Как сделать бестопливный генератор своими руками. Безтопливные генераторы

Мечты о вечном двигателе не дают людям покоя уже сотни лет. Особенно остро этот вопрос стал сейчас, когда мир не на шутку обеспокоен надвигающимся энергетическим кризисом. Наступит он или нет - вопрос другой, но однозначно сказать можно лишь то, что вне зависимости от этого человечество нуждается в решениях энергетической проблемы и поиске альтернативных источников энергии.

Что такое магнитный двигатель

В научном мире вечные двигатели разделяют на две группы: первого и второго вида. И если с первыми относительно всё ясно - это скорее элемент фантастических произведений, то второй очень даже реален. Начнём с того, что двигатель первого вида - это своего рода утопичная штука, способная извлекать энергию из ничего. А вот второй тип основан на вполне реальных вещах. Это попытка извлечения и использования энергии всего, что нас окружает: солнце, вода, ветер и, безусловно, магнитное поле.

Многие учёные разных стран и в разные эпохи пытались не только объяснить возможности магнитных полей, но и реализовать некое подобие вечного двигателя, работающего за счёт этих самых полей. Интересно то, что многие из них добились вполне впечатляющих результатов в этой области. Такие имена, как Никола Тесла, Василий Шкондин, Николай Лазарев хорошо известны не только в узком кругу специалистов и приверженцев создания вечного двигателя.

Особый интерес для них составляли постоянные магниты, способные возобновлять энергию из мирового эфира. Безусловно, доказать что-либо значимое пока никому на Земле не удалось, но благодаря изучению природы постоянных магнитов человечество имеет реальный шанс приблизиться к использованию колоссального источника энергии в виде постоянных магнитов.

И хотя магнитная тема ещё далека от полного изучения, существует множество изобретений, теорий и научно обоснованных гипотез в отношении вечного двигателя. При этом есть немало впечатляющих устройств, выдаваемых за таковые. Сам же двигатель на магнитах уже вполне себе существует, хотя и не в том виде, в котором нам бы хотелось, ведь по прошествии некоторого времени магниты всё равно утрачивают свои магнитные свойства. Но, несмотря на законы физики, учёные мужи смогли-таки создать нечто надёжное, что работает за счёт энергии, вырабатываемой магнитными полями.

На сегодня существует несколько видов линейных двигателей, которые отличаются по своему строению и технологии, но работают на одних и тех же принципах . К ним относятся:

  1. Работающие исключительно за счёт действия магнитных полей, без устройств управления и без потребления энергии извне;
  2. Импульсного действия, которые уже имеют и устройства управления, и дополнительный источник питания;
  3. Устройства, объединяющие в себе принципы работы обоих двигателей.

Устройство магнитного двигателя

Конечно, аппараты на постоянных магнитах не имеют ничего общего с привычным нам электродвигателем. Если во втором движение происходит за счёт электротока, то магнитный, как понятно, работает исключительно за счёт постоянной энергии магнитов. Состоит он из трёх основных частей:

  • Сам двигатель;
  • Статор с электромагнитом;
  • Ротор с установленным постоянным магнитом.

На один вал с двигателем устанавливается электромеханический генератор. Статический электромагнит, выполненный в виде кольцевого магнитопровода с вырезанным сегментом или дугой, дополняет эту конструкцию. Сам электромагнит дополнительно оснащён катушкой индуктивности. К катушке подключён электронный коммутатор, за счёт чего подаётся реверсивный ток. Именно он и обеспечивает регулировку всех процессов.

Принцип работы

Так как модель вечного магнитного двигателя, работа которого основана на магнитных качествах материала, далеко не единственная в своем роде, то и принцип работы разных двигателей может отличаться. Хотя при этом используются, безусловно, свойства постоянных магнитов.

Из наиболее простых можно выделить антигравитационный агрегат Лоренца. Принцип его работы заключается в двух разнозаряженных дисках, подключаемых к источнику питания. Диски помещены наполовину в экран полусферической формы. Далее их начинают вращать. Магнитное поле легко выталкивается подобным сверхпроводником.

Простейший же асинхронный двигатель на магнитном поле придуман Теслой. В основе его работы лежит вращение магнитного поля, которое производит из него электрическую энергию. Одна металлическая пластина помещается в землю, другая - повыше неё. К одной стороне конденсатора подключают провод, пропущенный через пластину, а ко второй - проводник от основания пластины. Противоположный полюс конденсатора подключается к массе и выполняет роль резервуара для отрицательно заряжённых зарядов.

Единственным рабочим вечным двигателем считают роторное кольцо Лазарева. Он крайне прост по своему строению и реализуем в домашних условиях своими руками . Выглядит он как ёмкость, поделённая пористой перегородкой на две части. В саму перегородку строена трубка, а ёмкость заполняется жидкостью. Предпочтительнее использовать легколетучую жидкость наподобие бензина, но можно и простую воду.

С помощью перегородки жидкость попадает в нижнюю часть ёмкости и давлением выдавливается по трубке наверх. Само по себе устройство реализует лишь вечное движение. А вот для того, чтобы это стало уже вечным двигателем, необходимо под капающую из трубки жидкость установить колесо с лопастями, на которых будут располагаться магниты. В результате образовавшееся магнитное поле будет всё быстрее вращать колесо, в результате чего ускорится поток жидкости и магнитное поле станет постоянным.

А вот линейный двигатель Шкодина произвел действительно ощутимый рывок в прогрессе. Эта конструкция крайне проста технически, но одновременно имеет высокую мощность и производительность. Такой «движок» ещё называют «колесо в колесе» . Уже сегодня оно используется в транспорте. Здесь имеют место две катушки, внутри которых находятся ещё две катушки. Таким образом, образуется двойная пара с разными магнитными полями. За счёт этого они отталкиваются в разные стороны. Подобное устройство можно купить уже сегодня. Они часто используются на велосипедах и инвалидных колясках.

Двигатель Перендева работает только лишь на магнитах. Здесь используются два круга, один из которых статичный, а второй динамичный. На них в равной последовательности расположены магниты. За счёт самоотталкивания внутреннее колесо может вращаться бесконечно.

Ещё одним из современных изобретений, нашедших применение, можно назвать колесо Минато. Это устройство на магнитном поле японского изобретателя Кохея Минато, который довольно широко используется в различных механизмах.

Основными из достоинств этого изобретения можно назвать экономичность и бесшумность. Он также и прост: на роторе располагаются под разными к оси углами магниты. Мощный импульс на статор создаёт так называемую точку «коллапса», а стабилизаторы уравновешивают вращение ротора. Магнитный двигатель японского изобретателя, схема которого крайне проста, работает без выработки тепла, что пророчит ему большое будущее не только в механике, но и в электронике.

Существуют и другие устройства на постоянных магнитах, как колесо Минато. Их достаточно много и каждый из них по-своему уникален и интересен. Однако своё развитие они лишь начинают и находятся в постоянной стадии разработки и совершенствования.

Безусловно, столь увлекательная и загадочная сфера, как магнитные вечные двигатели, не может интересовать только учёных. Многие любители также вносят свою лепту в развитие этой отрасли. Но здесь вопрос скорее в том, можно ли сделать магнитный двигатель своими руками, не имея каких-то особых знаний.

Простейший экземпляр, который не раз был собран любителями, выглядит как три плотно соединённых между собой вала, один из которых (центральный) повёрнут прямо относительно двух других, располагаемых по бокам. К середине центрального вала прикрепляется диск из люцита (акрилового пластика) диаметром 4 дюйма. На два других вала устанавливают аналогичные диски, но в два раза меньше. Сюда же устанавливают магниты: 4 по бокам и 8 посередине. Чтобы система лучше ускорялась, можно в качестве основания использовать алюминиевый брусок.

Плюсы и минусы магнитных двигателей

Плюсы:

  • Экономия и полная автономия;
  • Возможность собрать двигатель из подручных средств;
  • Прибор на неодимовых магнитах достаточно мощный, чтобы обеспечить энергией 10 кВт и выше жилой дом;
  • Способен на любой стадии износа выдавать максимальную мощность.

Минусы:

Магнитные линейные двигатели сегодня стали реальностью и имеют все шансы заменить привычные нам моторы других видов. Но сегодня это ещё не совсем доработанный и идеальный продукт, способный конкурировать на рынке, но имеющий довольно высокие тенденции.

Многие хозяева рано или поздно начинают задумываться об альтернативных источниках энергии. Предлагаем рассмотреть, что такое автономный бестопливный генератор Тесла, Хендершота, Романова, Тариеля Канападзе, Смита, Бедини, принцип работы агрегата, его схема и как сделать устройство своими руками.

ОБЗОР ГЕНЕРАТОРОВ

При использовании безтопливного генератора, двигатель внутреннего сгорания не требуется, поскольку устройство не должно преобразовывать химическую энергию топлива в механическую, для выработки электроэнергии. Данный электромагнитный прибор работает таким образом, что электричество, вырабатываемое генератором рециркулируют обратно в систему по катушке.

Фото — Генератор Капанадзе

Обычные электрогенераторы работают на основе:
1. Двигателя внутреннего сгорания, с поршнем и кольцами, шатуном, свечами, топливным баком, карбюратором, ... и
2. С использованием любительских двигателей, катушек, диодов, AVR, конденсаторами и т.д.

Двигатель внутреннего сгорания в бестопливных генераторах заменен электромеханическим устройством, которое принимает мощность от генератора и используя такую ​​же, преобразует её в механическую энергию с эффективностью более 98%. Цикл повторяется снова и снова. Таким образом, концепция здесь заключается в том, чтобы заменить двигатель внутреннего сгорания, который зависит от топлива с электромеханическим устройством.

Фото — Схема генератора

Механическая энергия будет использоваться для приведения в действие генератора и получения тока, создаваемого генератором для питания электромеханического прибора. Генератор без топлива, который используется для замены двигателя внутреннего сгорания, сконструирован таким образом, что использует меньше энергии на выходе мощности генератора.

Видео: самодельный бестопливный генератор

ГЕНЕРАТОР ТЕСЛА

Линейный электрогенератор Тесла является основным прототипом рабочего прибора. Патент на него был зарегистрирован еще в 19 веке. Главным достоинством прибора является то, что его можно построить даже в домашних условиях с использованием солнечной энергии. Железная или стальная пластина изолируется внешними проводниками, после чего она размещается максимально высоко в воздухе. Вторую пластину размещаем в песке, земле или прочей заземленной поверхности. Провод запускается из металлической пластины, крепление производится с конденсатором на одной стороне пластины и второй кабель идет от основания пластины к другой стороне конденсатора.

Фото — Бестопливный генератор тесла

Такой самодельный бестопливный механический генератор свободной энергии электричества в теории полностью работающий, но для реального осуществление плана лучше использовать более распространенные модели, к примеру изобретателей Адамса, Соболева, Алексеенко, Громова, Дональда, Кондрашова, Мотовилова, Мельниченко и прочих. Собрать рабочий прибор можно даже при перепланировке какого-либо из перечисленных устройств, это выйдет дешевле, нежели самому все подсоединять.

Кроме энергии Солнца, можно использовать турбинные генераторы, которые работают без топлива на энергии воды. Магниты полностью покрывают вращающиеся металлические диски, также к прибору добавляется фланец и самозапитанный провод, что значительно снижает потери, благодаря этому данный теплогенератор работает более эффективно, чем солнечный. Из-за высоких асинхронных колебаний этот ватный бестопливный генератор страдает от вихревой электроэнергии, так что его нельзя использовать в автомобиле или для питания дома, т.к. на импульсе могут сгореть двигатели.

Фото — Бестопливный генератор Адамса

Но гидродинамический закон Фарадея также предлагает использовать простой вечный генератор. Его магнитный диск разделен на спиральные кривые, которые излучают энергию из центра к внешнему краю, уменьшая резонанс.

В данной высоковольтной электрической системе, если есть два витка рядом расположенных, электроток передвигается по проводу, ток, проходящий через петлю, будет создавать магнитное поле, которое будет излучаться против тока, проходящего через вторую петлю, создавая сопротивление.

КАК СДЕЛАТЬ ГЕНЕРАТОР

Существует два варианты выполнения работы.

Многие хозяева рано или поздно начинают задумываться об альтернативных источниках энергии. Предлагаем рассмотреть, что такое автономный бестопливный генератор Тесла, Хендершота, Романова, Тариеля Канападзе, Смита, Бедини, принцип работы агрегата, его схема и как сделать устройство своими руками.

Обзор генераторов

При использовании безтопливного генератора, двигатель внутреннего сгорания не требуется, поскольку устройство не должно преобразовывать химическую энергию топлива в механическую, для выработки электроэнергии. Данный электромагнитный прибор работает таким образом, что электричество, вырабатываемое генератором рециркулируют обратно в систему по катушке.

Фото – Генератор Капанадзе

Электрогенераторы бывают двух типов . Двигатель внутреннего сгорания, с поршнем и кольцами, шатуном, свечами, топливным баком, карбюратором, и машина с использованием любительских двигателей, катушек, диодов, AVR, конденсаторами и т.д.

Двигатель внутреннего сгорания в бестопливных генераторах заменен электромеханическим устройством, которое принимает мощность от генератора и используя такую ​​же, преобразует её в механическую энергию с эффективностью более 98%. Цикл повторяется снова и снова. Таким образом, концепция здесь заключается в том, чтобы заменить двигатель внутреннего сгорания, который зависит от топлива с электромеханическим устройством.


Фото – Схема генератора

Механическая энергия будет использоваться для приведения в действие генератора и получения тока, создаваемого генератором для питания электромеханического прибора. Генератор без топлива, который используется для замены двигателя внутреннего сгорания, сконструирован таким образом, что использует меньше энергии на выходе мощности генератора.

Видео: самодельный бестопливный генератор

Генератор Тесла

Линейный электрогенератор Тесла является основным прототипом рабочего прибора. Патент на него был зарегистрирован еще в 19 веке. Главным достоинством прибора является то, что его можно построить даже в домашних условиях с использованием солнечной энергии. Железная или стальная пластина изолируется внешними проводниками, после чего она размещается максимально высоко в воздухе. Вторую пластину размещаем в песке, земле или прочей заземленной поверхности. Провод запускается из металлической пластины, крепление производится с конденсатором на одной стороне пластины и второй кабель идет от основания пластины к другой стороне конденсатора.


Фото – Бестопливный генератор тесла

Такой самодельный бестопливный механический генератор свободной энергии электричества в теории полностью работающий, но для реального осуществление плана лучше использовать более распространенные модели, к примеру изобретателей Адамса, Соболева, Алексеенко, Громова, Дональда, Кондрашова, Мотовилова, Мельниченко и прочих. Собрать рабочий прибор можно даже при перепланировке какого-либо из перечисленных устройств, это выйдет дешевле, нежели самому все подсоединять.

Кроме энергии Солнца, можно использовать турбинные генераторы, которые работают без топлива на энергии воды. Магниты полностью покрывают вращающиеся металлические диски, также к прибору добавляется фланец и самозапитанный провод, что значительно снижает потери, благодаря этому данный теплогенератор работает более эффективно, чем солнечный. Из-за высоких асинхронных колебаний этот ватный бестопливный генератор страдает от вихревой электроэнергии, так что его нельзя использовать в автомобиле или для питания дома, т.к. на импульсе могут сгореть двигатели.


Фото – Бестопливный генератор Адамса

Но гидродинамический закон Фарадея также предлагает использовать простой вечный генератор. Его магнитный диск разделен на спиральные кривые, которые излучают энергию из центра к внешнему краю, уменьшая резонанс.

В данной высоковольтной электрической системе, если есть два витка рядом расположенных, электроток передвигается по проводу, ток, проходящий через петлю, будет создавать магнитное поле, которое будет излучаться против тока, проходящего через вторую петлю, создавая сопротивление.

Как сделать генератор

Существует два варианты выполнения работы:

  1. Сухой способ;
  2. Мокрый или масляный;

Мокрый метод использует аккумулятор, в то время как сухой метод обходится без батареи.

Пошаговая инструкция как собрать электрический бестопливный генератор. Чтобы сделать мокрый генератор бестопливного типа потребуется несколько компонентов:

Подключите трансформатор переменного тока в постоянную сеть к Вашей батарее и усилителю мощности, а затем подсоедините в схему зарядное устройство и датчик для расширения, далее его нужно подключить обратно в батарею. Зачем нужны эти компоненты:

  1. Батарея используется для хранения и накопления энергии;
  2. Трансформатор используется для создания постоянных сигналов ток;
  3. Усилитель поможет увеличить подачу тока, потому что мощность от аккумулятора только 12В или 24В, в зависимости от батареи.
  4. Зарядное устройство необходимо для бесперебойной работы генератора.

Фото – Альтернативный генератор

Сухой генератор работает на конденсаторах. Чтобы собрать такой прибор нужно подготовить:

  • Прототип генератора
  • Трансформатор.

Это производство является наиболее совершенным способом сделать генератор, потому что его работа может длиться годами, как минимум 3 года без подзарядки. Эти два компонента нужно объединить при помощи незатухающих специальных проводников. Мы рекомендуем использовать сварку, чтобы создать наиболее прочное соединение. Для контроля работы используется динатрон, просмотрите видео как правильно соединять проводники.

Устройства на трансформаторе более дорогие, но являются гораздо эффективнее, нежели аккумуляторные. Как прототип Вы можете взять модель free energy, kapanadze, torrent, марка Хмельник. Такие приборы можно будет применять как мотор для электромобиля.

Обзор цен

На отечественному рынке самыми доступными считаются генераторы производства одесских изобретателей, БТГи БТГР. Купить такие бестопливные генераторы можно в специализированном магазине электротехники, интернет-магазинах, от завода-производителя (цена зависит от марки прибора и точки, где осуществляется продажа).

Бестопливные новые генераторы на магните Вега на 10 кВт обойдутся в среднем от 30 000 рублей.

Одесского завода – 20 000 рублей.

Очень популярные Андрус обойдутся хозяевам минимум в 25 000 рублей.

Импортные приборы марки Феррите (аналог устройства Стивена Марка) являются наиболее дорогими на отечественном рынке и стоят от 35 000 рублей, в зависимости от мощности.

Было показано, что его попытка создать практически «вечный двигатель» удалась потому, что автор интуитивно понимал, а может прекрасно знал, но тщательно скрывал истину, как правильно надо создать магнит нужной формы и как правильно надо сопоставить магнитные поля магнитов ротора и статора, чтобы взаимодействие между ними привело к практически вечному вращению ротора. Для этого ему пришлось изогнуть роторные магниты так, что этот магнит в разрезе стал похож на бумеранг, слабоизогнутую подкову или банан.

Благодаря такой форме магнитные силовые линии роторного магнита оказались замкнутыми уже не в виде тора, а в виде «бублика», пусть и сплюснутого. И размещение такого магнитного «бублика» так, чтобы его плоскость была при максимальном приближении магнита ротора к магнитам статора приблизительно или преимущественно параллельна силовым линиям, исходящих от магнитов статора, позволило получить за счет эффекта Магнуса для эфирных потоков силу, которая обеспечила безостановочное вращение арматуры вокруг статора...

Конечно было бы лучше, если бы магнитный «бублик» роторного магнита был бы совсем параллельным силовым линиям, исходящих из полюсов магнитов статора, и тогда эффект Мёбиуса для магнитных потоков, которые есть потоки эфира, проявился бы с бОльшим эффектом. Но для того времени (более 30 лет назад) даже такое инженерное решение было огромным достижением, что, несмотря на запрет выдавать патенты на «вечные двигатели», Говарду Джонсону через несколько лет ожидания, патент получить удалось, так как, видимо, ему удалось убедить патентоведов реально действующим образцом своего магнитного мотора и магнитной дорожки. Но даже по прошествии 30 лет кто-то из власть имущих упорно не желает принять решение о массовом применении подобных двигателей в промышленности, в быту, на военных объектах и т.д.

Убедившись, что мотор Говарда Джонсона использует тот принцип, который понят мной, исходя их теории Эфира, я попытался проанализировать с этих же позиций еще один патент, который принадлежит русскому изобретателю Алексеенко Василию Ефимовичу. Патент был выдан еще в 1997 году, но поиск по Интернету показал, что наша власть и промышленники фактически игнорируют изобретение. Видимо в России еще много нефти и денег, поэтому чиновники предпочитают мягко спать и сладко есть, благо у них зарплата это позволяет. А в это время на нашу страну надвигается экономический, политический, экологический и идеологический кризис, которые могут перерасти в продовольственный и энергетические кризисы, а при нежелательном для нас развитии породить демографическую катастрофу. Но, как любили говорить некоторые царские военноначальники - не беда, бабы новых нарожают…

Предоставляю возможность самим читателям познакомиться с патентом Алексеенко В.Е. Он предложил 2 конструкции магнитных двигателей. Их недостатком является то, что их роторные магниты имеют довольно сложную форму. Но патентоведы, вместо того, чтобы помочь автору патента упростить конструкцию, ограничились формальной выдачей патента. Мне неизвестно, как Алексеенко В.Е. обошёл запрет на «вечные двигатели», но и на том спасибо. А вот то, что это изобретение фактически оказалось никому не нужным, это уже очень плохо. Но это, к сожалению, суровая правда бытия нашего народа, которым управляют недостаточно компетентные или слишком корыстные существа. Пока жаренный петух не клюнет…


ИЗОБРЕТЕНИЕ

Патент Российской Федерации RU2131636

БЕСТОПЛИВНЫЙ МАГНИТНЫЙ ДВИГАТЕЛЬ

Использование: в качестве привода вращения. Двигатель состоит из диска (маховика), закрепленного на оси. На нем закреплены один или несколько постоянных магнитов ротора, которые вместе с диском (маховиком) могут свободно вращаться вокруг оси. Параллельно рабочему диску (маховику) двигателя на штоке закреплен неподвижно цилиндрический постоянный магнит стопора, который вместе со штоком может перемещаться в зону действия магнитных полей постоянных магнитов ротора, расположенных на рабочем диске. Все магниты обращены друг к другу одноименными полюсами. Одноименные полюса отталкиваются и заставляют рабочий диск двигателя вращаться вокруг оси. Двигатель работает от энергии сильных магнитных полей постоянных магнитов за счет разницы потенциалов магнитной энергии на полюсах магнитов ротора и их нейтральных зонах. Технический результат заключается в том, что для создания вращения потребление топлива минимально. 2 ил.

Наиболее близким по технической сущности к предлагаемому решению является магнитный двигатель (вибратор), включающий статор в виде кольцевого постоянного магнита и ротор (якорь) в виде стержневого постоянного магнита, размещенного внутри статора в одной с ним плоскости, с возможностью взаимодействия между ними одноименными полюсами (а. с. СССР N 1658310, H 02 K 33/00, 1988 г.). Его недостаток в том, что ему нужен подвод электроэнергии. Целью предлагаемого изобретения является создание экологически чистого, без выхлопных газов двигателя, не требующего потребления топлива и подвода энергии извне, не загрязняющего атмосферу воздуха и окружающую среду. Двигатель будет работать от энергии сильных магнитных полей постоянных магнитов, расположенных на двигателе. Постоянные магниты длительное время сохраняют свои сильные магнитные поля и могут многократно намагничиваться. Стабильность магнитных полей постоянных магнитов сохраняется и при работе двигателя благодаря непрерывному вращению, т.е. движению отрицательно заряженных электронов по своим замкнутым орбитам вокруг ядра атома вещества, из которого построены магниты. При своем вращении по замкнутым орбитам электроны создают круговые электрические токи, вокруг которых по закону магнетизма и возникает магнитное поле, являющееся неотделимым спутником всякого тока. А вследствие этого и происходит непрерывное преобразование и пополнение магнитной энергией в постоянных магнитах. Вот почему и сохраняется стабильность магнитных полей и при работе двигателя. Поэтому бестопливному двигателю и не требуется топливо и подвода энергии извне. Бестопливный двигатель может быть различной мощности, которая определяется тремя факторами: 1. Увеличение рабочего плеча двигателя. Достигается это за счет увеличения диаметра статора и соответственно с ним диаметра ротора двигателя. 2. Использование постоянных магнитов с более мощными магнитными полями. 3. Увеличение массы диска, который является еще и маховиком двигателя. А так как диск двигателя способен развивать до двадцати тысяч оборотов в минуту, то даже при небольшом увеличении массы диска (маховика) вращающий его момент будет соответственно усиливаться, одновременно с этим будет увеличиваться и мощность двигателя. Экологически чистый бестопливный двигатель может быть широко использован в автомобилестроении, тракторостроении, авиации, космосе, в подводном транспорте, в энергетике, в коммунальном хозяйстве и во многих других отраслях народного хозяйства. Работа двигателя. На схеме 1 изображен общий вид рабочего диска двигателя, закрепленного на рабочей оси (вид сверху). На плоскости диска может быть установлен и закреплен один или несколько постоянных магнитов. В данном варианте, как показано на схеме, на плоскости диска закреплены неподвижно два постоянных магнита (N 2, N 3), которые вместе с диском могут свободно вращаться на оси диска. Параллельно рабочему диску двигателя на штоке закреплен неподвижно постоянный магнит N 1, который вместе со штоком может перемешаться в зону действия магнитных полей магнитов (N 2, N 3). Все магниты (N 1, N 2, N 3) обращены друг к другу одноименными полюсами. Поэтому при введении магнита N 1 при помощи штока в зону действия магнитов (N 2, N 3) их магнитные поля полюсов N вступают во взаимодействия. Они складываются, а их результирующий отталкивающий момент усиливается. При этом возникают в горизонтальной плоскости силы отталкивания у магнита N 1 (статора), направленные радиально к поверхностям конических торцов полюсов N магнитов N 2 и N 3 (ротора). А так как диск с магнитами N 2 и N 3 имеет степень свободы и может свободно вращаться вокруг оси, то под влиянием отталкивающей силы магнита N 1 (статора), действующей на поверхности конических торцов полюсов N (ротора) и заставляет диск поворачиваться по кругу. Вследствие этого и происходит непрерывное вращение диска, т.е. (ротора) вокруг оси. Вращение диска с магнитами N 2 и N 3 происходит, как показано на схеме, по направлению часовой стрелки. Выключение работы бестопливного двигателя происходит при выводе магнита N 1 из зоны действия магнитного поля магнитов N 2 и N 3. При конструировании магнитов диска необходимо иметь ввиду то, что длина магнита должна быть такой, чтобы в центре его нейтральной зоны оставалась намагниченность, близкая к нулю. Это позволит соблюдать разницу потенциалов магнитной энергии (намагниченности) между полюсами магнита и его нейтральной зоны, так как за счет этой разницы потенциала магнитной энергии и происходит непрерывное вращение рабочего диска двигателя. На схеме 2 изображен второй вариант магнитного двигателя, где показан манит N 1 (статор), имеющий форму круга закрепленного на опоре. Параллельно магниту N 1 расположен подковообразный магнит N 2 (ротор), который закреплен на диске со штоком. Полюса N и S магнита N 2 имеют конусообразную форму под углом 40-45 градусов. Диск с магнитом N 2 при помощи штока может подыматься и опускаться к поверхности торца полюса N магнита N 1. Магниты N 1 и N 2 направлены друг к другу одноименными полюсами. При опускании магнита N 2 при помощи штока к поверхности торца полюса N магнита N 1 на близкое расстояние их магнитные поля полюсов N вступают во взаимодействия. Они складываются, их результирующий отталкивающий момент усиливается. При этом возникают силы отталкивания у торца полюса N магнита N 1 (статора) в вертикальном направлении, вдоль оси, направленные к поверхности конического торца полюса N магнита N 2 (статора). А так как диск с магнитом N 2 имеет степень свободы и может свободно вращаться вокруг оси, то под влиянием отталкивающей силы торца полюса N магнит N 1 (статора), действующей на коническую поверхность торца полюса N (ротора) и заставляет диск поворачиваться по кругу. Вследствие этого и происходит непрерывное вращение диска двигателя, т.е. (ротора) вокруг оси по направлению часовой стрелки. Включение работы бестопливного двигателя происходит при выводе магнита N 2 из зоны действия магнитного поля магнитов N 1 при помощи штока. Использование экологически чистого бестопливного двигателя избавит от загрязнения выхлопными газами и другими вредными веществами атмосферу воздуха и окружающую среду нашей планеты.

Формула изобретения

Двигатель для получения вращательного движения, содержащий закрепленный параллельно постоянному магниту ротора постоянный магнит статора, имеющий возможность перемещаться в зону действия магнитного поля постоянного магнита ротора, отличающийся тем, что постоянный магнит статора неподвижно закреплен на штоке, при помощи которого он вводится в зону действия магнитных полей постоянных магнитов ротора, выполненного в виде диска (маховика), на котором установлен один или несколько, обращенных одноименными полюсами к постоянному магниту статора подковообразных магнитов ротора, длина которых выбрана такой, чтобы в центре нейтральной зоны оставалась намагниченность, близкая к нулю, что обеспечит отталкивание одноименных полюсов статора и ротора при введении постоянного магнита статора, неподвижно закрепленного на штоке в зону действия постоянного магнита ротора, и в результате взаимодействия магнитного поля постоянного магнита ротора с магнитным полем одноименного полюса постоянного магнита статора именно за счет их отталкивания обеспечено вращение ротора.

Похожие патенты:

Изобретение относится к электротехнике, импульсной технике, к формированию электромагнитного импульса под действием сжатия магнитного потока энергией взрывчатого вещества (ВВ) и может быть использовано для генерации магнитных полей мегагауссного диапазона и мощных импульсных токов