Устройство роторного двигателя внутреннего сгорания. Краткая биография изобретателя

Единственная на данный момент выпускаемая в промышленном масштабе модель мотора роторного типа — это двигатель Ванкеля. Его относят роторным разновидностям движков, имеющим планетарное круговое движение основного рабочего элемента. Благодаря такой конструктивной компоновке, решение может похвастаться предельно простым техническим устройством, но не характеризуется оптимальностью в способах организации рабочего процесса и потому обладает своими неотъемлемыми и серьезными недостатками.

Двигатель Ванкеля роторный представлен во множестве вариаций, но, по сути, они различны между собой разве что численностью роторных граней и соответствующей формой внутренних поверхностей корпуса.

В общих чертах рассмотрим конструктивные особенности данного решения и углубимся немного в историю его создания и область использования.

История решений такого типа стартует в 1943 году. Именно тогда изобретателем Майларом была предложена первая аналогичная схема. После спустя некоторое время было подано еще ряд патентов на движки такой схемы. Также и разработчиком немецкой фирмы NSU. Но основным минусом, от которого страдал роторно поршневой двигатель Ванкеля, была система из уплотнений, расположенная между ребер на стыках соседствующих граней элемента треугольного типа и поверхностями неподвижных корпусных частей. Для решения столь трудной задачи подключился Феликс Ванкель, специализирующийся на уплотнениях. После, за счет своей устремленности и инженерному складу ума он возглавил разрабатывающую группу. И уже к 57-у году в недрах немецкой лаборатории был собран первый вариант, оснащенный основным вращающимся элементом треугольного типа и рабочей капсульной камерой, где вращательный элемент был намертво закреплен, в то время как вращение осуществлялось корпусом.

Куда более практичная вариация характеризовалась неподвижной рабочей камерой, в которой осуществлялось вращение треугольника. Такой вариант дебютировал годом позднее. К ноябрю 59-го года прошлого столетия фирмой были объявлены работы по созданию функционального решения роторного типа. За кратчайшие сроки множеством компаний по всему миру была приобретена лицензия на эту разработку, и из сотни фирм, около трети были из Японии.

Решение оказалось довольно компактным, мощным, с малым числом деталей. Европейские салоны пополнились машинами с роторными вариациями движков, но, увы, они обладали малым вращающим ресурсом, стремительным потреблением топлива и токсичным выхлопом.

Из-за нефтяного кризиса семидесятых попытки улучшить разработку до нужного уровня были свернуты. Лишь японской Маздой все также продолжались работы в этой области. Также трудился и ВАЗ, поскольку топливо в стране был очень дешевым, а мощные, хотя и с низким ресурсом, моторы были нужны силовым министерствам.

Но спустя тридцать лет ВАЗ закрыл производство и только Мазда до сих пор серийно запускает транспорт с моторами роторного типа. На данный момент выпускается лишь одна модель с таким решением – это Мазда RX-8.

После небольшого экскурса в историю стоит подробно остановиться на достоинствах и недостатках.

Высокая мощность, почти вдвое превышающая показатели поршневых вариаций с четырьмя тактами. Массы неравномерно движущихся элементов в нем сравнительно ниже, чем в случае поршневых вариаций, и амплитуда движения значительно ниже. Это возможно из-за того, что в поршневых решениях происходят возвратно-поступательные движения, в то время как в рассматриваемом типе применяются планетарной схемы.

На большую мощность влияет и то, что она выдается в течение троих четвертей при каждом обороте вала. Для сравнения, одноцилиндровый поршневой мотор даёт мощность лишь на протяжении четверти каждого из оборотов. Потому за единицу объема камеры сжигания берется куда больше мощности.

При объёмах камеры в тысячу триста сантиметров, у RX-8 в плане мощности, достигается показатель двести пятьдесят лошадиных сил. У предшественника, а именно у RX-7, с аналогичным объемом, но с турбиной было триста пятьдесят лошадиных сил. Потому особыми чертами автомобиля становится отличная динамика: при низких передачах можно без лишних нагрузок на мотор разогнать транспортное средство до сотни на больших оборотах движка.

Рассматриваемый тип движка куда проще уравновешивается механически и избавляется от вибрации, что способствует повышению комфортности лёгкого транспортного средства;

По части размеров рассматриваемый тип движка в полтора-два раза меньше по сравнению с равными по мощности поршневыми моторами. Число деталей меньше примерно на сорок процентов.

Недостатки двигателя

Небольшая длительность рабочего хода роторных граней. Хоть данный показатель нельзя в чистую сравнивать с другими вариантами из-за разных типов хода поршней и вращающегося элемента, у рассматриваемой разновидности данный показатель примерно на 20% меньше. Тут имеется один существенный нюанс — у поршневых решений происходит линейное увеличение объемов, которое аналогично направлению расстояния от ВМТ до НМТ. Но вот в случае рассматриваемого типа агрегатов данное действие происходит сложнее и лишь отрезок траектории передвижения оказывается непосредственно линией хода.

Потому решение характеризуется меньшей топливной эффективностью, нежели у поршневых вариаций. Потому малая длительность способствует очень высокой температуре выходящих газов – рабочим газам не удается во время передать большую часть давления треугольнику, поскольку выполняется открытие окна выхлопа и горячие массы с еще не прекратившимся горением объемных фрагментов выходят по выхлопной трубе. Потому их температура крайне высокая.

Сложность формы камеры горения. У данной камеры серповидная форма и солидная область, где газов контактируют со стенами и ротором. Потому крупная тепловая доля приходится на нагрев элементов движка, а это уменьшает коэффициент полезного действия тепла, но при этом возрастает нагрев движка. Также такие формы камеры приводят к ухудшенному смесеобразованию и замедленному горению рабочих смесей. Потому на движке RX-8 ставят две зажигательные свечи на одну роторную секцию. Такие свойства негативно влияют и на термодинамический коэффициент полезного действия.

Малый вращательный момент. Дабы снималось вращение с работающего ротора, вращательный центр которого непрерывным образом выполняет вращение планетарного типа, в данном моторе применяют на основном валу диски с цилиндровым расположением. Проще говоря — это все является элементами преобразователя. То есть, решение рассматриваемого типа так и не смогло в полной мере избавиться от основного минуса поршневых вариаций, а именно КШМ.

Хоть он и являет собой облегченный вариант, но основные минусы этого механизма: пульсация вращающего момента, малые размеры плеча основного элемента также присутствуют и в рассматриваемом типе.

Именно потому вариация с одной секцией не эффективен, и их нужно увеличивать до двух или трех секций, с целью получения приемлемых характеристик работы, еще рекомендуется устанавливать на вале и маховое колесо.

Кроме присутствия в движке рассматриваемого типа механизма преобразователя, на недостаточный для такого мотора вращающий момент может повлиять и тот нюанс, что кинематические схемы в таких решениях устроены слишком мало рационально в плане восприятия поверхностью вращающегося элемента давления рабочих расширительных масс. Потому только определенная часть давления, а это порядка одной трети – пере компилируется в рабочее вращение элемента, тем самым создавая вращающий момент.

Наличие вибраций внутри корпуса. Проблема в том, что рассматриваемый в статье тип систем подразумевает неравномерное по массе движение. То есть во время вращения массовый центр агрегата выполняет непрерывное передвижение вращательного типа вокруг массового центра, а радиус этого движения соответствует цилиндровому плечу основного моторного вала. Потому на движковый корпус внутри влияет вращающийся постоянным образом силовой вектор, соответствующий силе центробежного типа, появляющейся на находящемся во вращении элементе. То есть он в процессе вращения на также находящемся в движении цилиндрическому валу характеризуется неизбежными и выраженными элементами движения колебательного типа.

Что и является причиной неизбежных вибраций.

Низкая устойчивость к износу в торце уплотнений радиального типа по углам вращающегося треугольника. Поскольку к ним поступает существенная нагрузка радиального типа, свойственная из-за того, что таков двигатель Ванкеля принцип работы.

Высокая вероятность прорыва газовых масс с высоким давлением из зоны одного такта работы в другой такт. Причина кроется в том, что роторный ребровой контакт уплотнителя и стенок камеры сжигания выполняется по единой линии небольшой толщины. Также имеется вероятность прорыва по гнездам, в которые устанавливают свечи, в момент прохода ребра основного вращающегося элемента.

Сложность смазочной системы вращающегося элемента. Как пример, в уже ранее упомянутой модели японского производителя особыми форсунками впрыскивается масло в камеры сжигания, дабы трущиеся в процессе вращения о стенки камеры ребер смазывались. За счет этого усиливается выхлопная токсичность и параллельно с этим повышает необходимость движка в качественном масле.

Также, во время высоких оборотов повышаются запросы к смазке поверхности цилиндрического типа цилиндрического элемента основного вала, вокруг которого осуществляется вращение, и которое занято снятием главного усилия с вращающегося элемента, также переводя во вращательное движение вала. Из-за этих двух технических трудностей, разрешить которые довольно проблематично, проявлялась недостаточная смазка в случае высоких оборотов наиболее загруженных трением элементов движка, а значит, резким образом уменьшался движущий ресурс движка. Из-за этого недостаточного решения выходит очень малый ресурс движков рассматриваемого типа, которые были выпущены отечественным АвтоВАЗом.

Большая требовательность к точности выполнения элементов со сложной формой делают таков движок трудным в производстве. Для его производства требуется высокоточное и дорогое оборудование - станки, способные выполнить рабочую камеру с криволинейной поверхностью.

Если говорить о вращающемся элементе, то у него так же имеется форма треугольника, у которого выпуклые поверхности.

Сделав выводы из всего вышеописанного можно отметить, что рассматриваемый тип обладает не только выраженными преимуществами, но и большим количеством фактически непреодолимых минусов, не позволяющих ему победить поршневые вариации. Однако такая перспектива всерьез обсуждалось сорок или пятьдесят лет назад, и аналитические обзоры пестрили мнениями, что уже к началу девяностых годов прошлого столетия роторные решения разнообразных типов будут доминировать на автомобильном рынке.

Однако, даже с учётом негативных сторон и технических проблем, такое решение смогло неплохо себя зарекомендовать в техническом плане и даже вырвать свою долю на рынке, поскольку минусы конкурентного решения – поршневого мотора с КШМ еще серьёзнее сказываются на работе. И это с учётом того, что поршневой движок долгое время пытались улучшить.

Одним из самых проблематичных моментов при выполнении любого роторного движка — это воссоздание эффективной уплотняющей системы, необходимой для создания замкнутого объёма в рабочих камерах рассматриваемого типа решений. Пока что в схемах это считается одним из главных препятствий. Тут предстоит выполнить сложную в изготовлении уплотнительную систему.

Дабы набить руку и набраться положительного опыта в данном занятии, можно попробовать выполнить компактный рабочий вариант решения рассматриваемого типа непосредственно с «нуля».

Ориентировочный показатель мощности одной из роторных секцией будет находиться в районе сорока лошадиных. А значит, движок рассматриваемого типа, скажем, с двумя секциями, достигнет показателя в восемьдесят лошадиных сил. И так далее по схожему принципу.

В целом, изготовление такого типа решений всегда идет с оптимальным ритмом, при том что можно и вовсе отказаться от сторонних элементов. Как правило, корпусная часть таких решений выполняется из конструкционной стали легированного типа, подвергнутой упрочнению термохимического типа и стойкой к высоким температурам.

Как вариант, оптимальной твердостью поверхностного слоя можно подобрать показатель в районе семидесяти HRC. По части глубины, термически упроченный слой находится в районе полтора миллиметров. Аналогичным образом обрабатываются и до того же показателя твердости и устойчивости к износам уплотнения радиального и торцевого типа.

Такое решение обладает воздушным охлаждением, а смазочное масло будет поступать к камере сжатия посредством двух специальных форсунок. То есть, в данном случае не потребуется смешивать масло и бензин, как это бывает в двухтактных вариациях.

Движок рассматриваемого типа ставят на токарный станок, где он в течение нескольких часов подвергается обкатке без воздействиями температуры. Таким образом, можно оценить эффективность уплотнений и герметичность выполняемых секций как достаточно приемлемую.

Впоследствии можно измерить уровень давления, который наблюдается в зоне сжатия.

Не многие знают, что наряду с классическими поршневыми двигателями, в автомобилестроении применяются роторные агрегаты, называемые по фамилии изобретателя моторами Ванкеля. Они являются двигателями с внутренним принципом сгорания топлива, однако, его устройство и принципы работы совершенно иные. Сегодня мы поговорим роторных моторах более подробно.

Конструктивное устройство роторного двигателя

Основные части двигателя Ванкеля по своему устройству не имеют ничего общего с классическими ДВС.

Его главные части следующие:

1. Основная рабочая камера

Корпус любого роторного агрегата представляет собой овальную металлическую камеру, в которой происходят основные рабочие процессы – режим впуска, такт сжатия, процесс сгорания горючего и выпуск отработанных газов. Форма камеры неслучайна. Она выполнена таким образом, чтобы при взаимодействии с ротором, её стенки осуществляли соприкосновение со всеми его вершинами, образуя несколько закрытых контуров. Впускные и выпускные отверстия таких моторов не имеют клапанов. Они находятся непосредственно на боковых частях рабочей камеры и подключаются напрямую к выхлопной трубе и системе питания.

2. Ротор

Форма ротора чем-то напоминает треугольник, грани которого имеют выпуклое наружу закругление. Помимо этого, каждая его сторона изготовлена с небольшой выборкой, увеличивающей объем образовывающейся замкнутой камеры сгорания и повышающей скоростные показатели вращения ротора. Назначение этого компонента аналогично функциям поршней в обычном ДВС. Возникновение тактов работы происходит методом создания уже упомянутых выше трех дочерних камер. Центральная часть ротора наделена зубчатым отверстием, соединяющим ротор с приводом, закрепленным в свою очередь с выходным валом. Это звено и определяет, в каком направлении и по какой траектории будет двигаться ротор внутри основной рабочей камеры.

3. Выходной вал

Функции выходного вала роторного двигателя аналогичны функциям коленвала классических силовых агрегатов. Он наделен полукруглыми выступами-кулачками, имеющими несимметричное выстраивание с явным смещением от центральной рабочей оси. На валу размещается несколько роторов, надеваемых на свой рабочий кулачок. Их несимметричное расположение создает предпосылки для образования крутящего момента, происходящего в результате силового давления каждого из роторов.

Думаем, вы уже догадались, что роторные двигатели имеют многослойное строение, подразумевающее создание несколько рабочих камер, в которых вращаются несколько роторов. Единственным объединяющим звеном этой работы служит выходной вал, вращающийся в результате этого синхронного взаимодействия. «Слои» надежно скрепляются между собой множеством болтов, расположенных по краям. Охлаждение таких двигателей проточное. Оно подразумевает нахождение антифриза не только вокруг общего блока, но и в каждой из его частей.

В двигателе Ванкеля вся работа выстраивается тем же методом сгорания топливной смеси, что и у поршневых движков. Однако никаких статических камер сгорания у них не предусматривается. Давление, возникающее при сгорании горючего, создается в отдельно образуемых камерах, которые отделяются от общей рабочей камеры роторными гранями.

Сам ротор постоянно контактирует своими вершинами со стенками камеры, в каждый момент времени создавая очередной замкнутый контур. При его вращении контуры попеременно то расширяются, то осуществляет сжатие. Во время этих циклов внутрь камеры попадает воздух и топливо, которое в результате силового воздействия ротора сжимается и воспламеняется, своим расширением придавая ротору очередной вращательный импульс. Отработанные газы сквозь отверстия выбрасываются в выхлопную систему, после чего камера снова заполняется топливно-воздушным составом.

Преимущества и недостатки роторных моторов

Применение роторных моторов имеет ряд неоспоримых преимуществ.

  • Меньшее количество внутренних компонентов . Аналогичный четырехцилиндровому поршневому двигателю роторный «собрат» наделен всего четырьмя основными частями: общая камера, пара роторов и кулачковый вал. Классический ДВС со схожими тактами работы состоит минимум из сорока подвижных частей, каждая из которых подвержена износу.
  • Мягкость работы . При функционировании роторных агрегатов практически не возникает вибраций, благодаря тому, что все подвижные части осуществляют вращение лишь в одном направлении. Думаем, вы знаете, что работа поршней в обычном двигателе разнонаправленная. Она чередует поступательное движение с реверсивным ходом.
  • Невысокий ритм . Ввиду того, что каждый ротор ответственен за вращение лишь одной трети полного круга выходного вала, движение, необходимое для этого, происходит заметно медленнее, чем существенно повышает надежность мотора Ванкеля.

Отрицательные факторы применения роторных двигателей исключать, разумеется, нельзя.

  • Ни один роторный двигатель не может четко подстроиться под регламенты экологических норм различных стран . Его никак нельзя назвать экологичным из-за серьезного количества выбросов углекислого газа, снизить которые нереально.
  • Дороговизна изготовления . Производство роторных движков весьма затратно, главным образом, в силу малых серийных партий. Концерны выпускают их совсем немного, что не требует особенной оптимизации затрат при изготовлении.
  • Ограниченность ресурса . Функциональный запас роторных моторов Ванкеля весьма ограничен. Редко когда он превышает 100-150 тысяч километров, по достижении которого им требуется полная переборка (капитальный ремонт) или замена.
  • Повышенное топливное потребление . Главной причиной увеличенной «прожорливости» является их низкая степень сжатия. Двигатель, удерживая необходимую мощность, компенсирует её за счет большего количество подаваемого внутрь замкнутых камер горючего.

Итог

Подводя итоги, скажем, что роторные силовые агрегаты, конечно, имеют право на существование. Они обладают рядом неоспоримых «плюсов», которые делают возможным их, пусть и небольшое, применение в автомобильном производстве. С другой стороны, тяжесть «минусов» весьма ощутима. Во многих странах мира они попросту не могут применяться из-за существующих экологических стандартов, а серьезное топливное потребление и ограниченный рабочий ресурс делает приобретение автомобилей с роторными двигателями совершенно нерентабельным. Прогнозируем, что какое-то время они еще будут на рынке, но достаточно скоро их вытеснят гибридные силовые системы, развитие которых осуществляется совершенно грандиозными темпами.

Паровые машины и двигатели внутреннего сгорания обладают одним общим недостатком - возвратно-поступательное движение поршня должно быть преобразовано во вращательное движение колёс. Отсюда и заведомо низкий КПД, и высокая изнашиваемость элементов механизма. Многим хотелось построить двигатель внутреннего сгорания так, чтобы все подвижные части в нём только вращались - как это происходит в электромоторах.

Однако задача оказалась не простой, успешно решить её удалось только механику-самоучке, который за всю свою жизнь так и не получил ни высшего образования, ни даже рабочей специальности.


Феликс Генрих Ванкель (Felix Heinrich Wankel, 1902–1988) родился 13 августа 1902 года в небольшом немецком городке Лар. Во время Первой мировой войны погиб отец Феликса, из-за чего будущему изобретателю пришлось бросить гимназию и пойти работать учеником продавца в книжной лавке при издательстве. Благодаря этой работе Ванкель пристрастился к чтению книг, по которым он самостоятельно изучал технические дисциплины, механику и автомобилестроение.
Существует легенда, что решение задачи пришло семнадцатилетнему Феликсу во сне. Правда это или нет - неизвестно. Зато очевидно, что Феликс обладал весьма незаурядными способностями к механике и «незамыленным» взглядом на вещи. Он понял, как все четыре цикла работы обычного двигателя внутреннего сгорания (впрыск, сжатие, сгорание, выхлоп) можно осуществить при вращении.
Довольно быстро Ванкель пришёл к первой конструкции двигателя, и в 1924 году он организовал небольшую мастерскую, которая также служила и импровизированной «лабораторией». Здесь Феликс и начал проводить первые серьёзные исследования в области роторно-поршневых ДВС.
С 1921 года Ванкель был активным членом НСДАП. Он выступал за партийные идеалы, был основателем всегерманского военного юношеского объединения и юнгфюрером различных организаций. В 1932 году он вышел из партии, обвинив одного из своих бывших коллег в политической коррупции. Однако по встречному обвинению ему самому пришлось провести в тюрьме шесть месяцев. Освободившись из заключения благодаря заступничеству Вильгельма Кепплера (Wilhelm Keppler), он продолжил работы над двигателем. В 1934 он создал первый опытный образец и получил на него патент. Он сконструировал новые клапаны и камеры сгорания для своего мотора, создал несколько различных его вариантов, разработал классификацию кинематических схем различных роторно-поршневых машин.



В 1936 году прототип двигателя Ванкеля заинтересовал BMW - Феликс получил деньги и собственную лабораторию в Линдау для разработки опытных авиадвигателей.
Впрочем, до самого разгрома фашистской Германии ни один двигатель Ванкеля в серию не пошёл. Возможно, на доведение конструкции до ума и создания массового производства требовалось слишком много времени.
После войны лаборатория была закрыта, оборудование вывезено во Францию, а Феликс остался без работы (сказалось былое членство в национал-социалистической партии). Однако вскоре Ванкель всё же получил должность инженера-конструктора в компании NSU Motorenwerke AG, являющейся одним из старейших производителей мотоциклов и автомобилей.
В 1957 году совместными усилиями Феликса Ванкеля и ведущего инженера NSU Вальтера Фрёде (Walter Froede) роторно-поршневой двигатель впервые был установлен на автомобиль NSU Prinz. Первоначальная конструкция оказалась далека от совершенства: даже для замены свечей требовалось разбирать почти весь «движок», надёжность оставляла желать лучшего, а про экономичность на данном этапе разработки и вовсе говорить было грешно. В результате испытаний в серию пошёл всё же автомобиль с традиционным ДВС. Тем не менее первый роторно-поршневой двигатель DKM-54 доказал свою принципиальную работоспособность, открыл направления для дальнейшей доводки и продемонстрировал колоссальный потенциал «роторников».
Таким образом, новый тип ДВС получил, наконец, свою путёвку в жизнь. В дальнейшем его ждёт ещё немало усовершенствований и доработок. Но перспективы роторно-поршневого двигателя настолько привлекательны, что инженеров уже ничто не могло остановить в деле доведения конструкции до эксплуатационного совершенства.



Прежде чем разбирать достоинства и недостатки роторно-поршневых ДВС, стоит всё-таки подробней рассмотреть их конструкцию.
В центре ротора проделано круглое отверстие, изнутри покрытое зубцами как у шестерёнки. В это отверстие вставлен вращающийся вал меньшего диаметра, также с зубцами, что обеспечивает отсутствие проскальзывания между ним и ротором. Отношения диаметров отверстия и вала подобраны так, чтобы вершины треугольника двигались по одной и той же замкнутой кривой, которая называется «эпитрохоида», - искусство Ванкеля как инженера заключалось в том, чтобы сначала понять, что это возможно, а потом всё точно рассчитать. В итоге, поршень, имеющий форму треугольника Рело, отсекает в камере, повторяющей форму найденной Ванкелем кривой, три камеры переменного объёма и положения.
Конструкция роторно-поршневого ДВС позволяет реализовать любой четырехтактный цикл без применения специального механизма газораспределения. Благодаря этому факту «роторник» оказывается значительно проще обычного четырёхтактного поршневого двигателя, в котором в среднем почти на тысячу деталей больше.
Герметизация рабочих камер в роторно-поршневом ДВС обеспечивается радиальными и торцевыми уплотнительными пластинами, прижимаемыми к «цилиндру» ленточными пружинами, а также центробежными силами и давлением газа.
Ещё одна его техническая особенность - это высокая «производительность труда». За один полный оборот ротора (то есть за цикл «впрыск, сжатие, воспламенение, выхлоп»), выходной вал совершает три полных оборота. В обычном поршневом двигателе таких результатов можно добиться только используя шестицилиндровый ДВС.



После первой же успешной демонстрации роторного ДВС в 1957 году крупнейшие автогиганты стали проявлять к разработке повышенный интерес. Сначала лицензию на двигатель, получивший неформальное название «ванкель», купила корпорация Curtiss-Wright, через год, Daimler-Benz, MAN, Friedrich Krupp и Mazda. Всего за весьма короткий промежуток времени лицензии на новую технологию приобрели около ста компаний во всём мире, включая таких монстров как Rolls-Royce, Porsche, BMW и Ford.Такой интерес к «ванкелю» столь крупных игроков автомобильного рынка объясняется его большим потенциалом и значительными достоинствами - в роторно-поршневом двигателе на 40% меньше деталей, он проще в ремонте и производстве.


К тому же «ванкель» почти в два раза компактней и легче традиционного поршневого ДВС, что в свою очередь улучшает управляемость автомобиля, облегчает оптимальное расположение трансмиссии и позволяет сделать более просторный и удобный салон.


Картинка кликабельна:

Роторно-поршневой двигатель развивает высокую мощность при довольно скромном расходе топлива. Например, современный «ванкель» объёмом всего 1300 смі развивает мощность в 220 л.с., а с турбокомпрессором - все 350. Ещё один пример - миниатюрный двигатель OSMG 1400 весом 335 г (рабочий объем 5 смі) развивает мощность в 1,27 л.с. Фактически, эта кроха на 27% сильнее лошади.
Ещё одно важное преимущество - низкий уровень шумов и вибраций. Роторно-поршневой двигатель отлично уравновешен механически, кроме того масса движущихся частей (и их количество) в нём значительно меньше, благодаря чему «ванкель» работает гораздо тише и не вибрирует.
И, наконец, роторно-поршневой двигатель отличается великолепными динамическими характеристиками. На низкой передаче можно без особой нагрузки на движок разогнать автомобиль до 100 км/ч на высоких оборотах двигателя. Кроме того, сама конструкция «ванкеля» за счёт отсутствия механизма преобразования возвратно-поступательного движения во вращательное, способна выдержать большие обороты, чем традиционный ДВС.




После вышедшего в 1964 году NSU Spyder последовали легендарная модель NSU Ro 80 (в мире до сих пор существует множество клубов владельцев этих машин), Citroen M35 (1970), Mercedes C-111 (1969), Corvette XP (1973). Но единственным массовым производителем стала японская Mazda, выпускавшая с 1967 года порой по 2-3 новые модели с РПД. Роторные двигатели ставили на катера, снегоходы и легкие самолеты. Конец эйфории пришел в 1973 году, в разгар нефтяного кризиса. Тут-то и проявился основной недостаток роторных двигателей - неэкономичность. За исключением Mazda, все автопроизводители свернули роторные программы, а у японской компании продажи по Америке сократились со 104960 проданных машин в 1973 году до 61192 - в 1974-м. Наряду с неоспоримыми достоинствами, «ванкель» также обладал и целым рядом очень серьёзных недостатков. Во-первых, долговечность. Один из первых прототипов роторно-поршневых двигателей на испытаниях выработал свой ресурс всего за два часа. Следующий, более успешный DKM-54 уже выдержал сто часов, но этого для нормальной эксплуатации автомобиля всё равно было недостаточно. Основная проблема крылась в неравномерном износе внутренней поверхности рабочей камеры. На ней в процессе эксплуатации появлялись поперечные борозды, которые получили говорящее имя «метки дьявола».


В компании Mazda после приобретения лицензии на «ванкель» был сформирован целый отдел, занимавшийся усовершенствованием роторно-поршневого двигателя. Довольно скоро выяснилось, что при вращении треугольного ротора, заглушки на его вершинах начинают вибрировать, в результате чего и образуются «метки дьявола».
В настоящее время проблему надежности и долговечности окончательно решили, применив высококачественные износостойкие покрытия, в том числе керамические.
Другая серьезная проблема - повышенная токсичность выхлопа «ванкеля». По сравнению с обычным поршневым ДВС «роторник» выделяет в атмосферу меньше окислов азота, но гораздо больше углеводородов, за счёт неполного сгорания топлива. Довольно быстро инженеры Mazda, уверовавшие в блестящее будущее «ванкеля», нашли простое и эффективное решение и этой проблемы. Они создали так называемый термальный реактор, в котором остатки углеводородов в выхлопных газах просто «дожигались». Первым автомобилем, реализовавшим такую схему, стал Mazda R100, также называемый Familia Presto Rotary, выпущенный в 1968 году. Эта машина, одна из немногих, сразу прошла весьма жёсткие экологические требования, выдвинутые США в 1970 году для импортируемых авто.
Следующая проблема роторно-поршневых двигателей частично вытекает из предыдущей. Это экономичность. Расход топлива стандартного «ванкеля» из-за неполного сгорания смеси существенно выше, чем у стандартного ДВС. И снова инженеры Mazda принялись за работу. При помощи целого комплекса мер, включающих переработку термореактора и карбюратора, добавление теплообменника в выхлопную систему, разработку каталитического конвертера и внедрение новой системы зажигания, компания добилась снижения потребления топлива на 40%. В результате этого несомненного успеха в 1978 году был выпущен спортивный автомобиль Mazda RX-7.



Стоит отметить, что в это время во всём мире машины с роторно-поршневыми двигателями выпускала только Mazda и… АвтоВАЗ.
Именно в провальном 1974 году советское правительство создает на Волжском автозаводе специальное конструкторское бюро РПД (СКБ РПД) - социалистическая экономика непредсказуема. В Тольятти начались работы по строительству цехов для серийного производства «ванкелей». Поскольку ВАЗ изначально планировался как простой копировальщик западных технологий (в частности, фиатовских), заводскими специалистами было принято решение воспроизводить двигатель Mazda, напрочь откинув все десятилетние наработки отечественных двигателестроительных институтов.
Советские чиновники довольно долго вели переговоры с Феликсом Ванкелем на предмет покупки лицензий, причем некоторые из них проходили прямо в Москве. Денег, правда, не нашли, и поэтому воспользоваться некоторыми фирменными технологиями не удалось. В 1976 году заработал первый волжский односекционный двигатель ВАЗ-311 мощностью 65 л.с., еще пять лет ушло на доводку конструкции, после чего была выпущена опытная партия в 50 штук роторных «единичек» ВАЗ-21018, мгновенно разошедшихся среди работников ВАЗа. Тут же выяснилось, что двигатель только внешне напоминал японский - сыпаться он стал очень даже по-советски. Руководство завода было вынуждено за полгода заменить все двигатели на серийные поршневые, сократить на половину штат СКБ РПД и приостановить строительство цехов. Спасение отечественного роторного двигателестроения пришло от спецслужб: их не очень интересовал расход топлива и ресурс двигателя, зато сильно - динамические характеристики. Тут же из двух двигателей ВАЗ-311 был сделан двухсекционный РПД мощностью 120 л.с., который стал устанавливаться на «спецединичку» - ВАЗ-21019. Именно этой модели, получившей неофициальное название «Аркан», мы обязаны бесчисленным количеством баек про милицейские «Запорожцы», догоняющие навороченные «Мерседесы», а многие стражи порядка - орденами и медалями. До 90-х годов внешне непритязательный «Аркан» действительно легко догонял все машины. Помимо ВАЗ-21019 на АвтоВАЗе также выпускаются малые партии автомобилей ВАЗ-2105, -2107, -2108, -2109, -21099. Максимальная скорость роторной «восьмерки» составляет около 210 км/ч, а до сотни она разгоняется всего за 8 секунд.
Оживший на спецзаказах СКБ РПД стал делать двигатели для водного и автоспорта, где машины с роторными двигателями стали настолько часто завоевывать призовые места, что спортивные чиновники были вынуждены запретить применение РПД.
В 1987 году умер руководитель СКБ РПД Борис Поспелов и на общем собрании был выбран Владимир Шнякин - человек, пришедший в автомобилестроение из авиации и недолюбливающий наземный транспорт. Главным направлением СКБ РПД становится создание двигателей для авиации. Это была первая стратегическая ошибка: самолетов у нас выпускается несоизмеримо меньше автомобилей, а завод живет с проданных двигателей.
Второй ошибкой стала ориентация в сохранившемся производстве автомобильных РПД на маломощные двигатели ВАЗ-1185 в 42 л.с. для «Оки», хотя более прожорливые, но более динамичные роторные двигатели так и просятся на самые быстроходные отечественные машины - например, на «восьмерки». Те же японцы устанавливают «ванкели» только на спортивные модели. В итоге на российских дорогах оказалось всего несколько роторных микролитражек «Ока». В 1998 году был наконец-то подготовлен гражданский вариант двухцилиндрового роторного 1,3-литрового двигателя ВАЗ-415, который стали устанавливать на ВАЗ-2105, 2107, 2108 и 2109.



В мае 1998 г был омологирован кольцевой ВАЗ-110 «РПД-спорт» (190 л. с., 8500 об/мин, 960 кг, 240 км/ч). Увы, дальше одного-единственного образца, чаще демонстрируемого на выставках, чем стартующего в гонках, дело не пошло. 110-я была самой мощной в пелотоне, но откровенно сырая конструкция всякий раз не давала ей продемонстрировать весь свой потенциал. Однако обидней всего то, что на «ВАЗе» быстро охладели к роторному направлению, а уникальную «Ладу» переделали в ралли-кар с обычным ДВС.


Так почему же все ведущие производители автомобилей ещё не пересели на «ванкели»? Дело в том, что для производства роторно-поршневых двигателей требуется, во-первых, отточенная технология со множеством самых разнообразных нюансов и далеко не каждая компания готова пройти путь той же Mazda, попутно наступая на многочисленные «грабли». А во-вторых, нужны специальные высокоточные станки, способные вытачивать поверхности, описанные такой хитрой кривой как эпитрохоида.


Mazda RX-7 - это один из первых автомобилей, на котором ставился роторно-поршневой двигатель Ванкеля. За всю историю Mazda RX-7 было четыре поколения. Первое поколение с 1978 по 1985 год. Второе поколение - с 1985 по 1991. Третье поколение - с 1992 по 1999. Последнее, четвёртое поколение - с 1999 по 2002 год. Первое поколение RX-7 появилось в 1978 году. Оно имело среднемоторную компоновку и оснащалось роторным двигателем мощностью всего 130 л. с.


В настоящее время только Mazda занимается серьёзными исследованиями в области роторно-поршневых двигателей, постепенно совершенствуя их конструкцию, и большая часть подводных камней в этой области уже пройдена. «Ванкели» вполне соответствуют мировым стандартам по уровню токсичности выхлопа, потреблению топлива и надёжности. Для современных станков поверхности описанные эпитрохоидой не являются проблемой (как не являются проблемой и куда более сложные кривые), новые конструкционные материалы позволяют увеличить срок службы роторно-поршневого двигателя, а его стоимость уже сейчас оказывается ниже, чем у стандартного ДВС за счёт меньшего количества используемых деталей.
Как и NSU, Mazda в 60-е гг. была небольшой компанией с ограниченными техническими и финансовыми ресурсами. Основу ее модельного ряда составляли развозные грузовички да семейные малолитражки. Поэтому нет ничего удивительного, что спорт-купеMazda 110S Cosmo (982 см куб., 110 л. с., 185 км/ч) создавалось более 6 лет и оказалось весьма капризным и дорогим. Да и подпорченная NSU Ro80 репутация не способствовала ажиотажу (в 1967–1972 гг. нашли своих владельцев только 1175 «космосов»), но мировой интерес к 110S способствовал увеличению продаж всей остальной продукции фирмы!
Чтобы доказать, что РПД столь же надежен (его превосходство в мощности уже стало для всех очевидным), Mazda чуть ли не впервые в жизни приняла участие в соревнованиях, причем выбрала самую трудную и продолжительную гонку – 84-часовой Marathon De La Route, проходивший на Нюрбургринге. Как экипажу из Бельгии удалось занять 4-е место (вторая машина сошла с дистанции за три часа до финиша из-за заклинивших тормозов), уступив только «выросшим» на «Нордшляйфе» Porsche 911, похоже, так и останется загадкой.


Мастерская Ванкеля в Линдау


Хотя с тех пор японские «роторники» стали завсегдатаями гоночных трасс, крупного успеха в Европе им пришлось ждать 16 лет. В 1984-м британцы на RX-7 выиграли престижную суточную гонку в Спа-Франкошамп. А вот в США, на главном рынке «семерки», ее гоночная карьера складывалась куда успешнее: с момента дебюта в чемпионате IMSA GT в 1978 году и по 1992-й она выиграла в своем классе более сотни этапов, причем с 1982 по 1992 гг. первенствовала в главной гонке серии – 24 hours of Daytona.
В ралли у «Мазд» все шло не так гладко. Как это часто бывало с японскими командами (Toyota, Datsun, Mitsubishi), они выступали только на отдельных этапах раллийного чемпионата мира (Новая Зеландия, Великобритания, Греция, Швеция), интересующих в первую очередь маркетинговые отделы концернов. Национальных титулов хватало: так, в 1975–1980 гг. Род Миллен выиграл целых пять в Новой Зеландии и США. А вот в WRC успехи были исключительно локальными: лучшее, что показали RX-7, – 3-е и 6-е места в греческом «Акрополисе» 1985 года.
Ну а самым громким успехом Mazda вообще и РПД в частности стала победа ее спортпрототипа 787B (2612 см куб., 700 л. с., 607 Нм, 377 км/ч) в Ле Мане в 1991 году. Причем одолеть заводскиеPorsche, Peugeot и Jaguar помогли не только быстрые пилоты и конкурентоспособная техника: свою роль сыграла и настойчивость японских менеджеров, регулярно «выбивавших» для роторников всевозможные послабления в регламенте. Так, накануне победы 787-го организаторы гонки согласились компенсировать прожорливость «роторников» 170-килограммовым (830 против 1000) снижением массы. Парадокс заключался в том, что, в отличие от бензиновых моторов, «аппетит» РПД при дальнейшей форсировке рос куда более скромными темпами, чем у обычных поршневых моторов, и 787-й оказался экономичней своих основных конкурентов!


Это был шок. Mercedes, который журнал Stern за консерватизм называл не иначе как «производитель авто для 50-летних господ в шляпах», в 1969 году презентовал супер-кар, поражавший воображение даже цветом. Вызывающая ярко-оранжевая окраска, подчеркнуто клиновидная форма, среднемоторная компоновка, двери «крыло чайки» и сверхмощный трехсекционный РПД (3600 см куб., 280 л. с., 260 км/час) – для консервативного Mercedes это было нечто!


А поскольку в компании не строили концептов, все считали, что у С111 только один путь: мелкосерийная (омологационная) сборка и большое гоночное будущее, ведь с 1966 года ФИА допустила РПД к официальным соревнованиям. И в штаб-квартиру Mercedes посыпались чеки с просьбой вписать нужную сумму за право обладать С111. Штутгартцы же еще больше подогрели интерес к «эске», в 1970 г. представив вторую генерацию купе с еще более фантастическим дизайном, 4-секционным ротором и умопомрачительными характеристиками (4800 см куб., 350 л. с., 300 км/час). Для доводки Mercedes построил пять макетов, которые дневали и ночевали на Хокенхаймринге и Нюрбургринге, готовясь установить серию рекордов скорости. Пресса смаковала предстоящую «битву титанов» между роторным Mercedes, атмосферным Ferrari и наддувным Porsche в чемпионате мира по гонкам на выносливость. Увы, возвращение в большой спорт не состоялось. Во-первых, С111 был очень дорогим даже для Mercedes, во- вторых, немцы не могли пустить в продажу столь сырую конструкцию. А после карибского нефтяного кризиса они вообще прикрыли проект, сосредоточившись на дизельных двигателях. Ими и оборудовали последние версии C111, установившие несколько мировых рекордов.


Не имеющий законченного технического образования, под конец жизни Феликс Ванкель достиг мирового признания в области двигателестроения и уплотнительной техники, завоевав массу наград и титулов. Его именем названы улицы и площади немецких городов (Felix-Wankel-Strasse, Felix-Wankel-Ring). Помимо двигателей, Ванкель разработал новую концепцию скоростных судов и самостоятельно построил несколько лодок.


Самое интересное, что роторный двигатель, который сделал его миллионером и принес ему всемирную славу, Ванкель не любил, считая его «гадким утенком». Реальные работающие РПД были сделаны по так называемой «концепции ККМ», предусматривающей планетарное вращение ротора и требующей введения внешних противовесов. Немалую роль сыграл и тот факт, что эту схему предложил не Ванкель, а инженер NSU Вальтер Фройде. Сам же Ванкель до последних дней считал идеальной схему двигателя «с вращающимися поршнями без неравномерно вращающихся частей» (Drehkolbenmasine - DKM), концептуально гораздо более красивую, но технически сложную, требующую, в частности, установки свечей зажигания на вращающемся роторе. Тем не менее, роторные двигатели во всем мире связывают именно с именем Ванкеля, поскольку все, кто близко знал изобрателя, в один голос утверждают, что что без неуемной энергии немецкого инженера мир так и не увидел бы этого удивительного устройства. Фелик Ванкель ушел из жизни в 1988 году.
Любопытна история с Mercedes 350 SL. Ванкель очень хотел иметь роторный Mercedes С-111. Но фирма Mercedes не пошла ему навстречу. Тогда изобретатель взял серийный 350 SL, выкинул оттуда «родной» двигатель и установил ротор от С-111, который был легче прежнего 8-цилиндрового на 60 кг, но развивал существенно большую мощность (320 л.с. при 6500 об/мин). В 1972 году, когда инженерный гений закончил работу над своим очередным чудом, он мог бы сидеть за рулем самого быстрого на тот момент «Мерседеса» SL-класса. Ирония заключалась в том, что водительские права Ванкель до конца жизни так и не получил.


Возрождением интереса к РПД мы обязаны новому двигателю Mazda Renesis (от RE - Rotary Engine - и Genesis). За прошедшее десятилетие японским инженерам удалось решить все основные проблемы РПД - токсичность выхлопа и неэкономичность. По сравнению с предшественником, удалось сократить потребление масла на 50%, бензина на 40% и довести выброс вредных окисей до норм, соответствующих Euro IV. Двухцилиндровый двигатель объемом всего 1,3 л выдает мощность в 250 л.с. и занимает гораздо меньше места в двигательном отсеке.
Специально под новый двигатель был разработан автомобиль Mazda RX-8, который, по словам брэнд-менеджера Mazda Motor Europe Мартина Бринка, создавался по новой концепции - автомобиль «строился» вокруг двигателя. В итоге развесовка по осям RX-8 идеальна - 50 на 50. Использование уникальной формы и маленьких размеров двигателя позволило поместить центр тяжести очень низко. «RX-8 не явяляется гоночным монстром, но это лучшая в управлении машина, которую я когда-либо водил», - с восторгом рассказывал Popular Mechanics Мартин Бринк.
Бочка меда…
Вне всяких сомнений, с первого взгляда роторно-поршневой двигатель имеет массу преимуществ перед традиционными двигателями внутреннего сгорания:
- Меньшим на 30-40% количеством деталей;
- Меньшими в 2-3 раза габаритами и массой, по сравнению с соответствующим по мощности стандартным ДВС;
- Плавная характеристика крутящего момента во всем диапазоне оборотов;
- Отсутствие кривошипно-шатунного механизма, а, следовательно, гораздо меньший уровень вибрации и шума;
- Высокий уровень оборотов (до 15000 об/мин!).
Ложка дегтя…
Казалось бы, если «Ванкель» имеет такие превосходства над поршневым двигателем, то кому нужны эти громоздкие, тяжелые, гремящие и вибрирующие поршневые двигатели? Но, как это часто бывает, на практике все далеко не так шоколадно. Ни одно гениальное изобретение, выйдя за порог лаборатории, отправлялось в корзину с пометкой «для мусора». Серийное производство нашло не на один камень, а на целую россыпь гранита:
- Отработка процесса сгорания в камере неблагоприятной формы;
- Обеспечение герметичности уплотнений;
- Обеспечение работы без коробления корпуса в условиях неравномерного нагрева;
- Низкий термический КПД ввиду того, что камера сгорания РПД намного больше, чем у традиционного ДВС;
- Высокий расход топлива;
- Высокая токсичность газообразных продуктов сгорания;
- Узкая зона температур для работы РПД: при низких температурах мощность двигателя резко падает, при высоких - быстрый износ уплотнений ротора.

Двигатели Ванкеля, известные как роторно-поршневые двигатели РПД, когда-то считались моторами будущего. Поговорим про достоинства двигателя Ванкеля и разберем принцип работы РПД.

Достоинства и недостатки РПД

Достоинства:
  • меньшие габариты и масса;
  • меньшее количество деталей (даже в сравнении с двухтактным поршневым ДВС);
  • вдвое большая мощность при тех же габаритах, что и традиционные ДВС;
  • плавность работы в результате отсутствия возвратно-поступательно движущихся частей;
  • возможность потребления низкооктанового бензина.
Недостатки:
  • неэффективный процесс сгорания, а значит - повышение расхода топлива и токсичности отработанных газов;
  • смазка "на прогар", что влечет за собой высокий расход масла;
  • невозможность производства на площадях, предназначенных для выпуска традиционных ДВС;
  • переход на выпуск РПД требует замены подавляющего большинства оборудования.
Роторно-поршневой двигатель покоряет своей простотой: корпус, вал, сам ротор - и все. Правда, существуют проблемы с уплотнениями роторов. На их решение ушли десятилетия, и в конце концов срок службы уплотнений удалось довести до ресурса поршневых колец в ДВС.

К недостаткам следует отнести непривычность двигателя Ванкеля как для ремонтников, так и для владельцев. Этот мотор требует изменения многих привычек. Так, тормозить РПД бесполезно, штурмовать подъемы "внатяг" - тем более. Компактный ротор имеет малую инерцию, в отличие от массивных деталей традиционного ДВС. Частые запуски-выключения "забрасывают" свечи. Непривычен и звук мотора, хотя многие это считают преимуществом.

Куда серьезнее органические недостатки, присущие РПД. Во-первых, это низкая эластичность характеристики и повышенный расход топлива . Последнее объясняется высокими потерями тепла через стенки камеры, далекой от оптимальной. Во-вторых, особенно велик расход масла. Ресурс такого мотора также ниже, чем у традиционного, из-за быстрого износа уплотнений ротора.

Немаловажную роль играет и жесткость внешней характеристики РПД, требующей более частых манипуляций рычагом КПП - на практике это выражается в более "коротком" передаточном ряде , а значит, увеличенным числом передач. Идеальной была бы установка вариатора , но на спортивных машинах "автоматы" не прижились, а на семейноv авто увидеть РПД странно - хотя бы по причине недостаточной экономичности.

Недостатки роторно-поршневых двигателей те же, что и у двухтактных поршневых моторов. И "лечатся" многие из них аналогично. Повышенный "аппетит" - непосредственным впрыском топлива, недостаточная эластичность - изменяемыми фазами и конфигурацией трубопроводов.

Принцип работы

Функцию поршня в РПД выполняет трехгранный ротор, преобразующий силу давления газов во вращательное движение эксцентрикового вала. Движение ротора относительно статора обеспечивается парой шестерен, одна из которых закреплена на роторе, а вторая - на боковой крышке статора.

Конфигурация рабочих поверхностей ротора и статора - эпитрохоидальная. Рабочая поверхность статора имеет износостойкое покрытие. В вершинах ротора установлены специальные уплотнения, на рабочих поверхностях - выемки, выполняющие роль камер сгорания. Вал вращается в подшипниках, размещенных на корпусе, и имеет цилиндрический эксцентрик, на котором вращается ротор.

Шестерня неподвижно закреплена на корпусе двигателя. С ней в зацеплении находится шестерня ротора. Взаимодействие этих шестерен обеспечивает орбитальное движение ротора относительно корпуса, в результате которого образуются три разобщенных камеры переменного объема. Передаточное отношение шестерен 2:3, поэтому за один оборот эксцентрикового вала ротор поворачивается на 120 градусов . За полный оборот ротора в каждой из камер совершается полный четырехтактный цикл. Крутящий момент получается в результате действия газовых сил через ротор на эксцентрик вала.

Между статором и ротором образуются три камеры, аналогичные надпоршневому пространству ДВС. Процесс впуска начинается, когда вершина ротора пересекает кромку впускного окна, после чего объем камеры возрастает и туда поступает горючая смесь. Когда следующая вершина ротора перекрывает впускное окно, смесь начинает сжиматься, и в момент наибольшего сжатия подается искра - начинается рабочий ход. Затем открывается выпускное окно и отработавшие газы покидают пространство камеры.

Таким образом за один оборот ротора в двигателе происходят три цикла, что делает ненужным использование уравновешивающих устройств, особенно в двухсекционных конструкциях, получивших подавляющее распространение.

В рабочем процессе два слабых звена: высокая нагрузка на уплотнения и избыточная величина динамического перекрытия фаз. Кроме того, конфигурация камеры сгорания далека от оптимальной. Но есть большой плюс. При повышении оборотов скорость распространения пламени растет быстрее скорости перетекания смеси. В результате требования РПД к октановому числу топлива ниже, чем у поршневых моторов.

Паровые машины, как и традиционные ДВС отличаются общим недостатком - возвратно-поступательные движения поршня должны преобразовываться во вращательные движения колес. Это и является причиной низкого КПД, высокого износа основных элементов.

Многие инженеры пытались решить эту проблему, придумав двигатель внутреннего сгорания, все детали которого бы только вращались. Однако изобрести такой агрегат смог механик-самоучка, не окончивший ни высшего, ни даже средне-специального учебного заведения.

Немного истории

В 1957 году малоизвестный механик-изобретатель Феликс Ванкель и ведущий инженер NSU Вальтер Фреде стали первыми, кто решил установить роторно-поршневой мотор на автомобиль. «Подопытным» стал на NSU Prinz. Первоначальная конструкция была далекой от совершенства. К примеру, свечи приходилось менять практически после полной разборки агрегата. К тому же, надежность мотора оставалась под сомнением, а про экономичность можно было не упоминать.

После множества испытаний концерн занялся выпуском машин с традиционным ДВС. Однако первый роторно-поршневой DKM-54 мог продемонстрировать великий потенциал.

Именно так оригинальная разновидность ДВС получил свой шанс на внедрение в производство авто. В дальнейшем он постоянно дорабатывался, однако перспективы роторно-поршневого мотора уже тогда были очевидны. РПД входит в классификацию роторных моторов как один из 5 представителей линейки.

К 80-м годам 20 века роторные исследовались лишь японской компанией Mazda. Еще к этому мотору проявлял внимание ВАЗ. В СССР бензин стоил достаточно дешево, а такой агрегат имел достаточно большую мощность. Однако к 2004 году производство машин с таким двигателем прекратилось. Япония стала единственной страной, в которой продолжается разработка роторного двигателя.

Есть множество разновидностей роторных агрегатов. Единственное их отличие - поверхность корпуса и число выполненных на роторе граней. Различные компоновки таких моторов применяются в авто- и судостроении.


Достоинства

Двигатель Ванкеля с момента создания имел множество выгодных преимуществ перед поршневыми моторами. Агрегат постоянно дорабатывался,что позволило повысить его экономичность и производительность.

Среди преимуществ»Ванкеля» выступают:

  1. Небольшие габариты и вес. «Ванкель» практически в 2 раза меньшепоршневого ДВС, что положительно сказывается на управляемости машины, способствует оптимальному монтажукоробки передач, позволяет сделать салон намного просторнее.
  2. В сравнении с двухтактным мотором, двигатель Ванкеля имеет гораздо меньше деталей. Это более выгодно с точки зрения ремонта.
  3. Вдвое большая мощность, чем у стандартных ДВС.
  4. Большая плавность работы - отсутствие поступательно-возвратных движений благоприятно сказывается на комфорте езды.
  5. Возможность заправки низкооктановым бензином.

Все элементы мотора вращаются в одну сторону. Это улучшает внутренний баланс агрегата и снижает вибрации. «Ванкель» выдает мощность равномерно и плавно. За время пока ротор оборачивается 1 раз, выходной вал совершает 3 оборота. Каждое сгорание осуществляется за 90 фазу вращение ротора.

Это говорит о том, что с 1 ротором способен выдавать мощностьза ¾ каждого поворота выходного вала. Двигатель с 1 цилиндром может выдавать мощность лишь за ¼ каждого витка выходного вала.

Недостатки

К недостаткам двигателя относятся непривычность для владельцев и механиков. Такой агрегат требует изменить многие привычки. К примеру, тормозить РПД не получится, а штурм подъемов «внатяг» обречен на неудачу. Компактный мотор обладает малой инерцией, чего не скажешь о массивных поршневых ДВС. При частыхзапусках-выключениях «забрасываются» свечи.Звук мотора некоторые автолюбители также относят к недостаткам.

Более серьезными являются органические изъяны роторно-поршневого агрегата. Во-первых, он обладает увеличенным расходом горючего. Это легко объяснить неоптимальной формой камеры, теряющей тепло через стенки. К тому же, мотор «съедает» достаточно много масла. Срок эксплуатации Ванкеля ниже, чем у стандартного ДВС -роторные уплотнениярегулярно изнашиваются.

Значительная роль отведена жесткости внешней характеристики роторно-поршневого мотора. Для управления машиной с таким двигателем требуется достаточно часто манипулировать рычагом коробки передач. Это объясняется тем, что необходим короткий передаточный ряд и увеличенное количество передач.

Идеальным вариантом является монтаж вариатора. Однако на спорткарах автоматы не приживаются, а для авто семейного типа требуется больше экономичности.

Недостатки РПД схожи с недостатками двухтактных поршневых агрегатов. Интересно, что вылечить это можно одними и теми же способами. Увеличенное потребление топлива сбивается непосредственным впрыском, нехватка эластичности - установкой изменяемых фаз. Это повышает экономичность и управляемость. Также для повышения эластичности меняется конфигурация трубопроводов. Такие изменения и были выполнены на моторе Mazda RX-8.

Как работает

Работает двигатель Ванкеляпо принципу, который достаточно просто объяснить даже несведущему в механике человеку. Агрегат обладает минимумом деталей, что позволяет быстро понять, какие системы задействуются в определенные промежутки времени.

Поршень двигателя в РПД заменяется ротором с 3 гранями, который передает силу давления сгораемых газов на вал эксцентрика.

Статор обладает эпитрохоидальной конфигурацией внутренних поверхностей. Он отличается высокой износостойкостью, поскольку имеет специальное покрытие. В вершинах ротора находятсяуплотнения, а на поверхности статораимеются выемки - они являются своеобразными камерами, в которых происходит сгорание. Вал вращается на специальных подшипниках. Они помещены на корпус. Также валоснащенэксцентриком - на нем и вращается ротор.

Шестерня вмонтирована в корпус. Она сцеплена с шестерней ротора. Взаимное действие этих шестерен создает движение ротора. Это позволяет образовать 3 камеры, которые постоянно изменяют свой объем.

Отношение передач шестерен равно 2:3, что обеспечивает один оборот вала за поворот ротора на 120 градусов. Когда ротор совершает полный оборот,все камерывыполняют четырехтактный цикл. Сгораемые газы действуют на эксцентрик вала через ротор - так возникает крутящий момент.

Между ротором и статором имеется 3 камеры. Впуск происходит, когда одна из вершин ротора начинает пересекать впускное отверстие для впрыска топлива. Объем камеры увеличивается, что заставляет смесь ее заполнить. Следующая вершина закрывает окно. Как и поршень двигателя традиционного исполнения, ротор сдавливает рабочую смесь перед воспламенением.

Она сжимается, при наибольшем сжатии в камере возникает искра. В результате осуществляется рабочий ход. После выпускное окно под давлением отработавших газов открывается, и они покидают камеру.

При одном обороте ротора двигатель совершает 3 цикла - это делает ненужным применение уравновешивающих устройств.

В рабочем процессе есть слабые звенья. Первое - повышенная нагрузка на уплотнения, а второе - избыток динамического перекрытия фаз.Не является оптимальной и конфигурация камеры сгорания. Однако есть и положительный момент - если повышать обороты, скорость распространения факела пламени увеличивается быстрее, чем перетекает топливная смесь.

Это позволяет применять для РПД бензин с пониженным октановым числом. Принцип работы Ванкеля достаточно прост, что в свое время привлекло к изобретению внимание многих производителей авто.

Не каждый автолюбитель знает, что Ванкель является одним из 5 подтипов в классификации роторных моторов.

Компактность, оборотистость, высокая производительность - не этого ли добиваются практически все производители мотоциклов? Однозначно, это так. Однако роторный мотор в мотомире таки не прижился. Все ставки делаются на классические поршневые двигатели.

Однако в истории производства мотоциклов существовало несколько исключений. К примеру, в 1974 году Hercules выпускает массовую серию Wankel, которые оборудованы двигателем KC-27. Это были роторные агрегаты, которые оснащались воздушным охлаждением. Двигатель имел объем294 куб. см. Мощность агрегатов составляла 25л.с. Для смазки агрегата, масло нужно было самостоятельно заливать в топливный бак.

В начале1980 роторный мотор использовали для оснащения мотоциклов Norton. Несмотря на то, что опытные прототипы таких двигателей появились еще в 1970-х.Инженеры Norton успешно внедрили РПД в спорт. К концу 80-х им не было равных.

Сегодня компания производит 588-кубовую модельдвумя роторами NRV588. Также инженерами Norton ведется разработка 700сс версии, которая называется NRV700. Она представляет собой мощный спортбайк, оснащенный инжекторным 170-сильным двигателем Ванкеля.

Как видно, эпоха роторных моторов еще не наступила. Поршневые системы так и остались лидирующими в сфере авто- и мотостроения. Обладатели байков с роторными двигателями могут образовать лишь небольшой круг фанатов Ванкеля. Возобновившийся интерес к «Ванкелю» компании Norton говорит о скором подъеме разработок и достижений в этой сфере.

Одной из причин, по которым двигатель не производится для оснащения автомобилей и мотоциклов - необходимость точного оборудования при его производстве. Малейший брак становится причиной выхода мотора из строя. Это пока не позволяет роторному агрегату заменить поршневой двигатель даже в узкихотраслях производства.