«вечный» водяной двигатель. Двигатель на воде: вечная мечта человечества

Давно установлено, что изобретение вечного двигателя невозможно. В широком смысле, под вечным двигателем подразумевают механизм, безостановочно движущий сам себя. Но это далеко не достаточное определение. Благодаря многовековым бесплодным попыткам создания чудо-машины сегодня можно определить точно само понятие «вечного двигателя» и причины его неосуществимости. Более того, такие попытки оставили значительный след в истории и подтвердили существование важнейших законов физики. Каких, рассмотрим и проанализируем ниже.

Определение и классификация вечных двигателей

Итак, вечный двигатель, как уже известно - устройство воображаемое. По характеру совершаемой работы можно классифицировать следующим образом:

  1. Вечный двигатель первого рода (физический \ механический, гидравлический, магнитный) - непрерывно действующая машина, которая, будучи запущенной один раз, совершает работу без получения энергии извне. Это устройства механического характера, принцип действия которых основывается на использовании некоторых физических явлений, например, на действии силы тяжести, законе Архимеда, капиллярных явлениях в жидкостях.
  2. Вечный двигатель второго рода (естественный) - тепловая машина, которая в результате совершения цикла полностью преобразует тепло, получаемое от какого- либо одного «неисчерпаемого» источника (океана, атмосферы и т. п.), в работу. Связываются с циклически повторяющимися природными явлениями или с принципами небесной механики.

Такая классификация является распространенной и встречается в старой научной литературе. У более поздних исследователей существует еще одно определение. Оно исходит из представления об идеальной машине, работающей без потерь и превращающей всю сообщенную энергию в полезную работу или в какой-либо другой вид энергии.

К этим определениям ученые разных времен шли долгим путем. Они подвергали их обстоятельному анализу и были единодушны далеко не всегда. Проблема заключалась в том, можно ли считать вечным двигателем только ту машину, которая, будучи собрана полностью, немедленно начнет работать сама по тебе, или допустимо сообщить устройству начальный двигательный импульс. Спор велся и о том, относится ли к основным признакам вечного двигателя условие, чтобы он, будучи приведен в движение, одновременно совершал некоторую полезную работу.

Причины возникновения идеи создания

Первое упоминание о вечном двигателе относится к 1150 г. Но означает ли это, что античные механики не интересовались вечным движением? Наоборот, это являлось одной из тех традиционных проблем, которым в связи с исследованием физических явлений наука уделяла много внимания. Но при исследовании условий, определяющих круговое движение тел, греки пришли к выводам, теоретически исключающим всякую возможность существования на Земле искусственно созданного вечного движения. Например, Аристотель утверждал, что движение тел ускоряется по направлению к ее центру. О телах с действительно круговым движением он пишет: «Они не могут быть ни тяжелыми, ни легкими, так как не способны приближаться к центру или удаляться от него естественным или вынужденным образом». Такому условию удовлетворяют только небесные тела.

Но родоначальником идеи вечного двигателя считают индийского поэта, математика и астронома Бхаскара Ачарью (1114-1185), описавшего в своем стихотворении некое вечно двигающееся колесо. Заметим, что за основу взято тело круглой формы. Согласно древнеиндийской философии, регулярно повторяющиеся события, составляющие круговой цикл, являются для него символом вечности и совершенства. То есть прародители идеи вечного движения были мотивированы не практическими, а религиозными потребностями. Своего апогея идея вечного двигателя достигает в средние века в Европе, в период интенсивного строительства храмов, кафедральных соборов и княжеских дворцов, и тогда уже создателей, конечно, интересует практическое применение машины.

Некоторые модели вечных двигателей первого рода

Колесо с неуравновешенными грузами

Рисунок 1

Рисунок 2

Рисунок 3

Вот модель вечного двигателя Бхаскары (Рис. №1) с прикрепленными наискось по внутренней стороне окружности длинными узкими сосудами, наполовину заполненными ртутью. Бхаскара обосновывает вращение колеса следующим образом: «Наполненное так жидкостью колесо, будучи насажено на ось, лежащую на двух неподвижных опорах, непрерывно вращается само по себе».

Еще две модели, аналогичные по принципу действия, изобретенные в средневековой Европе. Роль сосудов, частично наполненных ртутью, играют выпукло­вогнутые секторы внутри колеса, внутри которых находятся тяжелые шары (Рис. №2) или подвижно закрепленные на внешней части колеса стержни с грузами на концах (Рис. №3).

Принцип действия данных двигателей заключается в создании постоянного неравновесия сил тяжести на колесе, вследствие которого колесо должно вращаться. Рассмотрим, почему этот расчет не оправдывается на примере обычного колеса. Здесь предполагается, что работу совершает сила тяжести, то есть в нормальных условиях (при небольших расстояниях и вблизи поверхности Земли) она постоянна и направлена всегда в одну и ту же сторону.

Рисунок 4

F T - вес груза, F P - сила, с которой рычаг воздействует на шарнир (компенсируется силой реакции опоры), F B - поворачивающая сила, R - расстояние от шарнира (оси поворота) до траектории центра масс груза.

Когда рычаг стоит строго вертикально вверх, вес груза передается на шарнир и компенсируется реакцией опоры. Сила направлена по нормали к окружности, тангенциальная составляющая

отсутствует, значит, момент сил равен нулю. Это положение называется верхней мёртвой точкой (ВМТ). Если рычаг отклоняется, реакция опоры уже не компенсирует вес, появляется тангенциальная составляющая силы, а нормальная начинает уменьшаться. Так будет продолжаться только до тех пор, пока рычаг не примет горизонтальное положение. Когда момент сил достигнет максимального значения, рычаг снова начнет действовать на груз, нормальная сила поменяет свой знак относительно рычага. Тангенциальная сила начнёт уменьшаться, до момента, когда рычаг не окажется в положении вертикально вниз (нижняя мёртвая точка (НМТ)).

Таким образом, как видно из Рис. №4, половину рабочего цикла груз ускоряется, двигаясь из верхней мёртвой точки (ВМТ) в нижнюю мёртвую точку (НМТ), и половину - замедляется. Сделав несколько оборотов, колесо с неуравновешенными грузами достигнет состояния равновесия.

Цепь на наклонной плоскости

Рисунок 5

Еще один тип механических вечных двигателей - тяжелая цепь, переброшенная более длинной стороной через систему блоков. Теоретически предполагалось, что часть, на которой находится большее количество звеньев, начнет соскальзывать с наклонной плоскости, вследствие чего замкнутая цепь будет беспрерывно двигаться. Однако известно, что цепь будет покоиться. Этот тип двигателей интересен в первую очередь тем, что из невозможности его вечного движения инженер, механик и математик Симон Стевин (1548-1620) доказал закон равновесия тела на наклонной плоскости. Одна цепь тяжелее другой во столько же раз, во сколько раз большая грань (АВ на Рис.№5) призмы длиннее короткой (ВС на Рис.№5). Отсюда следует, что два связанных груза уравновешивают друг друга на наклонных плоскостях, если их массы пропорциональны длинам этих плоскостей.

Похожий по принципу механизм (Рис. №6): тяжелая цепь перекинута через колеса так, что правая ее половина всегда длиннее левой. Следовательно, она должна падать вниз, приводя цепь во вращение. Но цепь в левой части натянута отвесно, а правая - под некоторым углом и изогнуто. Аналогично вечное движение и этого механизма невозможно.

Рисунок 6

Гидравлический вечный двигатель с винтом Архимеда

В подавляющем большинстве вечных гидравлических двигателей изобретатели пытались использовать известный со времен Древней Греции механизм - винт Архимеда - полую трубку со спиралевидной плоскостью внутри, предназначенную для подъема воды из сосуда в сосуд наибольшей высоты.

Рисунок 7

Жидкость из сосуда, поднимается фитилями сначала в верхний сосуд, оттуда другими фитилями еще выше, верхний сосуд имеет желоб для стока, которое падает на лопатки колеса, приводя его во вращение. Оказавшаяся в нижнем ярусе жидкость снова поднимается по фитилям до верхнего сосуда. Таким образом, струя, стекающая по желобу на колесо, не прерывается, и колесо вечно должно находиться в движении (Рис. №7).

Только колесо этой машины никогда не станет вращаться, поскольку в верхнем сосуде не окажется воды. Это произойдет потому, что капиллярные силы вызванные искривлением поверхности жидкости, хотя и позволяют преодолеть силу тяжести, поднимая жидкость в ткани фитиля, но они и удерживают ее в порах ткани, не позволяя ей вытечь из них.

Сосуд Денни Папена

Рисунок 8

Проект гидравлического вечного двигателя Денни Папена - сосуд, сужающийся в трубку и загнутый таким образом, что свободный конец трубки с меньшим радиусом расположен в пределах большого «горла» сосуда (Рис. №8). Автор предполагал, что вес воды в более широкой части сосуда будет превосходить вес жидкости, находящейся в трубке, в более узкой части. Таким образом, должна была происходить циркуляция жидкости за счет разности давлений. На самом деле в данном случае работает основной закон гидростатики: давление, оказываемое на жидкость, передается без изменения по всем направлениям. Поверхность жидкости в тонкой трубке установится на том же уровне, что и в сосуде, как в любых сообщающихся сосудах.

Ранее это двигателя были предложены похожие сосуды, иначе ориентированные в пространстве. В них за основу брался принцип действия сифона: в нем (в изогнутой трубке с коленами разной длины, по которой жидкость поступает из сосуда с более высоким в сосуд с более низким уровнем жидкости) работа, затрачиваемая на подъем жидкости, производится атмосферным давлением. В то же время, чтобы жидкость могла протекать через сифон, максимальная высота его изгиба не должна превосходить высоту столба жидкости, уравновешиваемого давлением внешнего воздуха. Для воды эта высота при нормальном барометрическом давлении составляет примерно 10 м. - этот факт не учитывался и приводил к неверным выводам о вечном движении такого двигателя.

Другие гидравлические двигатели

Рисунок 9

Среди множества проектов вечного двигателя было немало основанных на законе Архимеда. Один из таких проектов выглядит следующим образом: высокий сосуд (20 м), наполненный водой, имеет расположенные на одной грани в разных ее концах шкивы, через которые перекинут прочный бесконечный канат с четырнадцатью закрепленными полыми ящиками кубической формы. Ящики одинаковы, равноудалены, водонепроницаемы и имеют стороны в 1 м (Рис. №9).

Действительно, ящики, находящиеся в воде, будут стремиться всплыть вверх. На них действует сила, равная весу воды, вытесняемой ящиками.

Но даже при условии, что данный канат бесконечен, эффект не оправдывается, потому что чтобы канат вращался, ящики должны входить в сосуд именно со дна, а для этого они должны преодолеть давление столба воды, которое окажется значительно больше силы Архимеда.

Рисунок 10

Упрощенный вариант вечного двигателя гидравлического типа (Рис.№10), идея которого исходит из грубого нарушения толкования закона Архимеда. Погруженная в воду часть деревянного барабана, согласно закону Архимеда, подвергается действию выталкивающей силы. Конечно, колесо вращаться не будет, потому что сила будет направлена не вверх (как предполагалось изобретателем), а к центру колеса.

Магнитный вечный двигатель

Рисунок 11

Несложная, но оригинальная модель вечного двигателя с магнитами. К шаровому магниту, расположенному на стойке, ведут два наклонных желоба: один прямой, установленный выше, другой изогнутый (Рис. №11). Железный шарик, помещенный на верхний желоб, будет притягиваться магнитом, затем на пути он попадет в отверстие, скатится по нижнему желобу и снова перейдет на верхний желоб.

Однако, если магнит достаточно силен, чтобы притянуть шарик от нижней точки, то он не даст ему провалиться через отверстие, расположенное совсем рядом. Если же, наоборот, сила притяжения будет недостаточна, то шарик не притянется вовсе.

Вечный двигатель первого рода в противоречии с законом сохранения энергии

Окончательное утверждение закона сохранения энергии в 40-70 годы XIX века произошло на основе работ Сади Карно, Роберта Майера, Джеймса Джоуля и Германа Гельмгольца, которые показали связь между различными формами энергии (механической, тепловой, электрической и др.). Закон сохранения энергии формулируется в следующем виде: в изолированной системе энергия может переходить из одной формы в другую, но общее количество ее остается постоянным.

Как правило, невозможность вечного двигателя рассматривают как следствие закона сохранения энергии. Рассуждения Майера и опыты Джоуля доказали эквивалентность механической работы и теплоты, показав, что количество выделяемой теплоты равно совершенной работе и наоборот, формулировку же в точных терминах закону сохранению энергии первым дал Гельмгольц. В отличие от своих предшественников, он связывал закон сохранения энергии с невозможностью существования вечных двигателей. Принцип невозможности вечного двигателя был положен Майером и Гельмгольцем в основу анализа различных превращений энергии. Макс Планк в работе «Принцип сохранения энергии» сделал специальный акцент на эквивалентности (а не причинно-следственной связи) принципа невозможности вечного двигателя и принципа сохранения энергии.

В термодинамике исторически закон сохранения формулируется в виде первого начала термодинамики: изменение внутренней энергии термодинамической системы при переходе ее из одного состояния в другое равно сумме работы внешних сил над системой и количества теплоты, переданного системе, и не зависит от способа, которым осуществляется этот переход, т. е. Q = ΔU + A. Первое начало термодинамики часто формулируют как невозможность существования вечного двигателя первого рода, который совершал бы работу, не черпая энергию из какого-либо источника.

Вечные двигатели второго рода

Классический вечный двигатель второго рода предусматривает возможность накопления тепла за счет работы, затраты которой меньше полученного тепла, и использования части этого тепла для повторного совершения работы в новом цикле. Таким образом, должен образоваться избыток работы. Другой вариант этого двигателя подразумевает упорядочение хаотического теплового движения молекул, в результате чего возникает направленное движение вещества, сопровождаемое понижением его термодинамической температуры. Широко известных проектов таких двигателей изобретено не так много, как, например, двигателей первого рода, и информация о них не достаточна для описания. Подавляющее большинство идей таких машин являются абсурдными и противоречивыми, либо относятся к классу мнимых вечных двигателей (по сути, не являются вечными), обладают низким КПД.

Сформулированное Рудольфом Клаузиусом второе начало термодинамики однозначно утверждает: невозможен процесс, единственным результатом которого являлась бы передача тепла от более холодного тела к более горячему. Что также означает, что в замкнутой системе энтропия при любом реальном процессе либо возрастает, либо остается неизменной (т. е. ΔS ≥ 0). Второе начало термодинамики является постулатом, не доказываемым в рамках термодинамики. Оно создано на основе обобщения опытных фактов и получило многочисленные экспериментальные подтверждения.

Возможность использования энергии теплового движения частиц тела (теплового резервуара) для получения механической работы (без изменения состояния других тел) означала бы возможность реализации вечного двигателя второго рода, работа которого не противоречила бы закону сохранения энергии. Например, работа двигателя корабля за счет охлаждения воды океана (доступного и практически неисчерпаемого резервуара внутренней энергии) не противоречит закону сохранения энергии, но если, кроме охлаждения воды, нигде других изменений нет, то работа такого двигателя противоречит второму началу термодинамики. В реальном тепловом двигателе процесс превращения теплоты в работу сопряжен с передачей определенного количества теплоты внешней среде. В результате тепловой резервуар двигателя охлаждается, а более холодная внешняя среда нагревается, что находится в согласии со вторым началом термодинамики.

Мнимый вечный двигатель

Рисунок 12

В 60-х гг. XX в. мировую сенсацию произвела игрушка, получившая в СССР название «вечно пьющая птичка» или «птичка Хоттабыча». Тонкая стеклянная колба с горизонтальной осью посередине впаяна в небольшую емкость. Свободным концом колбочка почти касается ее дна. В колбе находится определенное количество эфира (в нижней части), верхняя пустая часть колбы обклеена снаружи тонким слоем ваты. Перед игрушкой ставят сосуд с водой и наклоняют ее, заставляя «попить» (Рис.№12). Затем механизм работает самостоятельно: несколько раз в минуту наклоняется к сосуду с водой, пока вода не кончится.

Механизм такого явления понятен: жидкость в нижней полости испаряется под влиянием комнатного тепла, давление растет и вытесняет жидкость в трубочку. Верхняя часть конструкции перевешивает, наклоняется, пар перемещается в верхний шарик. Давление выравнивается, жидкость возвращается в нижний объем, который перевешивает и возвращает «птичку» в первоначальное положение.

На первый взгляд здесь нарушается второе начало термодинамики: перепад температур отсутствует, машина только забирает тепло из воздуха. Но когда колба достигает сосуда с водой, вода из мокрой ваты интенсивно испаряется, охлаждая верхний шарик. Возникает разность температур верхнего и нижнего сосудов, за счёт которой и происходит движение. Если испарение прекратится (высохнет вата или влажность воздуха достигнет точки росы, то есть температуры, до которой должен охладиться воздух, чтобы содержащийся в нем водяной пар достиг состояния насыщения и начал конденсироваться в росу), машина в полном согласии со вторым началом термодинамики перестанет двигаться. Мощность такого двигателя очень низка из-за незначительной разности температур и давлений, при котором «птичка» работает.

Вечные двигатели как коммерческие проекты

Вечные двигатели, с древнейших времен окутанные тайной изобретения и действия, несомненно, создавались не только для использования в практическом плане. Во все времена были мошенники и фантазеры, намеревавшиеся извлечь не только энергию большую, чем 100%.

Одна из самых известных «афер века» - вечный двигатель Иоганна Бесслера (1680-1745).

Рисунок 13

Рисунок 14

Под псевдонимом Орфиреус этот саксонский инженер 17 ноября 1717 года в присутствии известных физиков продемонстрировал машину с диаметром вала больше 3,5 м. Двигатель пустили в ход и заперли в комнате, а проверив через полтора месяца, убедились, что колесо двигателя вращается с прежней скоростью.

Когда то же самое произошло еще через два месяца, слава Бесслера прогремела по всей Европе. Изобретатель соглашался продать машину Петру I , но этого не произошло. Однако это не помешало жить Бесслеру безбедно на средства, полученные путем демонстрации двигателя. Двигатель представляет собой большое колесо, вращающееся и поднимающее при этом тяжелый груз на значительную высоту (Рис. №13).

Изобретение вызвало множество споров и нерешенных вопросов. Самый главный из них - принцип действия - не был известен широкой публике. Поэтому недоверчивые скептики заключили, что секрет заключается в том, что искусно спрятанный человек тянет за веревку, намотанную, незаметно для наблюдателя, на скрытой части оси колеса. И их ожидания оправдались: вскоре служанка Бесслера раскрыла тайну:

двигатель действительно работал только с помощью третьих лиц (Рис. №14).

Еще один известный случай использования вечного двигателя «не по назначению»: в одном из городов с целью привлечения клиентов у одного кафе было установлено «вечно» вращающееся колесо, которое, конечно, запускалось с помощью механизма.

Некоторые разработчики идей вечных двигателей в хронологическом порядке:

  1. Бхаскара Ачарья (1114-1185), поэт, астроном, математик.
  2. Виллар де Оннекур (XIII век), архитектор.
  3. Николай Кузанский (1401-1464), философ, теолог, церковно-политический деятель.
  4. Франческо ди Джорджо (1439-1501), художник, скульптор, архитектор, изобретатель, военный инженер.
  5. Леонардо да Винчи (1452-1519), художник, скульптор, архитектор, математик, физик, анатом, естествоиспытатель.
  6. Джамбаттиста Порта (1538 - 1615), философ, оптик, астролог, математик, метеоролог.
  7. Корнелиус Дреббель (1572 - 1633), физик, изобретатель.
  8. Атанасиус Кирхер (1602-1680), физик, лингвист, теолог, математик.
  9. Джон Уилкинс (1614-1672), философ, лингвист.
  10. Денни Папен (1647-1712), математик, физик, изобретатель.
  11. Иоганн Бесслер (1680-1745), инженер-механик, врач, мошенник.
  12. Дэвид Брюстер (1781-1868), физик.
  13. Вильгельм Фридрих Оствальд (1853-1932), физик, химик, философ-идеалист.
  14. Виктор Шаубергер (1885-1958), изобретатель.

Заключение

В 1775 году Французская Академия приняла решение не рассматривать предложения вечных двигателей, выдвинув окончательный вердикт: построение вечного двигателя абсолютно невозможно. За всю историю вечного двигателя было изобретено более 600 проектов, причем большинство из них пришлось на время, когда стали известны законы термодинамики и сохранения энергии.

Конечно, усилия многочисленных создателей вечных двигателей не пропали даром. Пытаясь сконструировать невозможное, они нашли немало любопытных технических решений, придумали механизмы и устройства, которые до сих пор применяются в машиностроении. В бесплодных поисках вечного движения родились основы инженерной науки и подтвердились законы, отрицающие его существование.

Учёные и не только много лет пытались создать вечный двигатель. Не все попытки были удачны, но некоторые опредёленно заслуживают внимания. Многие интересуются технологией неиссякаемой энергии и хотят попробовать сделать вечный двигатель своими руками. Всегда интересно узнать о том, что собой представляет вечный двигатель, возможно ли его собрать и как это сделать.

Что это такое

Любой прибор, который работает за счёт какой-либо энергии, перестанет работать, если его отключить от источника этой самой энергии. Вечный двигатель решает эту проблему: включив его однажды можно не беспокоиться, что в нём сядет батарейка или закончится бензин, и он выключится. Идея создания такого устройства довольно долго будоражила умы людей, и попыток создания вечного двигателя было очень много.

У такого устройства должен быть коэффициент полезного действия больше ста процентов. То есть количество производимой энергии должно быть больше, чем количество полученной, чтобы двигатель мог поддерживать себя в рабочем состоянии и при этом выдавать некоторое количество энергии для сторонних задач.

Поскольку такая система должна работать вечно (или хотя бы очень долго), то к ней предъявляются особые требования:

  • Постоянная работа. Это логично, ведь если двигатель остановится, то не такой уж он и вечный.
  • Как можно более долговечные детали. Если наш двигатель должен работать вечно, то его отдельные детали должны быть максимально износостойкие.

Научные гипотезы

Научное общество не отрицает создание такого устройства. Правда, в глазах учёных оно представляет собой не просто набор движущихся деталей или колбочек со ртутью внутри. Это должно быть более сложное устройство, работающее на энергии эфира или вакуума. Эфир - это некая всепроникающая среда, которая колеблется и генерирует электромагнитные волны. Существование эфира, кстати, не доказано.

Ни для кого не секрет, что в нашей вселенной действуют гравитационные силы. Сейчас они находятся в покое, так как уравновешены друг другом. Но если нарушить равновесие, все эти силы придут в движение . Подобный принцип теоретически можно использовать в гравитационном вечном двигателе. Правда, осуществить это пока никому не удалось.

Магнитно-гравитационный двигатель

Здесь все немного проще, чем в предыдущем варианте. Для создания такого устройства нужны постоянные магниты и грузы определённых параметров. Работает это так: в центре вращающегося колеса находится основной магнит, а вокруг него (на краях колеса) расположены вспомогательные магниты и грузы. Магниты взаимодействуют друг с другом, а грузы находятся в движении и перемещаются то ближе к центру вращения, то дальше. Таким образом центр массы смещается, и колесо вращается.

Самый простой вариант

Для его создания понадобятся простые материалы:

  • Бутылка из пластика.
  • Тонкие трубки.
  • Куски дерева (доски).

Бутылку нужно разрезать на две части по горизонтали. В нижнюю часть вставить деревянную перегородку, в которой заранее проделать отверстие и придумать затычку для него. После берётся тонкая трубка и устанавливается таким образом, чтобы она проходила снизу вверх через перегородку . Любые зазоры в составных частях нужно уплотнить, предотвратив поступление воздуха в нижнюю часть бутылки.

Через отверстие в дереве нужно налить в нижнюю часть легкоиспаряющейся жидкости (бензин, фреон). При этом уровень жидкости не должен доставать не до дерева, а до среза трубки. Потом затычка закрывается, а сверху наливается немного той же жидкости. Теперь следует закрыть эту конструкцию верхней частью бутылки и поставить в тёплое место. Через время из верхней части трубки начнёт капать жидкость.

Все дело в том, что жидкость просачивается сквозь дерево. Воздух внутри оказывается «заперт» и начинает нагревать жидкость вокруг себя. Она, в свою очередь, испаряется и выходит вверх, охлаждается и оседает на дереве, что замыкает круг. Таким образом жидкость просто циркулирует внутри системы.

Водяной вариант вечного двигателя

Это довольно простая конструкция, которую можно построить даже в домашних условиях. Понадобится пара колб, клапаны для них, одна большая ёмкость с водой и несколько трубок. Ориентируясь по картинке, можно собрать такое устройство - оно будет перекачивать воду.

Эта тема очень интересна и увлекательна . Учёные всего света ломали голову над этим мифическим устройством. Было много шарлатанов, которые выдавали свои хитроумные машины за вечноработающие двигатели. На сегодняшний день никто не смог создать такое устройство. Многие учёные отрицают возможность существования такой машины, так как она нарушает фундаментальные законы физики.

Гидравлический вечный двигатель February 14th, 2017

В 1685 г. в одном из выпусков лондонского научного журнала «Философские труды» был опубликован предложенный французом Дени Папеном проект гидравлического перпетуум мобиле, принцип действия которого должен был опровергнуть известный парадокс гидростатики. Как видно из изображенного на рисунке, это устройство состояло из сосуда, сужавшегося в трубку в форме буквы C, которая загибалась кверху и своим открытым концом нависала над краем сосуда.

Автор проекта предполагал, что вес воды в более широкой части сосуда обязательно будет превосходить вес жидкости, находящейся в трубке, т.е. в более узкой его части. Это означало, что жидкость своей тяжестью должна была бы выдавливать саму себя из сосуда в трубку, по которой ей вновь приходилось бы возвращаться в сосуд, — тем самым достигалась требуемая непрерывная циркуляция воды в сосуде.

Как вы предположите, почему на видео "вечный двигатель" работает?

К сожалению, Папен не осознавал того, что решающим фактором в данном случае является не разное количество (а с ним и различный вес жидкости в широкой и узкой частях сосуда), а прежде всего свойство, присущее всем без исключения сообщающимся сосудам: давление жидкости в самом сосуде и изогнутой трубке всегда будет одинаковым. Гидростатический парадокс как раз и объясняется особенностями этого по существу своему именно гидростатического давления.

Называемый иначе парадоксом Паскаля, он утверждает, что суммарное давление, т.е. сила, с которой жидкость давит на горизонтальное дно сосуда, определяется только весом столба жидкости, находящейся над ним, и совершенно не зависит от формы сосуда (например, от того, сужаются или расширяются его стенки) и, следовательно, от количества жидкости.

Жертвами подобных заблуждений были иногда даже люди, работавшие на самом переднем крае современной им науки и техники. Примером может служить сам Дени Папин (1647-1714 гг.) — изобретатель не только «папинова котла» и предохранительного клапана, но и центробежного насоса, а главное — первых паровых машин с цилиндром и поршнем. Папин даже установил зависимость давления пара от температуры и показал, как получать на ее основе и вакуум, и повышенное давление. Он был учеником Гюйгенса, переписывался с Лейбницем и другими крупными учеными своего времени, состоял членом английского Королевского общества и Академии наук в Неаполе. И вот такой человек, который по праву считается крупным физиком и одним из основоположников современной теплоэнергетики (как создатель парового двигателя), работает и над вечным двигателем! Мало этого, он предлагает такой вечный двигатель, ошибочность принципа которого была совершенно очевидна и современной ему науке. Он публикует этот проект в журнале «Философские труды» (Лондон, 1685 г.).

Рис. 1.. Модель гидравлического вечного двигателя Д. Папина

Идея вечного двигателя Папина очень проста — это по существу перевернутая «вверх ногами» труба Зонки (рис. 1). Поскольку в широкой части сосуда вес воды больше, его сила должна превосходить силу веса узкого столба воды в тонкой трубе С. Поэтому вода будет постоянно сливаться из конца тонкой трубки в широкий сосуд. Остается только подставить под струю водяное колесо и вечный двигатель готов!

Очевидно, что на самом деле так не получится; поверхность жидкости в тонкой трубке установится на том же уровне, что и в толстой, как в любых сообщающихся сосудах (как в правой части рис. 1.).

Судьба этой идеи Папина была той же, что и других вариантов гидравлических вечных двигателей. Автор к ней больше никогда не возвращался, занявшись более полезным делом — паровой машиной.

История с изобретением Д. Папином наталкивает на вопрос, постоянно возникающий при изучении истории вечных двигателей: чем объяснить поразительную слепоту и странный образ действий многих весьма образованных и, главное, талантливых людей, возникающие каждый раз, как только дело касается изобретения вечного двигателя?

Мы вернемся к этому вопросу в дальнейшем. Если же продолжить разговор о Папине, то непонятно и другое. Мало того, что он не учитывает уже известные законы гидравлики. Ведь в это время он был на должности «временного куратора опытов» при Лондонском королевском обществе. Папин мог при своих экспериментальных навыках легко проверить предложенную им идею вечного двигателя (так же, как он проверял другие свои предложения). Такой эксперимент легко поставить за полчаса, даже не располагая возможностями «куратора опытов». Он этого не сделал и почему-то отправил статью в журнал, ничего не проверив. Парадокс: выдающийся ученый-экспериментатор и теоретик публикует проект, противоречащий уже утвердившейся теории и не проверенный экспериментально!

В дальнейшем было предложено еще много гидравлических вечных двигателей и с другими способами подъема воды, в частности капиллярных и фитильных (что, собственно, одно и то же) [. В них предлагалось жидкость (воду или масло) поднимать из нижнего сосуда в верхний по смачиваемому капилляру или фитилю. Действительно, поднять жидкость на определенную высоту таким путем можно, но те же силы поверхностного натяжения, которые обусловили подъем, не дадут жидкости стекать с фитиля (или капилляра) в верхний сосуд.

А что же происходит на видео?

Когда в воронку наливается жидкость, то по закону сообщающихся сосудов, уровни должны быть одинаковые, а она в трубку вытекает с большим запаздыванием, стало быть под деревянным штативом находится ещё сосуд из которого вода перекачивается, так как она остановится на середине и не потечёт.Это гидравлический перпетуум мобиле средних веков, в который заложена ошибка, как якобы больший вес воронки вытеснит воду из трубки, но это не так. Любой диаметр трубки и любая форма не имеют значения, уровни просто уровняются

Вечный двигатель – что это такое? Каков принцип его работы? Может ли существовать источник энергии, который будет работать без использования энергоносителя?

Для того чтобы сделать вечный двигатель своими руками, необходимо знать, что это такое. Люди всегда задумывались над созданием прибора, который бы работал без применения энергоносителя, вырабатывал энергию в больших количествах. Одно из основных требований – показатели КПД 100%.

На сегодняшний день существует два варианта вечного двигателя: физические – работающие по принципам механики, и естественные – использующие небесную механику.

Требования, предъявляемые к вечным двигателям

Так как само устройство предназначено для постоянной работы без использования определённого вида энергоносителя, то к нему существуют конкретные требования:

  • обеспечение постоянной работы двигателя;
  • длительная эксплуатация устройства за счёт идеальных деталей;
  • прочные и долговечные детали.

На сегодняшний день ещё нет такого прибора, который бы был испытан или сертифицирован. Многие учёные работают над этим вопросом и не отрицают возможности его создания в будущем, при этом, акцентируют внимание на том, что принцип работы будет основываться на энергии совокупного гравитационного поля. Это энергия вакуума или эфира . По мнению учёных, вечный двигатель должен непрерывно работать, вырабатывать энергию, вызывать движения без любых внешних воздействий.

Возможные варианты вечного двигателя

Гравитационный вечный двигатель

Принцип действия такого двигателя основывается на гравитационной силе Вселенной . Так как вся наша Вселенная заполнена скоплением звёзд, то для полного покоя и равномерного движения, все находится в силовом равновесии. Если взять и вырвать один из участков звёздного пространства, то Вселенная начнёт активно двигаться, чтобы уровнять равновесие и среднюю плотность. Если использовать подобный принцип в гравитационном двигателе, то можно получить вечный источник энергии. Сегодня построить такой двигатель пока не удалось никому.

Магнитно-гравитационный двигатель

Сделать этот аппарат своими руками возможно, достаточно использовать постоянный магнит. Его принцип базируется на переменном перемещении вокруг основного магнита вспомогательных или других грузов. Из-за взаимодействия магнитов с силовыми полями, приближения грузов к оси вращения мотора одного из полюсов, и отталкивания к другому полюсу. Именно из-за постоянного смещения центра массы, чередования сил гравитации и взаимодействия постоянных магнитов, будет обеспечена вечная работа двигателя.

Если собранный магнитный двигатель правильно работает, то его достаточно только подтолкнуть, и он сам начнёт раскручиваться до максимальной скорости. Для того чтобы собрать магнитный вечный двигатель своими руками, необходимо иметь материально-техническую базу, без неё собрать подобное устройство невозможно. Поэтому, если вы новичок в этом вопросе, то стоит рассмотреть более лёгкие и простые варианты вечных двигателей. Чтобы сделать такой двигатель своими руками, необходимо иметь магниты, а также грузы определённых параметров и размеров.

Современные мастера-любители разработали простой вариант вечного двигателя. Для этого нужно иметь такие материалы:

  • пластиковая бутылка;
  • куски дерева;
  • тонкие трубки.

Пластиковую бутылку разрезают горизонтально и вставляют перегородку из дерева. Все оборудование внутри должно находиться вертикально сверху вниз. Затем, монтируется тонкая трубка, которая будет проходить снизу вверх бутылки, проходя через перегородку. Чтобы избежать прохода внутри воздуха, все пустоты между пластиковой бутылкой и деревом нужно заполнить.

В нижней части необходимо вырезать небольшое отверстие и предусмотреть способ его закрытия. В это отверстие наливается жидкость (бензин или фреон) до уровня среза трубки, при этом она не должна доходить до деревянной перегородки. Когда низ бутылки будет плотно закрыт, через верхнюю часть заливается немного той же жидкости и плотно закупоривается. Вся изготовленная конструкция ставится в тёплое место до того момента, пока сверху их трубки не начнёт капать.

Такой двигатель будет работать по такому принципу: из-за того, что прослойка воздуха окружена со всех сторон жидкостью, тепло из неё будет воздействовать на жидкость. Она будет испаряться, и направляться к воздушной прослойке. Силы гравитации будут способствовать превращению испарений в конденсат и возвращаться обратно в жидкость. Под двумя трубками устанавливается колесо, которое будет вращаться под воздействием капель конденсата. Обеспечивать энергию для постоянного движения будет гравитационное поле Земли.

Это вариант доступен каждому. Для его работы понадобится насос и две ёмкости: одна большая, другая меньшая. Насос не должен использовать никаких энергоносителей. Устройство изготавливается так:

  • берётся колба с нижним обратным клапаном и Г – образная тонкая трубка;
  • эту трубку вставляют в колбу, через герметическую пробку;
  • насос будет перекачивать воду из одной ёмкости в другую.

Вся работа двигателя будет обеспечиваться за счёт атмосферного давления.

Механический вечный двигатель

Самым идеальным вариантом вечного агрегата является механический. Его главная задача – обеспечить постоянную, бесперебойную работу и помощь человеку в грандиозных масштабах.

Над механическими типами изделий трудились много мастеров, предлагали свои проекты, каждый из них основывался на принципе разницы удельного веса ртути и воды .

Гидравлический вечный двигатель

Идею о вечном двигателе человеку подали машины прошлого века: насосы, водные колёса, мельницы, которые работали только на энергии воды, ветра.

Если использовать водяное колесо на открытом пространстве, то всегда есть угроза уменьшения уровня воды, что скажется отрицательно на работе всей системы. Это натолкнуло исследователей на мысль поместить водяное колесо в замкнутый цикл. Для того чтобы соорудить водяной вечный аппарат своими руками, необходимо иметь такие материалы: колесо, водяной насос, резервуар.

Приспособление работает следующим образом: груз плавно опускается, а ушат поднимается вверх, вместе с ним поднимается и насосный клапан, вода поступает в сосуд . Тогда вода попадает в резервуар, в нём открывается заслонка, и вода снова выливается в ушат через установленный кран. Благодаря прикреплённой верёвке, ушат может подниматься и опускаться под тяжестью воды. Колесо, которое находится внутри, совершает только колебательные движения.

Для того чтобы соорудить вечный прибор своими руками, сегодня представлено большое количество инструкций, видео материалов. Однако только осознанное понимание сути этого прибора и его возможностей, может рассмотреть удобный и простой вариант, и попробовать собрать его самостоятельно. Этот прибор сможет облегчить участие человека во многих жизненных ситуациях, сделать энергетически независимым от внешних носителей.

Природная тепловая энергия накрепко отгорожена от практики нерушимым Законом сохранения энергии и пресловутыми Первым и Вторым началами термодинамики. Не буду затрагивать, Ломоносовское толкование, Закона сохранения энергии и материи: кстати, первое в мире: Оно гласит: «Все перемены, в натуре случающиеся, такого суть состояния, что если что-то к чему-либо присовокупиться, то столько же где-то убавиться ». Проще говоря, что положишь, то и возьмешь. И никакой прибавки! Это святое. А вот истинность Начал вызывает сомнения. Почему осмелился обозвать их пресловутыми? «Второе начало термодинамики» Рудольф Клаузиус , будучи последователем Сади Карно, сформулировал в 1850 году, когда современная физика была в зачаточном состоянии, и многие открытия еще впереди.

Однако второе Начало сразу стало классикой. Клаузиус исходит из того, что энергия преобразуется из одного вида в другой, с потерями, и, в конце концов, остаток тепла, безвозвратно рассеивается в окружающем пространстве. «Еще страшней, еще чуднее» : по его утверждению тепло нельзя преобразовать в механическую работу с коэффициентом близким к единице, и следовательно «Невозможен процесс, единственным результатом которого явилась бы передача тепла от более холодного тела к более горячему». Более того, Клаузиус, вообще наложил «вето» на вечный двигатель. Не подвиг ли его на это кощунство Аристотель ? За несколько сотен лет до нашей эры он пришел к заключению, что «Непрерывное движение можно допустить только у небесных светил, а в подлунном мире оно немыслимо» .

perpetual motion machine (с англ.- вечный двигатель)

Постулаты второго Начала поддержал великий ученый Уильям Томсон (лорд Кельвин). По его мнению «Невозможно производство работы за счет охлаждения и израсходования всей внутренней энергии системы. Заметим, что во всех случаях подразумевается закрытая изолированная система без теплообмена с окружающей средой. Но мы-то существуем в системе открытой, где запасы энергии неисчерпаемы. И почему обязательно надо использовать всю энергию? На первый случай, хватит даже малой ее толики. Сложнее не считаться с отрицанием возможности самопроизвольного перехода теплоты от тел более холодных к телам более нагретым. А, ведь именно, отсюда автоматически проистекает запрет на создание теплового вечного двигателя. Когда была создана статистическая термодинамика, основанная на молекулярных представлениях, во второе Начало внесли поправку. Оказывается «Переход тепла от холодного тела к более горячему в принципе возможен, но это уничтожающе маловероятное событие.

А в природе реализуются наиболее вероятные события ». Что в лоб, что по лбу! Как бы в подтверждение этого тезиса пока никому не удалось сделать так, чтобы энергия от более холодного тела перешла к более горячему. А ведь вечному двигателю необходимо, чтобы при этом он еще совершал работу. Не сочтите это заявление «Наполеоновским». Но осмелюсь предположить, что мне это удалось. Свой первый вечный двигатель, естественно, неработоспособный, придумал еще в 1934 году, когда учился в 6 классе украинской школы в г. Прилуки. Вернулся к этому увлечению через полсотни лет, при несколько необычных обстоятельствах. В августе 1986 г. проректор Университета Дружбы народов им. Патриса Лумумбы В. Шкадиков предложил мне провести изобретательский семинар с группой студентов. Но между мной и десятком «добровольцев» — выходцев из стран Африки оказалось трудно преодолимое препятствие – полное языковое непонимание. А переводчица была далека от техники, и ни в чем помочь не могла. Но общение состоялось.

В виде разминки я предложил молодым людям создать увлажнитель воздуха. Эта тема их заинтересовала. Конечно, мы побывали в нескольких магазинах бытовой техники, посмотрели увлажнители самых разных типов.Все они были с электроприводом. Изобретать на этой основе неинтересно. А что, если использовать идею Иоганна Сигнера , предложил я. Он создал первую в мире гидравлическую турбину — Сегнерово колесо . Оно расположено в горизонтальной плоскости, а вместо спиц — трубки с изогнутыми концами. Вытекающая из них жидкость обладает реактивной силой и приводит колесо во вращение. Но в нашем случае это был бы не увлажнитель, а «затопитель» помещения.

Мы же решили создать увлажнитель воздуха испарительного типа. Такого в магазинах мы не нашли. Устроили нечто, вроде соревнования идей. Самым простым и основополагающим было предложение сохранить колесо, но повернуть его на 90 градусов и «посадить» на горизонтальную ось. Колесо выполнить из отдельных сектров, как в древнеиндийском вечном двигателе . Таким образом, испаряющая поверхность оказалась в вертикальной плоскости. Другими деталями увлажнитель обрастал, как снежная баба»: трубки заменили изолированными друг от друга секторами. Обтянули их хлопчатобумажной тканью, и вместо изогнутых колен приладили к секторам отростки. Еще раз все обсудили, сделали чертежи и изготовили модель.

В таком «звании» 1 октября 1988 года его внесли в Государственный реестр изобретений под номером 1455040. Конструктивно двигатель не сложный: на горизонтальной оси вращается диск – ротор, состоящий из 6 изолированных друг от друга секторов, обтянутых хлопчатобумажной тканью.По мере насыщения влагой самого нижнего сектора, равновесие ротора нарушается, и в силу дисбаланса система приходит во вращение. На смену выходящему из воды сектору приходит соседний, и вращение становится непрерывным. Таким образом, двигатель напрямую преобразует тепло окружающего воздуха в механическую работу. Иными словами происходит самопроизвольная концентрация тепловой энергии рассеянной в окружающей среде. Правда, в силу своей недостаточной компетентности, я не могу обосновать принцип действия двигателя: С одной стороны поверхность ротора испаряет влагу, а посему охлаждается. Окружающий воздух, имея более высокую температуру, вправе на «законном» основании передавать тепло ротору. Это ясно, как Божий день. Но, с другой стороны, отдавая тепло, охлаждается и сам воздух.

Следовательно, отдавать тепло охлажденному ротору не имеет права. Явное противоречие. Как его разрешить? Автору этих строк — корреспонденту журнала «Изобретатель и рационализатор » посчастливилось общаться с Павлом Кондратьевичем Ощепковым , выдающимся ученым, и замечательным человеком.

Позволю себе вкратце рассказать об одной из встреч с Павлом Кондратьевичем, оставившей заметный след в моем сердце и в памяти. Где-то в конце 80-х годов прошлого века я как-то осмелился привезти к нему и показать в действии свой «вечный» (тепловой) двигатель. Павел Кондратьевич не счел его образцом типичной энергетической инверсии, ибо переход тепловой энергии в нем происходит при относительном равенстве теплового состояния окружающего воздуха и ротора двигателя. Однако, отметил: «Сам пример концентрации рассеянной энергии небезынтересен».

Всю свою жизнь, за исключением многих лет незаслуженных тюрем и лагерей, он посвятил становлению и изучению энергетической инверсии (концентрация и практическое использование рассеянной энергии природы),Ощепков также изобрел и довел до практики новое направление в науке и технике — интроскопию (внутривидение) и, главное, придумал, разработал и практически осуществил радиолокацию (системы и устройства для обнаружения удаленных объектов, в том числе самолетов) . Это одно из величайших изобретений современности, признанное во всем мире.

Его электровизоры выпускали серийно и они были приняты на вооружение в Красной Армии. В самом начале Великой Отечественной войны, точнее 21 июля 1941 года в 17.00 войска Противовоздушной обороны посредством устройств, изобретенных Ощепковым, на расстоянии 200 км от Москвы обнаружили в воздухе две сотни фашистских самолетов. По расчетам педантичных немецких вояк, эта армада должна была уничтожить город даже не до руин, а до пепла Помпеи. Ведь Москва в то время занимала небольшую территорию и вмещалась в пределы кольцевой железной дороги.

Предупрежденные защитники столицы успели привести в боевую готовность зенитную артиллерию, в воздух поднялись истребители, и в воздушном сражении потеряв два десятка самолетов, фашисты позорно повернули вспять. Столица и ее жители были спасены от неминуемой катастрофы. Не буду скрывать и скажу заранее: Основная цель этой публикации – инициировать представление П. К. Ощепкова на Нобелевскую премию (посмертно) . Он это заслужил. К сожалению, через несколько лет, в 1992 году Павел Кондратьевич неласковый к нему мир, покинул. Вечная ему память! Но вернемся к началу нашего разговора. Беседовать об изобретениях и не коснуться вечного двигателя столь же нелепо, как вести свадьбу без музыки. Хотя бы потому, что изобретатели вечного двигателя были, по существу первыми энергетиками, на столетия опередившими официальную науку, если не в знании, то в поиске новых источников энергии. Вечный двигатель, вот уже восемь столетий – неизлечимая болезнь и пугало всего человечества.

Гипотетически можно вообразить, что человечество разделилось на три «ордена» – те, которые, хоть единожды в жизни удивились проявлению мощных сил природы и задумались об их практическом использовании. Те, кто, пытался вечный двигатель построить, и, наконец, те, кто этому посвятил всю сознательную жизнь или немалую её часть. К счастью таких больных меньшинство. Но во все времена и народы рядом с создателями венного двигателя всегда были соглядатели и надзиратели, прямо или косвенно порицавшие и даже преследовавшие за это занятие. Отрицатели вечного двигателя активны и агрессивны. Они, есть и сейчас — и в чиновничьей среде, и в науке. И, что особенно опасно, они проникли в систему образования, И также порицают и препятствуют.

Причем это чудище, как выразился в свое время Василий Тредиаковский , «обло, озорно, огромно, стозевно и лайяй ». Беда еще в том, что классическая термодинамика объективна и основана на нерушимых законах природы. Её постулаты изложены в университетских учебниках исповедуются официальной наукой. Это непреложная истина, которую оспорить невозможно. Однако можно и нужно изменить ее понимание, трактовку и внести некоторые коррективы. Особенно в части вечного двигателя. Речь, конечно о тех, которые основаны на использовании энергии природы. Однако, этого ограничения придерживались далеко не все строители вечного двигателя. Вот уже восемь столетий это неизлечимая болезнь и пугало всего человечества.

Гипотетически всех обитателей планеты можно разделилось на три «ордена» Одни, хоть единожды в жизни удивились проявлению мощной дармовой природной энергии, происхождение которой не всегда очевидно. И подумали: «Бери — не хочу!». Независимо от результата, всегда, отрицательного, эта работа не была бесполезной. не будем забывать, что создатели вечного двигателя, по-существу были первыми энергетиками, на столетия опередившими официальную науку, если не в знании, то в поиске новых источников энергии.

Через эту школу изощренной мысли, виртуозного мастерства и самозабвенного труда прошли не только люди малообразованные и случайные. Попытки создания вечного двигателя не минули Леонардо да Винчи, Исаака Ньютона, Ивана Кулибина, Константина Циолковского и многих других великих и не столь заметных личностей. Их наследие бесценно и может служить наглядным примером сотворения конструкций принцип действия, которых применим и сейчас в самых разных областях техники. Причем, обратим внимание, многие «перпетомобилисты» вошли в историю техники, как создатели оригинальных и полезных машин и механизмов.

Надо ли говорить, что это не случайно, а в связи… Уместно сослаться на любопытное признание Леонардо да Винчи : «Как жаль, что умные люди тратят столько хороших сил на такие пустые попытки! Мне удалось создать свои машины только потому, что я понял безнадежность идеи вечного движения «. Как известно, в рукописях великого энциклопедиста немало непонятных недосказанных мыслей. Попробуем вникнуть в смысл последней фразы. Нет ли в ней особого подтекста? Не намекает ли да Винчи, что именно это увлечение способствовало успехам в его многообразном техническом творчестве? Дело в том, что построение вечного двигателя осуществимого или фантастического «невозможного» неизбежно связано со знанием техники, умением конструировать, способностью мысленно строить модели, и как бы «залезать в их нутро, чтобы виртуально «обкатывать» в действии.


Чертежи вечного двигателя Леонардо да Винчи

Это может быть присуще интеллектуальному человеку изначально или приобретается начинающему по ходу создания вечного двигателя. Я уверен, что тот, кто предпринимал попытки создать вечный двигатель, с большей вероятностью станет настоящим инженером, конструктором, изобретателем, чем тот, кто этим никогда не увлекался. Даже конструирование простых механизмов и, тем более, комбинирование их в более сложные — само по себе, невозможно без элементарных знаний механики и законов природы. Кроме того, это занятие развивает творческие способности, умение создавать в уме различные устройства и переносить их на бумагу или на другой носитель информации в понятном для других виде. Мораль «сей басни» такова: Давайте откроем дорогу вечному двигателю.Предоставим молодежи возможности для его создания, создателям. Будем в этом помогать и поощрять.

Может быть, даже включим в школьную программу «по физике» свободный соревновательный урок по этой тематике. Ну, хотя бы один раз в неделю или раз в месяц. Многосторонний положительный эффект от этого несомненно будет. «Это вы, батенька, хватили через край », скажет иной чиновник от образования. «Кому нужен вечный двигатель в нынешнее кризисное и хлопотное время ». А, вот и нужен, и полезен! В-первых, экономически, ибо он может послужить реальным техническим средством модернизации экономики и овладения энергией природы. И, что гораздо значимее – это действенный повод и стимул политехнического образования молодежи и воспитания инновационного мышления и действия.

А вы что думаете по этому поводу?

Автор

Василий

Художник, архитектор сознания, мыслитель постигающий новые горизонты информационного пространства