии , полученному системой; обозначается обычно η («эта») . η = Wпол/Wcyм. КПД является безразмерной величиной и часто измеряется в процентах . Математически определение КПД может быть записано в виде:

X 100 %,

где А - полезная работа, а Q - затраченная энергия.

В силу закона сохранения энергии КПД всегда меньше единицы или равен ей, то есть невозможно получить полезной работы больше, чем затрачено энергии.

КПД теплово́го дви́гателя - отношение совершённой полезной работы двигателя , к энергии, полученной от нагревателя. КПД теплового двигателя может быть вычислен по следующей формуле

,

где - количество теплоты , полученное от нагревателя, - количество теплоты, отданное холодильнику. Наибольшим КПД среди циклических машин, оперирующих при заданных температурах горячего источника T 1 и холодного T 2 , обладают тепловые двигатели, работающие по циклу Карно ; этот предельный КПД равен

.

Не все показатели, характеризующие эффективность энергетических процессов, соответствуют вышеприведённому описанию. Даже если они традиционно или ошибочно называются «коэффициент полезного действия», они могут иметь другие свойства, в частности, превышать 100 %.

КПД котлов

Основная статья: Тепловой баланс котла

КПД котлов на органическом топливе традиционно рассчитывается по низшей теплоте сгорания ; при этом предполагается, что влага продуктов сгорания покидает котёл в виде перегретого пара . В конденсационных котлах эта влага конденсируется, теплота конденсации полезно используется. При расчёте КПД по низшей теплоте сгорания он в итоге может получиться больше единицы. В данном случае корректнее было бы считать его по высшей теплоте сгорания , учитывающей теплоту конденсации пара; однако при этом показатели такого котла трудно сравнивать с данными о других установках.

Тепловые насосы и холодильные машины

Достоинством тепловых насосов как нагревательной техники является возможность иногда получать больше теплоты, чем расходуется энергии на их работу; аналогичным образом холодильная машина может отвести от охлаждаемого конца больше теплоты, чем затрачивается на организацию процесса.

Эффективность таких тепловых машин характеризуют холодильный коэффициент (для холодильных машин) или коэффициент трансформации (для тепловых насосов)

,

где - тепло, отбираемое от холодного конца (в холодильных машинах) или передаваемое к горячему (в тепловых насосах); - затрачиваемая на этот процесс работа (или электроэнергия). Наилучшими показателями производительности для таких машин обладает обратный цикл Карно: в нём холодильный коэффициент

,

где , - температуры горячего и холодного концов, . Данная величина, очевидно, может быть сколь угодно велика; хотя практически к ней трудно приблизиться, холодильный коэффициент всё же может превосходить единицу. Это не противоречит первому началу термодинамики , поскольку, кроме принимаемой в расчёт энергии A (напр. электрической), в тепло Q идёт и энергия, отбираемая от холодного источника.

Литература

  • Пёрышкин А. В. Физика. 8 класс. - Дрофа, 2005. - 191 с. - 50 000 экз. - ISBN 5-7107-9459-7 .

Примечания


Wikimedia Foundation . 2010 .

Синонимы :

Смотреть что такое "Коэффициент полезного действия" в других словарях:

    коэффициент полезного действия - Отношение отдаваемой мощности к потребляемой активной мощности. [ОСТ 45.55 99] коэффициент полезного действия КПД Величина, характеризующая совершенство процессов превращения, преобразования или передачи энергии, являющаяся отношением полезной… … Справочник технического переводчика

    Или коэффициент отдачи (Efficiency) характеристика качества работы любой машины или аппарата со стороны ее экономичности. Под К. П. Д. подразумевается отношение количества полученной от машины работы или энергии от аппарата к тому количеству… … Морской словарь

    - (к.п.д.), показатель эффективности действия механизма, определяемый как отношение работы, совершаемой механизмом, к работе, затраченной на его функционирование. К.п.д. обычно выражают в процентах. Идеальный механизм должен был бы иметь к.п.д =… … Научно-технический энциклопедический словарь

    Современная энциклопедия

    - (кпд) характеристика эффективности системы (устройства, машины) в отношении преобразования энергии; определяется отношением полезно использованной энергии (превращенной в работу при циклическом процессе) к суммарному количеству энергии,… … Большой Энциклопедический словарь

    - (кпд), характеристика эффективности системы (устройства, машины) в отношении преобразования или передачи энергии; определяется отношением т) полезно использованной энергии (Wпол) к суммарному кол ву энергии (Wсум), полученному системой; h=Wпол… … Физическая энциклопедия

    - (кпд) отношение полезно используемой энергии W п, напр. в виде работы, к общему кол ву энергии W, получаемой системой (машиной или двигателем), W п/W. Из за неизбежных потерь энергии на трение и др. неравновесные процессы для реальных систем… … Физическая энциклопедия

    Отношение полезно затрачиваемой работы или получаемой энергии ко всей затраченной работе или соответственно потребляемой энергии. Напр., К. п. д. электродвигателя отношение механ. мощности, им отдаваемой, к подводимой к нему электр. мощности; К.… … Технический железнодорожный словарь

    Сущ., кол во синонимов: 8 кпд (4) отдача (27) плодотворность (10) … Словарь синонимов

    Коэффициент полезного действия - – величина, характеризующая совершенство любой системы по отношению к какому либо протекающему в ней процессу превращения или передачи энергии, определяемая как отношение полезной работы, к работе, затраченной на приведение в действие.… … Энциклопедия терминов, определений и пояснений строительных материалов

    Коэффициент полезного действия - (кпд), числовая характеристика энергетической эффективности какого либо устройства или машины (в том числе тепловой машины). Кпд определяется отношением полезно использованной энергии (т.е. превращенной в работу) к суммарному количеству энергии,… … Иллюстрированный энциклопедический словарь

Коэффициент полезного действия (КПД) является величиной, которая в процентном отношении выражает эффективность того или иного механизма (двигателя, системы) касательно преобразования полученной энергии в полезную работу.

Читайте в этой статье

Почему КПД дизеля выше

Показатель КПД для различных двигателей может сильно отличаться и зависит от ряда факторов. имеют относительно низкий КПД благодаря большому количеству механических и тепловых потерь, которые возникают в процессе работы силового агрегата данного типа.

Вторым фактором выступает трение, возникающее при взаимодействии сопряженных деталей. Большую часть расхода полезной энергии составляет приведение в движение поршней двигателя, а также вращение деталей внутри мотора, которые конструктивно закреплены на подшипниках. Около 60% энергии сгорания бензина расходуется только на обеспечение работы этих узлов.

Дополнительные потери вызывает работа других механизмов, систем и навесного оборудования. Также учитывается процент потерь на сопротивление в момент впуска очередного заряда топлива и воздуха, а далее выпуска отработавших газов из цилиндра ДВС.

Если сравнить дизельную установку и мотор на бензине, дизельный двигатель имеет заметно больший КПД сравнительно с бензиновым агрегатом. Силовые агрегаты на бензине имеют КПД на отметке около 25-30% от общего количества полученной энергии.

Другими словами, из потраченных на работу двигателя 10 литров бензина только 3 литра израсходованы на выполнение полезной работы. Остальная энергия от сгорания топлива разошлась на потери.

При одинаковом показателе рабочего объёма, мощность атмосферного бензинового мотора выше, но достигается при более высоких оборотах. Двигатель нужно «крутить», потери возрастают, увеличивается расход топлива. Также необходимо упомянуть крутящий момент, под которым в буквальном смысле понимается сила, которая передается от мотора на колеса и движет автомобиль. Бензиновые ДВС выходят на максимум крутящего момента при более высоких оборотах.

Аналогичный атмосферный дизель выходит на пик крутящего момента при низких оборотах, при этом расходует меньше солярки для выполнения полезной работы, что означает более высокий КПД и экономию топлива.

Солярка образует больше тепла по сравнению с бензином, температура сгорания дизтоплива выше, показатель детонационной стойкости более высокий. Получается, у дизельного ДВС произведённая полезная работа на определенном количестве топлива больше.

Энергетическая ценность солярки и бензина

Дизельное топливо состоит из более тяжелых углеводородов, чем бензин. Меньший КПД бензиновой установки сравнительно с дизелем также заключаются в энергетической составляющей бензина и особенности его сгорания. Полное сгорание равного количества солярки и бензина даст больше тепла именно в первом случае. Тепло в дизельном ДВС более полноценно преобразуется в полезную механическую энергию. Получается, при сжигании одинакового количества топлива за единицу времени именно дизель выполнит больше работы.

Также стоит учитывать особенности впрыска и создание надлежащих условий для полноценного сгорания смеси. В дизель топливо подается отдельно от воздуха, впрыскивается не во впускной коллектор, а напрямую в цилиндр в самом конце такта сжатия. Результатом становится более высокая температура и максимально полноценное сгорание порции рабочей топливно-воздушной смеси.

Итоги

Конструкторы постоянно стремятся повысить КПД как дизельного, так и бензинового двигателя. Увеличение количества впускных и выпускных клапанов на один цилиндр, активное применение , электронное управление топливным впрыском, дроссельной заслонкой и другие решения позволяют существенно повысить коэффициент полезного действия. В большей мере это касается дизельного двигателя.

Благодаря таким особенностям современный дизель способен полностью сжечь насыщенную углеводородами порцию дизтоплива в цилиндре и выдать большой показатель крутящего момента на низких оборотах. Низкие обороты означают меньшие потери на трение и возникающее в результате трения сопротивление. По этой причине дизельный мотор сегодня является одним из наиболее производительных и экономичных типов ДВС, КПД которого зачастую превышает отметку в 50%.

Читайте также

Почему лучше прогреть двигатель перед поездкой: смазка, топливо, износ холодных деталей. Как правильно греть дизельный мотор зимой.

  • Список самых надежных бензиновых и дизельных моторов: 4-х цилиндровые силовые агрегаты, рядные 6-ти цилиндровые ДВС и V-образные силовые установки. Рейтинг.



  • Сравнение КПД электромобиля и двигателя внутреннего сгорания

    В отношении автомобиля на ДВС ответ на вопрос о КПД будет разным, поскольку в одном случае речь будет о «полезной работе», в другом о КПД на вале двигателя («полезной мощности»), в третьем о КПД «на колесе».
    Проще всего проиллюстрировать КПД картинкой

    Итак: автомобиль с дизельным ДВС имеет КПД «на колесе» 22,5%, КПД серийного электромобиля Tesla model S «на колесе» - 94%.

    Тут бы ещё привести цифры по эффективности переработки разных видов топлива на электростанциях и эффективности электросетей для полноты

    Посчитаем цену эксплуатации
    Основываясь на этих данных, посчитаем сравнительную эффективность автомобиля с дизельным ДВС и электромобиля Tesla model S.

    Удельная теплоемкость 1 литра солярки - 35 мдж или 9,72 кВт*ч.
    Количество энергии от 1 литра солярки «на колесе» составляет 9,72 кВт*ч Х на КПД дизельного ДВС 22,5% = 2,19 кВт*ч.
    Количество энергии Tesla model S «на колесе» от батареи составляет 85 кВт*ч Х на КПД Tesla model S «на колесе» 94% = 79,90 кВт*ч.
    Соответственно батарея Tesla model S примерно равна 36,5 литров солярки.
    Проверяем 36,5 литров солярки на 426 км дают средний расход 8,6 литра солярки на 100 км, нормальный показатель для автомобиля весом 2 100 кг.
    Считаем затраты на заправку Tesla model S и автомобиля с дизельным ДВС по ценам к примеру Германии, где электроэнергия стоит довольно дорого 30 евроцентов кВт*ч, а дизельное топливо около 1,07 Евро за 1 литр
    Соответственно одна заправка автомобиля с дизельным ДВС обойдется: 36,53 литра Х 1,07 Евро = 39,09 Евро, одна заправка Tesla model S обойдется: 85 кВт*ч Х 30 евроцентов = 25,5 Евро.
    Таким образом даже в условиях дорогой электроэнергии в Германии серийный электромобиль Tesla model S существенно экономически эффективнее автомобиля с дизельным ДВС.
    Следует отметить, что ключевыми показателями для конкурентоспособности электромобиля являются запас хода (минимум 300-400 км) и время перезарядки на электрозаправках (менее 1 часа), поскольку именно достижение указанных показателей позволяет перевести на электротягу всю грузовую и пассажирскую автомобильную логистику.

    Квалификация Аналитического Центра про Правительстве РФ

    Интерес к электромобилям носит отнюдь не праздный характер. Россия - нефтяная страна, которая живет с экспорта углеводородов. Соответственно, быстрое развитие электромобилей может сократить потребление нефти в мире => сократить экспорт нефти из России => уменьшить доходы РФ в целом и каждого гражданина в частности.
    В 2014 году Институт энергетических исследований РАН (ИНЭИ РАН) и Аналитический центр при Правительстве РФ опубликовали капитальный стратегический труд «Прогноз развития энергетики России и мира до 2040 года» (далее - «Прогноз»).
    В открытом доступе опубликован на личном сайте Леонида Марковича Григорьева , Ссылка на прогноз в PDF

    Страницы 79-84 Прогноза посвящены электромобилям.
    На странице 79-80 авторы Прогноза несколько раз повторяют, что электромобили неконкурентноспособны по сравнению с автомобилям с ДВС, но в перспективе к 2030 году могут составить конкуренцию.

    На странице 82 Прогноза содержится расшифровка, чего должны достичь электромобили к 2030 году , чтобы составить конкуренцию автомобилям с ДВС:
    1) Запас хода на одной заправке до 300 км (серийная Tesla model S в 2012 году имела запас хода 426 км).
    2) Снижение стоимости батареи с 20 тыс. $ до 10 тыс. $ (батареи китайских электромобилей уже дешевле этой цифры).
    3) Срок службы батареи не менее 7 лет (срок службы батареи серийной Tesla model S в 2012 году 5 лет).
    4) Тройное уменьшение веса до 100 кг (вес батареи Tesla model S - 450 кг, 100 или 450 честно говоря непринципиально).
    5) Сокращение времени полного заряда батареи от электросети 220 В до 30-40 минут (от бытовой сети 220 В сократить время заряда батареи до 30-40 минут невозможно по физическим причинам, а специальные электрозаправки существуют и заряжают за 30-40 минут).

    Как несложно убедиться практически все что, авторы прогноза в 2013 году хотели увидеть в будущем на уровне опытных образцов к 2030 году, существовало в серийном виде в 2012 году.

    На 84 странице Прогноза авторы сделали смелое предположение, что «Для обеспечения конкурентоспособности электромобилей на протяжении всего прогнозного периода цена на электроэнергию не должна превышать 15 центов за кВт*ч».
    Как видно из расчета даже для Германии при цене электричества 30 евроцентов за кВт*ч, и стоимости солярки 1,07 Евро за литр (при нефти 45 $ за баррель), электромобили выигрывают в конкурентоспособности у автомобилей с ДВС.

    Отнюдь. На сайте Аналитического центра при Правительстве РФ в декабре 2013 года выложен бюллетень «Электрический и гибридный транспорт в мире» (далее - «бюллетень») Ссылка на бюллетень в PDF .
    На странице 7 бюллетеня выложена таблица, согласно которой электромобили (в таблице обозначены BEV) должны достичь запаса хода 250 км к 2030 году.
    В тоже время на странице 10 авторы бюллетеня пишут про то, что средний запас хода электромобиля 150-200 км, и продолжает увеличиваться (уже есть модели 300-400 км.).
    Как авторы бюллетеня могут сочетать прогноз о запасе хода 250 км к 2030 году с утверждением, что в 2013 году есть модели с запасом хода 300-400 км? Загадка, но не суть.
    Главное, что в 2013 году в Аналитическом центре при Правительстве РФ было известно о существовании электромобилей с запасом хода 300-400 км, но стратегический прогноз развития энергетики России и мира до 2040 года был основан на устаревших абсолютно недостоверных данных.

    Если допустить, что прогнозный 2030 по электромобилям наступил уже в 2013, то как следует из графика на странице 83 Прогноза (сценарий «перспективные электромобили») в ближайшие 10 лет Россию ждет значительное сокращение экспорта нефти в связи со снижением спроса на нефть на мировом рынке.
    В выступлениях руководства страны постоянно звучит тема развития инноваций, между тем анализ Прогноза и бюллетеня приводит к неутешительному выводу: отечественная академическая экономическая наука абсолютно беспомощна в оценке ключевых инноваций, выпускающихся серийно , не говоря уже об оценке и прогнозировании влияния на экономику России и мира перспективных направлений научно-технического прогресса.
    Вместе с тем Аналитический центр при Правительстве РФ достоин всяческой похвалы за публикацию своих пусть не вполне блестящих прогнозов. Публичность предполагает возможность обсуждения и критики, а значит улучшения качества публикуемых прогнозов.

    Прогноз BP
    Институт энергетических исследований РАН (ИНЭИ РАН) и Аналитический центр при Правительстве РФ не одиноки в оценке радужных перспектив мирового рынка углеводородов. В традиционном ежегодном исследовании BP также содержатся вполне радужные перспективы рынка нефти до 2035 года.Ссылка на прогноз BP в PDF
    В чем причина столь радужного настроя BP при том факте, что у автомобиля с ДВС есть конкурент - реальный электромобиль, который эффективнее и экономически и экологически?
    Может показаться бессмыслицей, но странам ОЭСР невыгодно переходить на более эффективные электромобили по причине построения в странах ОЭСР социального государства.

    Я думаю они перестроятся легче, чем думает автор — В.В.

    Социальное государство определить просто и сложно, но если коротко государство становится социальным тогда когда реально берет на себя обязанность поддерживать определенный стандарт жизни для каждого лояльного гражданина. В понятие социального государства входит как одно из основных обязательствогосударства по обеспечению занятости и сохранению рабочих мест.
    Какие экономические последствия повлечет полный переход от автомобилей с ДВС на электромобили?
    Из очевидного, резко на 80% сократится добыча и потребление нефти. Сокращение рабочих мест в нефтяной и нефтеперерабатывающей промышленности не является крупной проблемой для стран ОЭСР.
    Совсем другая картина открывается если посмотреть на автомобильную отрасль.
    Автомобиль с ДВС представляет собой сочетание сложных механизмов, работающих в жестких условиях.
    Современный ДВС - это сложнейшая система впуска, блок цилиндров в котором в минуту происходит несколько тысяч циклов воспламенения горючей смеси (читай несколько тысяч взрывов в минуту), сложнейшая трансмиссия для передачи импульса от коленвала на привод. Иными словами автомобиль с ДВС - технологическое чудо, для производства которого, а самое главное обслуживания , требуется труд многих людей.
    Современный электромобиль - это тяговый электродвигатель, в котором нет ни давления, ни воспламенения, ни постоянно сопрягающихся механизмов, простейшая трансмиссия в виде одноступенчатого редуктора, батарея.

    Очевидно, что производство и обслуживание примерно соответствующего текущему уровню автомобилизации количества электромобилей потребует значительно меньшего количества рабочих рук, возможно, в разы, если не в десятки раз.
    В экономике есть устоявшийся мем, что «один работник на коневейере автомобильного завода обеспечивает работой 10 человек в автомобильной и смежных отраслях экономики».
    На примере той же Германии: число работников Фольксвагена 550 000, Мерседеса - 279 000, БМВ - 100 000, Опель - 25 000.
    Не все работают в Германии, не все работают на конвейере, но совершенно очевидно, что в автомобильной и смежных отраслях в Германии занято несколько миллионов человек.

    Соответственно, при переходе на электромобили уволенными без перспективы найти аналогичную по доходам и статусу работу окажутся несколько миллионов человек из автомобильной и смежных отраслей.
    Всех уволенных и членов их семей социальное государство Германия обязано будет содержать до конца жизни уволенных работников.
    Введение в формулу расчета социального государства с легкостью перечеркивает экономический эффект перехода от автомобилей с ДВС на электромобили.
    Таким образом, резкий переход на электромобили крайне невыгоден странам ОЭСР как социальным государствам.
    Прогнозы энтузиастов электромобилестроения начала 2010-х о миллионах электромобилей в странах ОЭСР и миллионах заправок остались прогнозами, была выбрана стратегия на плавный «органический» рост, при котором электромобили будут составлять значимую долю парка к 2050-2060 году и негативные экономические эффекты в результате исполнения странами ОЭСР обязательств социального государства будут сглажены до удовлетворительных показателей.
    Поэтому прогноз BP имеет право на жизнь, но к большому сожалению для BP, в частности, и мировой нефтяной отрасли, в целом, круг производителей и потребителей электромобилей не исчерпывается странами ОЭСР.

    Взгляд на Илона Маска как Прогрессора.

    По большому счету текущая ситуация на рынке электромобилестроения следствие действий одного человека - Илона Маска.
    Илон Маск после начала серийного выпуска Tesla model S сделал удивительную для предпринимателя вещь: открыл все патенты на электромобиль Tesla.
    С позиций «экономикс», с позиций научного приоритета - это явная глупость, непонятная отечественным аналитикам.
    Отечественная наука проспала смену парадигмы научного познания с «науки приоритета» на «науку открытого кода».

    Хотелось бы какие-то данные, что именно патенты компании Маска были использованы. Это была бы статья огромного значения — В.В.

    «Наука приоритета» основана на конкуренции отдельных ученых и/или научных коллективов с итоговой оценкой научной деятельности отдельных личностей либо коллективов.
    «Наука открытого кода» основана на сотрудничестве отдельных ученых и/или научных коллективов с целью умножения научного знания (к примеру, коллаборации ученых как форма научной организации).
    Инновационный бизнес по логике вещей является формой научной деятельности, и также может быть основан на «приоритете» или «открытом коде».
    Если смотреть шире то «приоритет» и «открытый код» не сводятся к науке или бизнесу, а гораздо более значимые явления социальной жизни.
    Для целей настоящего исследования важен факт приверженности Илона Маска «открытому коду». Маск выступил если смотреть с негативного угла штрейхбрейкером электромобилестроения, а с позитивного культуртрегером прогресса, современным Прометеем.

    Конечно они - китайцы
    Результатами просветительской деятельности Илона Маска воспользовался Китай.
    Если оценить результаты 2015 года, то объем продаж легковых электромобилей составил 549 000, из них 189 000 пришлось на Китай (рост по отношению к 2014 году 223%), 115 000 на США (падение по отношению к 2014 году 4%), 192 000 на Европу (рост по отношению к 2014 году 99%)
    Впечатляющие цифры, но только для тех, кто за деревьями не видит леса.
    Как сообщает Газета.ру «Китай в 2015 году вышел на первое место в мире по продажам электромобилей, передает РИА «Новости».
    Об этом заявил министр науки и технологий КНР Вань Ган на пресс-конференции.

    По его словам, в прошлом году количество новых электромобилей, проданных на территории Китая, превысило 370 тыс. единиц, а общее количество электромобилей в стране оценивается в 497 тыс. единиц» .

    370 000 и 189 000 слабо пересекающиеся цифры, если не обращать внимание, что цифра 189 000 касается продаж легковых электромобилей в Китае в 2015 году.

    Соответственно более 180 000 единиц составили продажи электрического грузового и грузопассажирского транспорта и это очень серьезно.

    Экономическая эффективность электромобилей для целей легкового транспорта не более чем один из многих показателей в ряду, а для грузового и грузопассажирского транспорта - это основной показатель.
    Следует отметить, что парк грузового и грузопассажирского транспорта существенно (в разы) меньше легкового, но общее потребление моторного топлива грузовым и грузопассажирским транспортом сравнимо с потреблением моторного топлива легковым транспортом.
    При текущих темпах производства электрических грузовиков Китай уже к 2025 году может полностью заместить свои 20-25 млн. единиц коммерческого транспорта с ДВС на электромобили, что автоматически означает сокращение спроса на нефть со стороны Китая на 20-30%, или 4-5 млн. баррелей в день минимум.

    Чтобы понять насколько велик разрыв по грузовому электротранспорту между к примеру Европой и Китаем, достаточно погуглить с какой помпой в 2015 году компания BMW обставила приобретение 1 (одного) голландского грузовика Terberg для целей доставки деталей со складского терминала на завод BMW.

    Сравните с 180 000 единиц электрического коммерческого транспорта, выпущенных в Китае в том же 2015 году.
    Перевод коммерческого транспорта на электротягу даст/дает Китаю огромное преимущество в производительности труда.
    Страны ОЭСР будут вынуждены закрывать образующийся разрыв, поэтому к сожалению для BP и нефтезависимых стран электромобили будут развиваться не «органически», а скачкообразно особенно в сфере коммерческого транспорта, что приведет к сильному падению спроса на нефть.

    Хорошая новость для России, которую не упустили из виду авторы Прогноза (страница 84 Прогноза) электромобилизация повлечет рост спроса на электричество и рост спроса на газ прежде всего со стороны Китая, причем возможно рост китайского спроса на газ будет значительно более впечатляющим, чем представляют себе авторы Прогноза.

    КПД, по своему определению, это отношение полученной энергии к затраченной. Если двигатель сжигает бензин и только треть образовавшегося тепла превращается в энергию движения автомобиля, то КПД равен одной трети или (округляя до целых) 33%. Если лампочка дает световой энергии в пятьдесят раз меньше потребляемой электрической, ее КПД равен 1/50 или 2%. Однако тут сразу возникает вопрос: а если лампочка продается как инфракрасный обогреватель? После того как продажа ламп накаливания была запрещена, точно такие же по конструкции устройства стали продаваться как "инфракрасные обогреватели", поскольку именно в тепло преобразуется свыше 95% электроэнергии.

    (Бес)полезное тепло

    Обычно тепло, выделяющееся при работе чего-либо, записывают в потери. Но это далеко не бесспорно. Электростанция, например, превращает в электроэнергию примерно треть выделяющегося при сгорании газа или угля тепла, однако еще часть энергии может при этом пойти на нагрев воды. Если горячее водоснабжение и теплые батареи тоже записать в полезные результаты работы ТЭЦ, то КПД вырастет на 10-15%.

    Схожим примером может служить автомобильная "печка": она передает в салон часть тепла, образующегося при работе двигателя. Это тепло может быть полезным и необходимым, а может рассматриваться как потери: по этой причине оно обычно не фигурирует в расчетах КПД автомобильного мотора.

    Особняком стоят такие устройства, как тепловые насосы. Их КПД, если считать его по соотношению выданного тепла и затраченного электричества, больше 100%, однако это не опровергает основы термодинамики. Тепловой насос перекачивает тепло от менее нагретого тела к более нагретому и затрачивает на это энергию, так как без затрат энергии подобное перераспределение теплоты запрещено той же термодинамикой. Если тепловой насос берет из розетки киловатт, а выдает пять киловатт тепла, то четыре киловатта будут взяты из воздуха, воды или грунта вне дома. Окружающая среда в том месте, откуда устройство черпает тепло, остынет, а дом прогреется. Но потом эта теплота вместе с потраченной насосом энергией все равно рассеется в пространстве.

    Внешний контур теплового насоса: через эти пластиковые трубы прокачивается жидкость, забирающая тепло из толщи воды в отапливаемое здание. Mark Johnson / Wikimedia

    Много или эффективно?

    Некоторые устройства имеют очень высокий КПД, но при этом - неподходящую мощность.

    Электрические моторы тем эффективнее, чем они больше, однако поставить электровозный двигатель в детскую игрушку физически невозможно и экономически бессмысленно. Поэтому КПД двигателей в локомотиве превышает 95%, а в маленькой машинке на радиоуправлении - от силы 80%. Причем в случае с электрическим двигателем его эффективность зависит так же от нагрузки: недогруженный или перегруженный мотор работает с меньшим КПД. Правильный подбор оборудования может значить даже больше, чем просто выбор устройства с максимальным заявленным КПД.

    Самый мощный серийный локомотив, шведский IORE. Второе место удерживает советский электровоз ВЛ-85. Kabelleger / Wikimedia

    Если электрические моторы выпускаются для самых разных целей, от вибраторов в телефонах до электровозов, то вот ионный двигатель имеет гораздо меньшую нишу. Ионные двигатели эффективны, экономичны, долговечны (работают без выключения годами), но включаются только в вакууме и дают очень малую тягу. Они идеально подходят для отправки в дальний космос научных аппаратов, которые могут лететь к цели несколько лет и для которых экономия топлива важнее затрат времени.

    Электрические моторы, кстати, потребляют почти половину всей вырабатываемой человечеством электроэнергии, так что даже разница в одну сотую процента в мировом масштабе может означать необходимость построить еще один ядерный реактор или еще один энергоблок ТЭЦ.

    Эффективно или дешево?

    Энергетическая эффективность далеко не всегда тождественна экономической. Наглядный пример - светодиодные лампы, которые до недавнего времени проигрывали лампам накаливания и флуоресцентным "энергосберегайкам". Сложность изготовления белых светодиодов, дороговизна сырья и, с другой стороны, простота лампы накаливания заставляли выбирать менее эффективные, но зато дешевые источники света.

    Кстати, за изобретение синего светодиода, без которого бы нельзя было сделать яркую белую лампу, японские исследователи получили в 2014 году Нобелевскую премию. Это не первая премия, вручаемая за вклад в развитие освещения: в 1912 году наградили Нильса Далена, изобретателя, который усовершенствовал ацетиленовые горелки для маяков.

    Синие светодиоды нужны для получения белого света в сочетании с красными и зелеными. Эти два цвета научились получать в достаточно ярких светодиодах намного раньше; синие долгое время оставались слишком тусклыми и дорогими для массового применения

    Другой пример эффективных, но очень дорогих устройств - солнечные батареи на основе арсенида галлия (полупроводник с формулой GaAs). Их КПД достигает почти 30%, что в полтора-два раза выше используемых на Земле батарей на основе куда более распространенного кремния. Высокая эффективность оправдывает себя только в космосе, куда доставка одного килограмма груза может стоить почти как килограмм золота. Тогда экономия на массе батареи будет оправдана.

    КПД линий электропередач можно поднять за счет замены меди на лучше проводящее ток серебро, однако серебряные кабели слишком дороги и потому используются разве что в единичных случаях. А вот к идее построить сверхпроводящие ЛЭП из дорогой и требующей охлаждения жидким азотом редкоземельной керамики в последние годы несколько раз обращались на практике. В частности, такой кабель уже проложен и подключен в германском городе Эссене. Он рассчитан на 40 мегаватт электрической мощности при напряжении в десять киловольт. Кроме того что потери на нагрев сведены к нулю (однако взамен нужно питать криогенные установки), такой кабель намного компактнее обычного и за счет этого можно сэкономить на покупке дорогой земли в центре города или отказаться от прокладки дополнительных туннелей.

    Не по общим правилам

    Из школьного курса многие помнят, что КПД не может превышать 100% и что он тем выше, чем больше разница температур между холодильником и нагревателем. Однако это верно лишь для так называемых тепловых двигателей: паровая машина, двигатель внутреннего сгорания, реактивные и ракетные двигатели, газовые и паровые турбины.

    Электродвигатели и все электрические устройства этому правилу не подчиняются, поскольку они не тепловые машины. Для них верно только то, что КПД не может превышать ста процентов, а частные ограничения в каждом случае определяются по-разному.

    В случае с солнечной батареей потери определяются как квантовыми эффектами при поглощении фотонов, так и потерями на отражение света от поверхности батареи и на поглощение в фокусирующих зеркалах. Проведенные расчеты показали, что выйти за 90% солнечная батарея не может в принципе, а на практике достижимы значения около 60-70%, да и те при весьма сложной структуре фотоячеек.

    Великолепным КПД обладают топливные элементы. В эти устройства поступают некие вещества, которые вступают в химическую реакцию друг с другом и дают электрический ток. Этот процесс опять-таки не является циклом тепловой машины, поэтому КПД получается достаточно высоким, порядка 60%, в то время как дизель или бензиновый двигатель не выходят обычно за 50%.

    Именно топливные элементы стояли на летавших к Луне космических кораблях "Аполло", и они могут работать, например, на водороде и кислороде. Их недостаток заключается только в том, что водород должен быть достаточно чистым и к тому же его надо где-то хранить и как-то передавать от завода к потребителям. Технологии, позволяющие заменить водородом обычный метан, пока что не доведены до массового использования. На водороде и топливных элементах работают лишь экспериментальные автомобили и некоторое количество подводных лодок.

    Плазменные двигатели серии СПД. Их делает ОКБ «Факел», и они используются для удержания спутников на заданной орбите. Тяга создается за счет потока ионов, которые возникают после ионизации инертного газа электрическим разрядом. КПД этих двигателей достигает 60 процентов

    Ионные и плазменные двигатели уже существуют, но тоже работают лишь в вакууме. Кроме того, их тяга слишком мала и на порядки ниже веса самого устройства - с Земли они не взлетели бы даже при отсутствии атмосферы. Зато во время межпланетных полетов длительностью в многие месяцы и даже годы слабая тяга компенсируется экономичностью и надежностью.

    Работа, совершаемая двигателем, равна:

    Впервые этот процесс был рассмотрен французским инженером и ученым Н. Л. С. Карно в 1824 г. в книге «Размышления о движущей силе огня и о машинах, способных развивать эту силу».

    Целью исследований Карно было выяснение причин несовершенства тепловых машин того времени (они имели КПД ≤ 5 %) и поиски путей их усовершенствования.

    Цикл Карно — самый эффективный из всех возможных. Его КПД максимален.

    На рисунке изображены термодинамические процес-сы цикла. В процессе изотермического расширения (1-2) при температуре T 1 , работа совершается за счет измене-ния внутренней энергии нагревателя, т. е. за счет подве-дения к газу количества теплоты Q :

    A 12 = Q 1 ,

    Охлаждение газа перед сжатием (3-4) происходит при адиабатном расширении (2-3). Изменение внутренней энергии ΔU 23 при адиабатном процессе (Q = 0 ) полностью преобразуется в механическую работу:

    A 23 = -ΔU 23 ,

    Температура газа в результате адиабатического рас-ширения (2-3) понижается до температуры холодильни-ка T 2 < T 1 . В процессе (3-4) газ изотермически сжимает-ся, передавая холодильнику количество теплоты Q 2 :

    A 34 = Q 2 ,

    Цикл завершается процессом адиабатического сжатия (4-1), при котором газ нагревается до температуры Т 1 .

    Максимальное значение КПД тепловых двигателей, работающих на идеальном газе, по циклу Карно:

    .

    Суть формулы выражена в доказанной С . Карно теореме о том, что КПД любого теплового двигателя не может превышать КПД цикла Карно, осуществляемого при той же температуре нагревателя и холодильника.