Сила сопротивления вращению формула. Как найти силу сопротивления

Коэффициент сопротивления дает возможность учитывать потери энергии при движении тела. Чаще всего рассматривают два типа движения: движение по поверхности и движение в веществе (жидкости или газе). Если рассматривают движение по опоре, то обычно говорят о коэффициенте трения. В том случае, если рассматривают движение тела в жидкости или газе, то имеют в виду коэффициент сопротивления формы.

Определение коэффициента сопротивления (трения) скольжения

ОПРЕДЕЛЕНИЕ

Коэффициентом сопротивления (трения) называют коэффициент пропорциональности, связывающий силу трения () и силу нормального давления (N) тела на опору. Обычно данный коэффициент обозначают греческой буквой . В таком случае коэффициент трения определим как:

Речь идет о коэффициенте трения скольжения, который зависит от совокупных свойств трущихся поверхностей и является безразмерной величиной. Коэффициент трения зависит от: качества обработки поверхностей, трущихся тел, присутствия на них грязи, скорости движения тел друг относительно друга и т.д. Коэффициент трения определяют эмпирически (опытным путем).

Определение коэффициент сопротивления (трения) качения

ОПРЕДЕЛЕНИЕ

Коэффициент сопротивления (трения) качения обозначают чаще буквой . Его можно определить с помощью отношения момента силы трения качения () к силе с которой тело прижимается к опоре (N):

Данный коэффициент, имеет размерность длины. Основной его единицей в системе СИ будет метр.

Определение коэффициента сопротивления формы

ОПРЕДЕЛЕНИЕ

Коэффициент сопротивления формы — физическая величина, которая определяет реакцию вещества на перемещение тела внутри нее. Можно сказать иначе: это физическая величина, которая определяет реакцию тела на движение в веществе. Данный коэффициент определяется эмпирически, его определением служит формула:

где — сила сопротивления, — плотность вещества, — скорость течения вещества (или скорость движения тела в веществе), площадь проекции тела на плоскость перпендикулярную к направлению движения (перпендикулярная потоку).

Иногда, если рассматривают движение вытянутого тела, то считают:

где V — объем тела.

Рассматриваемый коэффициент сопротивления является безразмерной величиной. Он не учитывает эффектов на поверхности тел, поэтому формула (3) может стать не пригодна, если рассматривается вещество, которое имеет большую вязкость. Коэффициент сопротивления (C) является постоянной величиной пока число Рейнольдса (Re) является неизменным. В общем случае .

Если тело имеет острые ребра, то эмпирически получено, что для таких тел коэффициент сопротивления остается постоянным в широкой области чисел Рейнольдса. Так опытным путем получено, что для круглых пластинок поставленных поперек воздушного потока, при значения коэффициента сопротивления находятся в пределах от 1,1 до 1,12. При уменьшении числа Рейнольдса () закон сопротивления переходит в закон Стокса, который для круглых пластинок имеет вид:

Сопротивление шаров было исследовано для широкой области чисел Рейнольдса до Для получили:

В справочниках представлены коэффициенты сопротивления для круглых цилиндров, шаров и круглых пластинок в зависимости от числа Рейнольдса.

В авиационной технике задача о нахождении формы тела с минимальным сопротивлением имеет особое значение.

Примеры решения задач

ПРИМЕР 1

Задание Максимальная скорость автомобиля на горизонтальном участке дороги равна при максимальной мощности его равной P. Коэффициент лобового сопротивления автомобиля C, а наибольшая площадь сечения в направлении, перпендикулярном скорости S. Автомобиль подвергся реконструкции, наибольшую площадь сечения в направлении, перпендикулярном скорости уменьшили до величины , оставив коэффициент сопротивления без изменения. Считайте силу трения о поверхность дороги неизменной, найдите какова максимальная мощность автомобиля, если его скорость на горизонтальном участке дороги стала равна . Плотность воздуха равна .
Решение Сделаем рисунок.

Мощность автомобиля определим как:

где — сила тяги автомобиля.

Считая, что автомобиль на горизонтальном участке дороги движется с постоянной скоростью, запишем второй закон Ньютона в виде:

В проекции на ось X (рис.1), имеем:

Силу сопротивления, которую испытывает автомобиль, двигаясь в воздухе, выразим как:

Тогда мощность автомобиля можно записать:

Выразим из (1.5) силу трения автомобиля о дорогу:

Запишем выражение для мощности, но с изменёнными по условию задачи параметрами автомобиля:

Учтем, что сила трения автомобиля о дорогу не изменилась, и примем во внимание выражение (1.6):

Ответ

ПРИМЕР 2

Задание Какова максимальная скорость шарика, который свободно падает в воздухе, если известны: плотность шарика (), плотность воздуха (), масса шарика (), коэффициент сопротивления C?
Решение Сделаем рисунок.

Запишем второй закон Ньютона для свободного падения шарика:

При движении любого предмета по поверхности или в воздухе возникают силы, препятствующие этому. Их называют силами сопротивления или трения. В этой статье мы расскажем, как найти силу сопротивления, и рассмотрим факторы, влияющие на нее.

Для определения силы сопротивления необходимо воспользоваться третьим законом Ньютона. Эта величина численно равна силе, которую нужно приложить, чтобы заставить равномерно двигаться предмет по ровной горизонтальной поверхности. Это можно сделать при помощи динамометра. Сила сопротивления вычисляется по формуле F=μ*m*g. Согласно этой формуле, искомая величина прямо пропорциональна массе тела. Стоит учесть, что для правильного подсчета необходимо выбрать μ – коэффициент, зависящий от материала, из которого изготовлена опора. Принимают во внимание и материал предмета. Этот коэффициент выбирается по таблице. Для расчета используется постоянная g, которая равна 9,8 м/с2. Как рассчитать сопротивление, если тело движется не прямолинейно, а по наклонной плоскости? Для этого в первоначальную формулу нужно ввести cos угла. Именно от угла наклона зависит трение и сопротивление поверхности тел к движению. Формула для определения трения по наклонной плоскости будет иметь такой вид: F=μ*m*g*cos(α). Если тело движется на высоте, то на него действует сила трения воздуха, которая зависит от скорости движения предмета. Искомую величину можно рассчитать по формуле F=v*α. Где v – скорость движения предмета, а α – коэффициент сопротивления среды. Эта формула подходит исключительно для тел, которые передвигаются с небольшой скоростью. Для определения силы сопротивления реактивных самолетов и других высокоскоростных агрегатов применяют другую – F=v2*β. Для расчета силы трения высокоскоростных тел используют квадрат скорости и коэффициент β, который рассчитывается для каждого предмета отдельно. При движении предмета в газе или жидкости при расчете силы трения необходимо учитывать плотность среды, а также массу и объем тела. Сопротивление движению существенно снижает скорость поездов и автомобилей. Причем на движущие предметы действует два вида сил – постоянные и временные. Общая сила трения представлена суммой двух величин. Для снижения сопротивления и повышения скорости машины конструкторы и инженеры изобретают разнообразные материалы со скользящей поверхностью, от которой воздух отталкивается. Именно поэтому передняя часть скоростных поездов имеет обтекаемую форму. Рыбы очень быстро движутся в воде благодаря обтекаемому телу, покрытому слизью, которая снижает трение. Не всегда сила сопротивления отрицательно сказывается на движении машин. Чтобы вытащить автомобиль из грязи, необходимо под колеса насыпать песок или щебень. Благодаря увеличению трения авто отлично справляется с болотистой почвой и грязью.

Сопротивление движения в воздухе используется во время прыжков с парашютом. В результате возникающего трения между куполом и воздухом скорость движения парашютиста снижается, что позволяет без ущерба для жизни заниматься парашютным спортом.

При совершенно любом движении будет фиксироваться появление между поверхностями тел или в среде, где оно осуществляется, сил сопротивления. Второе свойственное им название – силы трения.

Замечание 1

Силы сопротивления могут быть зависимыми от разновидностей трущихся поверхностей, реакций опоры тела, а также его скорости, при условии движения тела в вязкой среде (к примеру, в воздухе или воде).

Расчет сил сопротивления

С целью определения сил сопротивления потребуется применение третьего закона Ньютона. Такая величина, как сила сопротивления, будет численно равной силе, которую потребуется приложить с целью равномерного движения предмета по горизонтальной ровной поверхности. Это становится возможным с помощью динамометра.

Таким образом, искомая величина оказывается прямо пропорциональной массе тела. Стоит при этом учитывать во внимание, что для более точного подсчета потребуется выбрать $u$ коэффициент, зависимый от материала изготовления опоры. Также принимается во внимание материал изготовления самого предмета исследования. При расчете применяется постоянная $g$, чье значение 9,8 $м/с^2$.

В условиях движения тела на высоте, на него влияет сила трения воздуха, зависимая от скорости перемещения предмета. Искомую величину определяют на основании такой формулы (подходящей исключительно для тел с передвижением с небольшой скоростью):

$F = va$, где:

  • $v$ – скорость движения предмета,
  • $a$ – коэффициент сопротивления среды.

Разновидности сил сопротивления

Существуют такие разновидности сил сопротивления:

  1. Сила сопротивления качению $P_f$, зависимая от таких факторов, как: разновидности и состояния опорной поверхности, скорости движения, давления воздуха и пр. Коэффициент сопротивления качению $f$ зависеть при этом состояния и типа опорной поверхности. С повышением температуры и давления, указанный коэффициент уменьшается.
  2. Сила сопротивления воздуха (лобовое сопротивление) $Р_в$ возникает за счет разницы давлений. Данный показатель окажется тем выше, чем большим будет вихреобразование как в передней, так и в задней части объекта движения. Величина вихреобразования будет зависеть от формы движущихся тел.

Наиболее значимым будет воздействие на сопротивление движению передней части. Так, при создании закругления в передней и задней части плоскостенной фигуры, сопротивление возможно уменьшить на 72 %. Сила лобового сопротивления $Р_{вл}$ определяется по такой формуле:

$P_{вл} = {c_xpF_в}\frac{v^2}{2}$, где:

  • $с_х$– коэффициент лобового сопротивления (обтекаемости);
  • $p$- плотность воздуха;
  • $F_в$ –площадь лобового сопротивления (миделевого сечения) определяется по формуле

Сила сопротивления воздуха ориентирована в направлении, противоположном вектору скорости объекта движения (например, автомобиля). Обычно она рассматривается как сконцентрированная сила, приложенная в отношении точки (центра парусности объекта), не совпадающей при этом с центром массы исследуемого объекта.

Сила сопротивления разгону поступательно движущейся массы объекта, согласно второму закону Ньютона, определяется таким образом:

$Рj = m\frac{dV}{dt}$, где:

  • $m$– масса автомобиля;
  • $\frac{dv}{dt}$ - ускорение центра масс.

Силы сопротивления при больших скоростях

В случае, когда мы имеем дело с малыми скоростями, сопротивление будет зависеть от:

  • вязкости жидкости;
  • скорости движения;
  • линейных размеров тела.

Рассмотрим действие законов трения при больших скоростях. Так, к воздуху и в особенности, к воде законы вязкого трения будут мало применимыми. Даже при наличии таких скоростей, как 1 см/с, они будут пригодными исключительно в отношении тел крошечных размеров (в миллиметрах).

Замечание 2

Сопротивление, которое испытывает ныряющий в воду пловец, ни в коей мере не будет подчиняться действию закона вязкого трения.

При медленном движении жидкость станет плавно обтекать предмет движения. При этом сила сопротивления, которую он будет преодолевать, и окажется силой вязкого трения.

В условиях большой скорости, позади движущегося объекта возникнет уже более сложное движение жидкости. В жидкости начнут то появляться, то исчезать разные струйки, формируя при этом необычные по форме фигуры, вихри, кольца. Таким образом, картина струек будет подвержена постоянным изменениям. Возникновение подобного движения получило название турбулентного.

Турбулентное сопротивление будет зависимым от скорости и размеров предмета не так, как при вязком. Так, оно окажется пропорциональным квадратам скорости и линейных размеров. Вязкость жидкости при подобном движении перестает иметь решающее значение, а определяющим свойством выступает ее плотность. Таким образом, для силы $F$ турбулентного сопротивления справедлива формула:

$F=pv^2L^2$, где:

Со времен опытов Галилея на Пизанской башне известно, что все тела падают в поле силы тяжести с одинаковым ускорением g .

Однако каждодневная практика указывает на другое: легкое перышко падает медленнее тяжелого металлического шарика. Понятна и причина этого - сопротивление воздуха.

Уравнения движения. Если ограничиться случаем поступательного движения невращающихся тел в неподвижной среде с сопротивлением, то сила сопротивления будет направлена против скорости. В векторном виде ее можно записать как

где - абсолютная величина этой силы, a - модуль скорости тела. Учет сопротивления среды меняет вид уравнений движения тела, брошенного под углом к горизонту:

В приведенных уравнениях учтена также выталкивающая сила Архимеда, действующая на тело: ускорение свободного падения g заменено на меньшую величину

где - плотность среды (для воздуха = 1.29 кг/м 3), а - средняя плотность тела.

Действительно, вес тела в среде уменьшается на величину выталкивающей силы Архимеда

Выражая объём тела через его среднюю плотность

приходим к выражению

При наличии сопротивления воздуха скорость падающего тела не может расти безгранично. В пределе она стремится к некоторому установившемуся значению, которое зависит от характеристик тела. Если тело достигло установившейся скорости падения , то из уравнений движения следует, что сила сопротивления равна весу тела (с учётом архимедовой силы):

Сила сопротивления как мы вскоре убедимся, есть функция скорости падения. Стало быть, полученное выражение для силы сопротивления представляет собой уравнение для определения установившейся скорости падения . Ясно, что при наличии среды энергия тела частично расходуется на преодоление её сопротивления.

Число Рейнольдса . Разумеется, уравнения движения тела в жидкости невозможно даже начать решать, пока нам ничего неизвестно о модуле силы сопротивления. Величина этой силы существенно зависит от характера обтекания тела встречным потоком газа (или жидкости). При малых скоростях этот поток является ламинарным (то есть слоистым). Его можно представить себе как относительное движение не смешивающихся между собой слоев среды.

Ламинарное течение жидкости демонстрируется на опыте, показанном на рис. 13.

Как уже отмечалось в главе 9.3, при относительном движении слоёв жидкости или газа между этими слоями возникают силы сопротивления движению, которые называются силами внутреннего трения . Эти силы обусловлены особым свойством текучих тел - вязкостью , которая характеризуется численно коэффициентом вязкости . Приведем характерные значения для различных веществ: для воздуха ( = 1,8·10 -5 Па·с), воды ( = 10 –3 Па·с), глицерина ( = 0,85 Па·с). Эквивалентное обозначение единиц, в которых измеряется коэффициент вязкости: Па·с=кг·м –1 ·с –1 .

Между движущимся телом и средой всегда существуют силы сцепления, так что непосредственно вблизи поверхности тела слой газа (жидкости) полностью задерживается, как бы «прилипая» к нему. Он трется о следующий слой, который слегка отстает от тела. Тот, в свою очередь, испытывает силу трения со стороны еще более удаленного слоя и т.д. Совсем далекие от тела слои можно считать покоящимися. Теоретический расчет внутреннего трения для движения шарика диаметром D приводит к формуле Стокса :

Подставляя формулу Стокса в выражение для силы сопротивления при установившемся движении, находим выражение для установившейся скорости падения шарика в среде:

Видно, что чем легче тело, тем меньше скорость его падения в атмосфере. Полученное уравнение объясняет нам, почему пушинка падает медленнее,чем стальной шарик.

При решении реальных задач, например, вычислении установившейся скорости падения парашютиста при затяжном прыжке, не следует забывать, что сила трения пропорциональна скорости тела лишь для относительно медленного ламинарного встречного потока воздуха. При увеличении скорости тела вокруг него возникают воздушные вихри, слои перемешиваются, движение в какой-то момент становится турбулентным , и сила сопротивления резко возрастает. Внутреннее трение (вязкость) перестает играть сколько бы то ни было заметную роль.

Рис. 9.15 Фотография струи жидкости при переходе от ламинарного течения к турбулентному (число Рейнольдса Re=250)

Возникновение силы сопротивления можно тогда представить себе следующим образом. Пусть тело прошло в среде путь . При силе сопротивления на это затрачивается работа

Если площадь поперечного сечения тела равна , то тело «натолкнется» на частицы, занимающие объем . Полная масса частиц в этом объеме равна · Представим, что эти частицы полностью увлекаются телом, приобретая скорость . Тогда их кинетическая энергия становится равной

Эта энергия не появилась ниоткуда: она создана за счет работы внешних сил по преодолению силы сопротивления. Стало быть, A=К , откуда

Мы видим, что теперь сила сопротивления сильнее зависит от скорости движения, становясь пропорциональной ее второй степени (ср. с формулой Стокса). В отличие от сил внутреннего трения ее часто называют силой динамического лобового сопротивления .

Однако предположение о полном увлечении частиц среды движущимся телом оказывается слишком сильным. В реальности любое тело так или иначе обтекается потоком, что уменьшает силу сопротивления. Принято использовать так называемый коэффициент сопротивления C , записывая силу лобового сопротивления в виде:

При турбулентном потоке в некотором интервале скоростей C не зависит от скорости движения тела, но зависит от его формы: скажем, для диска он равен единице, а для шара примерно 0,5.

Подставляя формулу для силы лобового сопротивления в выражение для силы сопротивления при установившемся движении, приходим к иному, нежели ранее полученная формула, выражению для установившейся скорости падения шара (при C = 0,5):

Применяя найденную формулу к движению парашютиста весом 100 кг с поперечным размером парашюта 10 м, находим

что соответствует скорости приземления при прыжке без парашюта с высоты 2 м. Видно, что для описания движения парашютиста больше подходит формула, соответствующая турбулентному потоку воздуха.

Выражение для силы сопротивления с коэффициентом сопротивления удобно использовать во всем интервале скоростей. Поскольку при малых скоростях режим сопротивления меняется, то коэффициент сопротивления в области ламинарного течения и в переходной области к турбулентному течению будет зависеть от скорости тела. Однако прямая зависимость C от невозможна, поскольку коэффициент сопротивления безразмерен. Значит, он может быть лишь функцией какой-то безразмерной комбинации с участием скорости. Такая комбинация, играющая важную роль в гидро- и аэродинамике, называется числом Рейнольдса (см. тему 1.3).

Число Рейнольдса - это параметр, описывающий смену режима при переходе от ламинарного течения к турбулентному. Таким параметром может служить отношение силы лобового сопротивления к силе внутреннего трения. Подставляя в формулу для силы сопротивления выражение для площади поперечного сечения шара , убеждаемся, что величина силы лобового сопротивления с точностью до несущественных сейчас числовых факторов определяется выражением

а величина силы внутреннего трения - выражением

Отношение этих двух выражений и есть число Рейнольдса:

Если речь идет не о движении шара, то под D понимается характерный размер системы (скажем, диаметр трубы в задаче о течении жидкости). По самому смыслу числа Рейнольдса ясно, что при его малых значениях доминируют силы внутреннего трения: вязкость велика и мы имеем дело с ламинарным потоком. При больших значениях числа Рейнольдса, наоборот, доминируют силы динамического лобового сопротивления и поток становится турбулентным.

Число Рейнольдса имеет огромное значение при моделировании реальных процессов в меньших (лабораторных) масштабах. Если для двух течений разных размеров числа Рейнольдса одинаковы, то такие течения подобны, и возникающие в них явления могут быть получены одно из другого простым изменением масштаба измерения координат и скоростей. Поэтому, например, на модели самолета или автомобиля в аэродинамической трубе можно предугадать и изучить процессы, которые возникнут в процессе реальной эксплуатации.

Коэффициент сопротивления . Итак, коэффициент сопротивления в формуле для силы сопротивления зависит от числа Рейнольдса:

Эта зависимость имеет сложный характер, показанный (для шара) на рис. 9.16. Теоретически получить эту кривую трудно, и обычно используют зависимости, экспериментально измеренные для данного тела. Однако возможна качественная ее интерпретация.

Рис. 9.16. Зависимость коэффициента сопротивления от числа Рейнолъдса (римскими цифрами показаны области значений Re; которым соответствуют различные режимы течения воздушного потока)

Область I . Здесь число Рейнольдса очень мало ( < 1) и течение потока ламинарно. Экспериментальная кривая описывается в этой области функцией

При подстановке этого значения в найденную ранее формулу для силы сопротивления и использовании и выражения для числа Рейнольдса мы приходим к формуле Стокса. В этой области, как уже говорилось, сопротивление возникает вследствие вязкости среды.

Область II . Здесь число Рейнольдса лежит в интервале 1 < < 2·10 4 . Данная область соответствует переходу от ламинарного к турбулентному течению. Экспериментальные данные свидетельствуют, что при увеличении числа Рейнольдса достигается некоторое его критическое значение, после которого стационарное ламинарное течение становится неустойчивым. Разумеется, это критическое значение не универсально и различается для разных типов течений. Но его характерная величина порядка нескольких десятков.

При лишь слегка больших критического значения появляется нестационарное периодическое движение потока, характеризуемое некоторой частотой. При дальнейшем увеличении периодическое движение усложняется, и в нем появляются новые и новые частоты. Этим частотам соответствуют периодические движения (вихри), пространственные масштабы которых становятся все более мелкими. Движение приобретает более сложный и запутанный характер - развивается турбулентность. В данной области коэффициент сопротивления продолжает падать с ростом , но медленнее. Минимум достигается при = (4–5)·10 3 , вслед за чем С несколько повышается.

Область III . Эта область соответствует развитому турбулентному течению потока вокруг шара, а с этим режимом мы уже встречались выше. Характерные здесь значения числа Рейнольдса лежат в интервале 2·10 4 < < 2·10 5 .

При движении тело оставляет за собой турбулентный след, за пределами которого течение ламинарно. Вихревой турбулентный след легко наблюдать, например, за кормой корабля. Часть поверхности тела непосредственно примыкает к области турбулентного следа, а его передняя часть - к области ламинарного течения. Граница между ними на поверхности тела называется линией отрыва. Физической причиной возникновения силы сопротивления является разность давлений на передней и задней поверхностях тела. Оказывается, что положение линии отрыва определяется свойствами пограничного слоя и не зависит от числа Рейнольдса. Поэтому коэффициент сопротивления примерно постоянен в этом режиме.

Область IV . Однако такой режим обтекания тела не может поддерживаться до сколь угодно больших значений . В какой-то момент передний ламинарный пограничный слой турбулизируется, что отодвигает назад линию отрыва. Турбулентный след за телом сужается, что приводит к резкому (в 4–5 раз) падению сопротивления среды. Это явление, названное кризисом сопротивления , происходит в узком интервале значений = (2–2,5)·10 5 . Строго говоря, приведенные теоретические соображения могут измениться при учете сжимаемости среды (воздуха, в нашем случае). Однако это проявится, как мы уже обсуждали, при скоростях объектов, сравнимых со скоростью звука.

Дополнительная информация

http://ilib.mirror1.mccme.ru/djvu/bib-kvant/kvant_70.djvu - Стасенко А.Л. Физика полета, Библиотечка Квант, выпуск 70 стр. 17–28 - аэродинамические силы, действующие на крыло.

http://d.theupload.info/down/8osiz73swyx22j1icv3641f3xxe8rtdp/butikov_e_i__kondratev_a_s__fizika_dlja_uglublennogo_izuchen.djvu - Е.И. Бутиков, А.С.Кондратьев, Учебное пособие; Кн. 1, Механика, Физматлит, 2001 г. - глава V - движение жидкостей и газов.

Список дополнительных ссылок

http://kvant.mirror1.mccme.ru/pdf/1998/02/kv0298fizfak.pdf - журнал «Квант» - математический маятник на наклонных поверхностях (П. Хаджи, А. Михайленко).

http://kvant.mirror1.mccme.ru/1971/06/strannyj_mayatnik.htm - журнал «Квант» - математический маятник с подвижной точкой подвеса (Н. Минц);

http://edu.ioffe.ru/register/?doc=physica/lect4.ch1.tex - В лекции рассматриваются гармонические колебания, фазовый портрет маятника, адиабатические инварианты.

http://www.plib.ru/library/book/9969.html - Е.И. Бутиков, А.С. Кондратьев, Учебное пособие; Кн. 1, Механика, Физматлит, 2001 г. - стр. 279–295 (§§ 42,43) - описаны затухающие колебания при сухом трении и собственные колебания в разных физических системах.

http://mechanics.h1.ru/ - Механика в школе, определения основных физических величин, решение задач.

http://edu.ioffe.ru/register/?doc=mgivanov - Курс лекций по механике для физико-технической школы (М.Г. Иванов).

http://ilib.mirror1.mccme.ru/djvu/bib-kvant/kvant63.djvu - Асламазов Л.Г., Варламов А.А. Удивительная физика, Библиотечка Квант, выпуск 63, глава 2 - простая физика сложных явлений.

http://schools.keldysh.ru/sch1275/kross/ - Физические кроссворды.

http://www.newsland.ru/News/Detail/id/211926/22 - Обсуждается возможность создания звуковой и оптической «шапки-невидимки».

http://ilib.mirror1.mccme.ru/djvu/bib-kvant/kvant_40.djvu - Хилькевич С.С., Физика вокруг нас, библиотечка Квант, выпуск 40, глава 1, § 5 - как действует на смесь вибрация и что происходит при встряхивании ведра с картошкой.


Для расчета используется постоянная g, которая равна 9,8 м/с2. 3 Как рассчитать сопротивление, если тело движется не прямолинейно, а по наклонной плоскости? Для этого в первоначальную формулу нужно ввести cos угла. Именно от угла наклона зависит трение и сопротивление поверхности тел к движению. Формула для определения трения по наклонной плоскости будет иметь такой вид: F=μ*m*g*cos(α). 4 Если тело движется на высоте, то на него действует сила трения воздуха, которая зависит от скорости движения предмета. Искомую величину можно рассчитать по формуле F=v*α. Где v – скорость движения предмета, а α – коэффициент сопротивления среды. Эта формула подходит исключительно для тел, которые передвигаются с небольшой скоростью. Для определения силы сопротивления реактивных самолетов и других высокоскоростных агрегатов применяют другую - F=v2*β.

Закон стокса

Математическое изучение движения тел в вязкой жидкости сопряжено со столь большими трудностями, что до сих пор такому изучению оказались доступными только предельные случаи, а именно, случай очень большой вязкости, т.е. очень малого числа Рейнольдса, и случай очень малой вязкости, т.е. очень большого числа Рейнольдса. Если в потоке преобладают силы вязкости, что имеет место, с одной стороны, в очень вязких жидкостях (например, в моторном масле), а с другой стороны, также в обычных жидкостях при весьма малых размерах, определяющих движение, то можно пренебречь силами инерции по сравнению с силами вязкости и считать, что перепад давления и силы трения, приложенные к любой части жидкости, уравновешивают друг друга.

Краткая формула сопротивления воды

Число Рейнольдса имеет огромное значение при моделировании реальных процессов в меньших (лабораторных) масштабах. Если для двух течений разных размеров числа Рейнольдса одинаковы, то такие течения подобны, и возникающие в них явления могут быть получены одно из другого простым изменением масштаба измерения координат и скоростей. Поэтому, например, на модели самолета или автомобиля в аэродинамической трубе можно предугадать и изучить процессы, которые возникнут в процессе реальной эксплуатации.

Важно

Коэффициент сопротивления. Итак, коэффициент сопротивления в формуле для силы сопротивления зависит от числа Рейнольдса: Эта зависимость имеет сложный характер, показанный (для шара) на рис. 9.16. Теоретически получить эту кривую трудно, и обычно используют зависимости, экспериментально измеренные для данного тела. Однако возможна качественная ее интерпретация. Рис. 9.16.

В частности, вискозиметры Гепплера c падающим шариком, производимые фирмой Gebruder HAAKE GmbH, предназначены для точных измерений вязкости прозрачных ньютоновских жидкостей и газов в следующих отраслях: химия (растворители, смолы и пр.); фармацевтическая пром-ть (глицерин, и т.п.); пищевая пром-ть (желатин, сироп, пивное сусло и пр.); нефтехимия (масла, жидкие углеводороды). Образец исследуемой жидкости набирается в измерительный шприц с шариком. После временной выдержки с целью выравнивания температуры (5 мин) магнит поднимает шарик в верхнюю стартовую позицию.
Затем шарик освобождается и скатывается по стенке шприца, наклоненного для исключения поперечного биения на 15°. Время падения, в соответствии с формулой Стокса, пропорционально вязкости жидкости. Время прохождения шариком определенной дистанции измеряется автоматически и пересчитывается в единицы вязкости.

Как найти силу сопротивления

Как видно из формулы, величина полного гидродинамического сопротивления прямо пропорциональна величине миделевого сечения. При плавании человека величина миделевого сечения постоянно изменяется. Наименьшая проекция будет в том случае, если тело занимает в воде горизонтальное положение.

Внимание

Величину миделевого сечения необходимо учитывать не только при выборе рационального положения тела, но и при выполнении рабочих и подготовительных движений. Пловец продвигается вперед, опираясь конечностями о воду и отталкиваясь от нее. Отталкивания будут тем более эффективными, чем больше они будут вызывать сопротивление своему движению, которое зависит от величины миделевого сечения.


Практически это достигается тем, что ладони во время гребка располагаются по возможности перпендикулярно направлению движения.

§ 8.5 движение тел в вязкой среде. закон стокса.

Разумеется, уравнения движения тела в жидкости невозможно даже начать решать, пока нам ничего неизвестно о модулесилы сопротивления. Величина этой силы существенно зависит от характера обтекания тела встречным потоком газа (или жидкости). При малых скоростях этот поток является ламинарным (то есть слоистым).

Инфо

Его можно представить себе как относительное движение не смешивающихся между собой слоев среды. Ламинарное течение жидкости демонстрируется на опыте, показанном на рис. 13. Как уже отмечалось в главе 9.3, при относительном движении слоёв жидкости или газа между этими слоями возникают силы сопротивления движению, которые называются силами внутреннего трения.


Эти силы обусловлены особым свойством текучих тел - вязкостью, которая характеризуется численно коэффициентом вязкости.

9.4. движение тел в среде с сопротивлением

В современной гидромеханике аналитическое выражение для определения силы полного сопротивления движению тела в воздушной или водной среде, отвечающее принципам гидродинамического подобия, имеет вид (8.54) где R – полная сила сопротивления воды движению тела; ζ – безразмерный коэффициент сопротивления; ρ – плотность среды; Ω – характерная площадь тела; υ – относительная скорость движения тела. Требуется установить зависимость для определения силы сопротивления движению тела, используя метод показателей. 1. Записываем функциональную зависимость для определения силы сопротивления R = f (ρ, l, υ, μ, g) (8.55) где l – длина тела; μ – динамическая вязкость; g – ускорение свободного падения. Размерность входящих в зависимость (8.55) параметров является сочетанием трех основных единиц измерения [ М ],[ L ] и[Т]. 2.

Сила сопротивления жидкости формула

Таким параметром может служить отношение силы лобового сопротивления к силе внутреннего трения. Подставляя в формулу для силы сопротивления выражение для площади поперечного сечения шара, убеждаемся, что величина силы лобового сопротивления с точностью до несущественных сейчас числовых факторов определяется выражением а величина силы внутреннего трения - выражением Отношение этих двух выражений и есть число Рейнольдса: Если речь идет не о движении шара, то под D понимается характерный размер системы (скажем, диаметр трубы в задаче о течении жидкости). По самому смыслу числа Рейнольдса ясно, что при его малых значениях доминируют силы внутреннего трения: вязкость велика и мы имеем дело с ламинарным потоком. При больших значениях числа Рейнольдса, наоборот, доминируют силы динамического лобового сопротивления и поток становится турбулентным.

Сила сопротивления воды формула

Теоретический расчет внутреннего трения для движения шарика диаметром D приводит к формуле Стокса: Подставляя формулу Стокса в выражение для силы сопротивления при установившемся движении, находим выражение для установившейся скорости падения шарика в среде: Видно, что чем легче тело, тем меньше скорость его падения в атмосфере. Полученное уравнение объясняет нам, почему пушинка падает медленнее,чем стальной шарик. При решении реальных задач, например, вычислении установившейся скорости падения парашютиста при затяжном прыжке, не следует забывать, что сила трения пропорциональна скорости тела лишь для относительно медленного ламинарного встречного потока воздуха.

При увеличении скорости тела вокруг него возникают воздушные вихри, слои перемешиваются, движение в какой-то момент становится турбулентным, и сила сопротивления резко возрастает.
Для расчета силы трения высокоскоростных тел используют квадрат скорости и коэффициент β, который рассчитывается для каждого предмета отдельно. При движении предмета в газе или жидкости при расчете силы трения необходимо учитывать плотность среды, а также массу и объем тела. 5 Сопротивление движению существенно снижает скорость поездов и автомобилей. Причем на движущие предметы действует два вида сил – постоянные и временные.
Общая сила трения представлена суммой двух величин. Для снижения сопротивления и повышения скорости машины конструкторы и инженеры изобретают разнообразные материалы со скользящей поверхностью, от которой воздух отталкивается. Именно поэтому передняя часть скоростных поездов имеет обтекаемую форму. Рыбы очень быстро движутся в воде благодаря обтекаемому телу, покрытому слизью, которая снижает трение.
Однако предположение о полном увлечении частиц среды движущимся телом оказывается слишком сильным. В реальности любое тело так или иначе обтекается потоком, что уменьшает силу сопротивления. Принято использовать так называемый коэффициент сопротивления C, записывая силу лобового сопротивления в виде: При турбулентном потоке в некотором интервале скоростей C не зависит от скорости движения тела, но зависит от его формы: скажем, для диска он равен единице, а для шара примерно 0,5. Подставляя формулу для силы лобового сопротивления в выражение для силы сопротивления при установившемся движении, приходим к иному, нежели ранее полученная формула, выражению для установившейся скорости падения шара (при C = 0,5): Применяя найденную формулу к движению парашютиста весом 100 кг с поперечным размером парашюта 10 м, находим что соответствует скорости приземления при прыжке без парашюта с высоты 2 м.

Сила сопротивления единицы измерения

Распределение скоростей вблизи стенки На рис. 92 показано распределение скоростей в пограничном слое. Если толщина пограничного слоя представляет собой величину порядкаа размер тела в направлении течения - величину порядка I, то сила трения на единицу объема, равная, согласно сказанному в конце § 1, (направление у нормально к поверхности тела), будет иметь порядока сила инерции на единицу объема, как и раньше, - порядок Так как в пограничном слое обе эти силы представляют собой величины одного и того же порядка, то величины ипропорциональны друг другу, т. е. (знак ~ означает «пропорционально»), откуда получается формула: дающая оценку для толщины пограничного слоя. Рис. 93. Течение вдоль пластинки Этот же результат можно получить, применяя теорему о количестве движения к потоку вдоль плоской пластинки.