Турбовинтовой двигатель. Школьная энциклопедия

На сегодняшний день, авиация практически на 100% состоит из машин, которые используют газотурбинный тип силовой установки. Иначе говоря – газотурбинные двигатели. Однако, несмотря на всю возрастающую популярность авиаперелетов сейчас, мало кто знает каким образом работает тот жужжащий и свистящий контейнер, который висит под крылом того или иного авиалайнера.

Принцип работы газотурбинного двигателя.

Газотурбинный двигатель, как и поршневой двигатель на любом автомобиле, относится к двигателям внутреннего сгорания. Они оба преобразуют химическую энергию топлива в тепловую, путем сжигания, а после - в полезную, механическую. Однако то, как это происходит, несколько отличается. В обоих двигателях происходит 4 основных процесса – это: забор, сжатие, расширение, выхлоп. Т.е. в любом случае в двигатель сначала входит воздух (с атмосферы) и топливо (из баков), далее воздух сжимается и в него впрыскивается топливо, после чего смесь воспламеняется, из-за чего значительно расширяется, и в итоге выбрасывается в атмосферу. Из всех этих действий выдает энергию лишь расширение, все остальные необходимы для обеспечения этого действия.

А теперь в чем разница. В газотурбинных двигателях все эти процессы происходят постоянно и одновременно, но в разных частях двигателя, а в поршневом – в одном месте, но в разный момент времени и по очереди. К тому же, чем более сжат воздух, тем большую энергию можно получить при сгорании, а на сегодняшний день степень сжатия газотурбинных двигателей уже достигла 35-40:1, т.е. в процессе прохода через двигатель воздух уменьшается в объеме, а соответственно увеличивает свое давление в 35-40 раз. Для сравнения в поршневых двигателях этот показатель не превышает 8-9:1, в самых современных и совершенных образцах. Соответственно имея равный вес и размеры газотурбинный двигатель гораздо более мощный, да и коэффициент полезного действия у него выше. Именно этим и обусловлено такое широкое применения газотурбинных двигателей в авиации в наши дни.

А теперь подробней о конструкции. Четыре вышеперечисленных процесса происходят в двигателе, который изображен на упрощенной схеме под номерами:

  • забор воздуха – 1 (воздухозаборник)
  • сжатие – 2 (компрессор)
  • смешивание и воспламенение – 3 (камера сгорания)
  • выхлоп – 5 (выхлопное сопло)
  • Загадочная секция под номером 4 называется турбиной. Это неотъемлемая часть любого газотурбинного двигателя, ее предназначение – получение энергии от газов, которые выходят после камеры сгорания на огромных скоростях, и находится она на одном валу с компрессором (2), который и приводит в действие.

Таким образом получается замкнутый цикл. Воздух входит в двигатель, сжимается, смешивается с горючим, воспламеняется, направляется на лопатки турбины, которые снимают до 80% мощности газов для вращения компрессора, все что осталось и обуславливает итоговую мощность двигателя, которая может быть использована разными способами.

В зависимости от способа дальнейшего использования этой энергии газотурбинные двигатели подразделяются на:

  • турбореактивные
  • турбовинтовые
  • турбовентиляторные
  • турбовальные

Двигатель, изображенный на схеме выше, является турбореактивным . Можно сказать «чистым» газотурбинным, ведь газы после прохождения турбины, которая вращает компрессор, выходят из двигателя через выхлопное сопло на огромной скорости и таким образом толкают самолет вперед. Такие двигатели сейчас используются в основном на высокоскоростных боевых самолетах.

Турбовинтовые двигатели отличаются от турбореактивных тем, что имеют дополнительную секцию турбины, которая еще называется турбиной низкого давления, состоящую из одного или нескольких рядов лопаток, которые отбирают оставшуюся после турбины компрессора энергию у газов и таким образом вращает воздушный винт, который может находится как спереди так и сзади двигателя. После второй секции турбины, отработанные газы выходят фактически уже самотеком, не имея практически никакой энергии, поэтому для их вывода используются просто выхлопные трубы. Подобные двигатели используются на низкоскоростных, маловысотных самолетах.

Турбовентиляторные двигатели имеют схожую схему с турбовинтовыми, только вторая секция турбины отбирает не всю энергию у выходящих газов, поэтому такие двигатели также имеют выхлопное сопло. Но основное отличие состоит в том, что турбина низкого давления приводит в действия вентилятор, который закрыт в кожух. Потому такой двигатель еще называется двуконтурным, ведь воздух проходит через внутренний контур (сам двигатель) и внешний, который необходим лишь для направления воздушной струи, которая толкает двигатель вперед. Потому они и имеют довольно «пухлую» форму. Именно такие двигатели применяются на большинстве современных авиалайнеров, поскольку являются наиболее экономичными на скоростях, приближающихся к скорости звука и эффективными при полетах на высотах выше 7000-8000м и вплоть до 12000-13000м.

Турбовальные двигатели практически идентичны по конструкции с турбовинтовыми, за исключением того, что вал, который соединен с турбиной низкого давления, выходит из двигателя и может приводить в действие абсолютно что угодно. Такие двигатели используются в вертолетах, где два-три двигателя приводят в действие единственный несущий винт и компенсирующий хвостовой пропеллер. Подобные силовые установки сейчас имеют даже танки – Т-80 и американский «Абрамс».

Газотурбинные двигатели имеют классификацию также по другим при знакам:

  • по типу входного устройства (регулируемое, нерегулируемое)
  • по типу компрессора (осевой, центробежный, осецентробежный)
  • по типу воздушно-газового тракта (прямоточный, петлевой)
  • по типу турбин (число ступеней, число роторов и др.)
  • по типу реактивного сопла (регулируемое, нерегулируемое) и др.

Турбореактивный двигатель с осевым компрессором получил широкое применение. При работающем двигателе идет непрерывный процесс. Воздух проходит через диффузор, притормаживается и попадает в компрессор. Затем он поступает в камеру сгорания. В камеру через форсунки подается также топливо, смесь сжигается, продукты сгорания перемещаются через турбину. Продукты сгорания в лопатках турбины расширяются и приводят ее во вращение. Далее газы из турбины с уменьшенным давлением поступают в реактивное сопло и с огромной скоростью вырываются наружу, создавая тягу. Максимальная температура имеет место и на воде камеры сгорания.

Компрессор и турбина расположены на одном валу. Для охлаждения продуктов сгорания подается холодный воздух. В современных реактивных двигателях рабочая температура может превышать температуру плавления сплавов рабочих лопаток примерно на 1000 °С. Система охлаждения деталей турбины и выбор жаропрочных и жаростойких деталей двигателя - одни из главных проблем при конструировании реактивных двигателей всех типов, в том числе и турбореактивных.

Особенностью турбореактивных двигателей с центробежным компрессором является конструкция компрессоров. Принцип работы подобных двигателей аналогичен двигателям с осевым компрессором.

Газотурбинный двигатель. Видео.

Полезные статьи по теме.

К авиационным двигателям относятся все типы тепловых машин, используемых как движители для летательных аппаратов авиационного типа, т. е. аппаратов, использующих аэродинамическое качество для перемещения, маневра и т. п. в пределах атмосферы (самолеты, вертолеты, крылатые ракеты классов "В-В", "В-3", "3-В", "3-3", авиакосмические системы и др.). Отсюда вытекает большое разнообразие применяемых двигателей - от поршневых до ракетных.

Авиационные двигатели (рис.1) делятся на три обширных класса:

  • поршневые (ПД );
  • воздушно-реактивные (ВРД включая ГТД );
  • ракетные (РД или РкД ).

Более детальной классификации подлежат два последних класса, в особенности класс ВРД .

По принципу сжатия воздуха ВРД делятся на:

  • компрессорные , т. е. включающие компрессор для механического сжатия воздуха;
  • бескомпрессорные :
    • прямоточные ВРД (СПВРД ) со сжатием воздуха только от скоростного напора;
    • пульсирующие ВРД (ПуВРД ) с дополнительным сжатием воздуха в специальных газодинамических устройствах периодического действия.

Класс ракетных двигателей ЖРД также относится к компрессорному типу тепловых машин, так как в этих двигателях сжатие рабочего тела (топлива) осуществляется в жидком состоянии в турбонасосных агрегатах.

Ракетный двигатель твердого топлива (РДТТ ) не имеет специального устройства для сжатия рабочего тела. Оно осуществляется при начале горения топлива в полузамкнутом пространстве камеры сгорания, где располагается заряд топлива.

По принципу действия существует такое деление: ПД и ПуВРД работают по циклу периодического действия, тогда как в ВРД , ГТД и РкД осуществляется цикл непрерывного действия. Это дает им преимущества по относительным показателям мощности, тяги, массе и др., что и определило, в частности, целесообразность их использования в авиации.

По принципу создания реактивной тяги ВРД делятся на:

  • двигатели прямой реакции ;
  • двигатели непрямой реакции .

Двигатели первого типа создают тяговое усилие (тягу Р) непосредственно - это все ракетные двигатели (РкД ), турбореактивные без форсажа и с форсажными камерами (ТРД и ТРДФ ), турбореактивные двухконтурные (ТРДД и ТРДДФ ), прямоточные сверхзвуковые и гиперзвуковые (СПВРД и ГПВРД ), пульсирующие (ПуВРД ) и многочисленные комбинированные двигатели .

Газотурбинные двигатели непрямой реакции (ГТД ) передают вырабатываемую ими мощность специальному движителю (винту, винтовентилятору, несущему винту вертолета и т. п.), который и создает тяговое усилие, используя тот же воздушно-реактивный принцип (турбовинтовые , турбовинтовентиляторные , турбовальные двигатели - ТВД , ТВВД , ТВГТД ). В этом смысле класс ВРД объединяет все двигатели, создающие тягу по воздушно-реактивному принципу.

На основе рассмотренных типов двигателей простых схем рассматривается ряд комбинированных двигателей , соединяющих особенности и преимущества двигателей различных типов, например, классы:

  • турбопрямоточных двигателей - ТРДП (ТРД или ТРДД + СПВРД );
  • ракетно-прямоточных - РПД (ЖРД или РДТТ + СПВРД или ГПВРД );
  • ракетно-турбинных - РТД (ТРД + ЖРД );

и многие другие комбинации двигателей более сложных схем.

Поршневые двигатели (ПД)

Двухрядный звездообразный 14-ти цилиндровый поршневой двигатель с воздушным охлаждением. Общий вид.

Поршневой двигатель (англ. Piston engine ) -

Классификация поршневых двигателей. Авиационные поршневые двигатели могут быть классифицированы по различным признакам:

  • В зависимости от рода применяемого топлива - на двигатели легкого или тяжелого топлива.
  • По способу смесеобразования - на двигатели с внешним смесеобразованием (карбюраторные) и двигатели с внутренним смесеобразованием (непосредственный впрыск топлива в цилиндры).
  • В зависимости от способа воспламенения смеси - на двигатели с принудительным зажиганием и двигатели с воспламенением от сжатия.
  • В зависимости от числа тактов - на двигатели двухтактные и четырехтактные.
  • В зависимости от способа охлаждения - на двигатели жидкостного и воздушного охлаждения.
  • По числу цилиндров - на двигатели четырехцилиндровые, пятицилиндровые, двенадцатицилиндровые и т.д.
  • В зависимости от расположения цилиндров - на рядные (с расположением цилиндров в ряд) и звездообразные (с расположением цилиндров по окружности).

Рядные двигатели в свою очередь подразделяются на однорядные, двухрядные V-образные, трехрядные W-образные, четырехрядные Н-образные или Х-образные двигатели. Звездообразные двигатели также подразделяются на однорядные, двухрядные и многорядные.

  • По характеру изменения мощности в зависимости от изменения высоты - на высотные, т.е. двигатели, сохраняющие мощность с подъемом самолета на высоту, и невысотные двигатели, мощность которых падает с увеличением высоты полета.
  • По способу привода воздушного винта - на двигатели с прямой передачей на винт и редукторные двигатели.

Современные авиационные поршневые двигатели представляют собой звездообразные четырехтактные двигатели, работающие на бензине. Охлаждение цилиндров поршневых двигателей выполняется, как правило, воздушным. Ранее в авиации находили применение поршневые двигатели и с водяным охлаждением цилиндров.

Сгорание топлива в поршневом двигателе осуществляется в цилиндрах, при этом тепловая энергия преобразуется в механическую, так как под действием давления образующихся газов происходит поступательное движение поршня. Поступательное движение поршня в свою очередь преобразуется во вращательное движение коленчатого вала двигателя через шатун, являющийся связующим звеном между цилиндром с поршнем и коленчатым валом.

Газотурбинные двигатели (ГТД)

Газотурбинный двигатель - тепловая машина, предназначенная для преобразования энергии сгорания топлива в кинетическую энергию реактивной струи и (или) в механическую работу на валу двигателя, основными элементами которой являются компрессор, камера сгорания и газовая турбина.

Одновальные и многовальные двигатели

Простейший газотурбинный двигатель имеет только одну турбину, которая приводит компрессор и одновременно является источником полезной мощности. Это накладывает ограничение на режимы работы двигателя.

Иногда двигатель выполняется многовальным. В этом случае имеется несколько последовательно стоящих турбин, каждая из которых приводит свой вал. Турбина высокого давления (первая после камеры сгорания) всегда приводит компрессор двигателя, а последующие могут приводить как внешнюю нагрузку (винты вертолёта или корабля, мощные электрогенераторы и т.д.), так и дополнительные компрессоры самого двигателя, расположенные перед основным.

Преимущество многовального двигателя в том, что каждая турбина работает при оптимальном числе оборотов и нагрузке. При нагрузке, приводимой от вала одновального двигателя, была бы очень плоха приемистость двигателя, то есть способность к быстрой раскрутке, так как турбине требуется поставлять мощность и для обеспечения двигателя большим количеством воздуха (мощность ограничивается количеством воздуха), и для разгона нагрузки. При двухвальной схеме легкий ротор высокого давления быстро выходит на режим, обеспечивая двигатель воздухом, а турбину низкого давления большим количеством газов для разгона. Также есть возможность использовать менее мощный стартер для разгона при пуске только ротора высокого давления.

Турбореактивный двигатель (ТРД)

Турбореактивный двигатель (англ. Turbojet engine ) - тепловой двигатель, в котором используется газовая турбина, а реактивная тяга образуется при истечении продуктов сгорания из реактивного сопла. Часть работы турбины расходуется на сжатие и нагревание воздуха (в компрессоре).

Схема турбореактивного двигателя:
1. входное устройство;
2. осевой компрессор;
3. камера сгорания;
4. рабочие лопатки турбины;
5. сопло.

В турбореактивном двигателе сжатие рабочего тела на входе в камеру сгорания и высокое значение расхода воздуха через двигатель достигается за счёт совместного действия встречного потока воздуха и компрессора, размещённого в тракте ТРД сразу после входного устройства, перед камерой сгорания. Компрессор приводится в движение турбиной, смонтированной на одном валу с ним, и работающей на том же рабочем теле, нагретом в камере сгорания, из которого образуется реактивная струя. Во входном устройстве осуществляется рост статического давления воздуха за счёт торможения воздушного потока. В компрессоре осуществляется рост полного давления воздуха за счёт совершаемой компрессором механической работы.

Степень повышения давления в компрессоре является одним из важнейших параметров ТРД, поскольку от него зависит эффективный КПД двигателя. Если у первых образцов ТРД этот показатель составлял 3, то у современных он достигает 40. Для повышения газодинамической устойчивости компрессоров они выполняются двухкаскадными. Каждый из каскадов работает со своей скоростью вращения и приводится в движение своей турбиной. При этом вал 1-го каскада компрессора (низкого давления), вращаемого последней (самой низкооборотной) турбиной, проходит внутри полого вала компрессора второго каскада (высокого давления). Каскады двигателя так же именуют роторами низкого и высокого давления.

Камера сгорания большинства ТРД имеет кольцевую форму и вал турбина-компрессор проходит внутри кольца камеры. При поступлении в камеру сгорания воздух разделяется на 3 потока:

  • Первичный воздух - поступает через фронтальные отверстия в камере сгорания, тормозится перед форсунками и принимает непосредственное участие в формировании топливно-воздушной смеси. Непосредственно участвует в сгорании топлива. Топливо-воздушная смесь в зоне сгорания топлива в ВРД по своему составу близка к стехиометрической .
  • Вторичный воздух - поступает через боковые отверстия в средней части стенок камеры сгорания и служит для их охлаждения путём создания потока воздуха с гораздо более низкой температурой, чем в зоне горения.
  • Третичный воздух - поступает через специальные воздушные каналы в выходной части стенок камеры сгорания и служит для выравнивания поля температур рабочего тела перед турбиной.

Газовоздушная смесь расширяется и часть её энергии преобразуется в турбине через рабочие лопатки в механическую энергию вращения основного вала. Эта энергия расходуется, в первую очередь, на работу компрессора, а также используется для привода агрегатов двигателя (топливных подкачивающих насосов, масляных насосов и т. п.) и привода электрогенераторов, обеспечивающих энергией различные бортовые системы.

Основная часть энергии расширяющейся газовоздушной смеси идёт на ускорение газового потока в сопле, который истекает из него, создавая реактивную тягу.

Чем выше температура сгорания, тем выше КПД двигателя. Для предупреждения разрушения деталей двигателя используют жаропрочные сплавы, оснащенные системами охлаждения, и термобарьерные покрытия.

Турбореактивный двигатель с форсажной камерой (ТРДФ)

Турбореактивный двигатель с форсажной камерой - модификация ТРД, применяемая в основном на сверхзвуковых самолётах. Отличается от ТРД наличием форсажной камеры между турбиной и реактивным соплом. В эту камеру подается дополнительное количество топлива через специальные форсунки, которое сжигается. Процесс горения организуется и стабилизируется с помощью фронтового устройства, обеспечивающего перемешивание испаренного топлива и основного потока. Повышение температуры, связанное с подводом тепла в форсажной камере, увеличивает располагаемую энергию продуктов сгорания и, следовательно, скорость истечения из реактивного сопла. Соответственно, возрастает и реактивная тяга (форсаж) до 50 %, но расход топлива резко возрастает. Двигатели с форсажной камерой, как правило, не используются в коммерческой авиации по причине их низкой экономичности.

Двухконтурный турбореактивный двигатель (ТРДД)

Первым, предложившим концепцию ТРДД в отечественном авиадвигателестроении был Люлька А. М. (На основе исследований, проводившихся с 1937, А. М. Люлька представил заявку на изобретение двухконтурного турбореактивного двигателя. Авторское свидетельство вручили 22 апреля 1941 года.)

Можно сказать, что с 1960-х и по сей день, в самолетном авиадвигателестроении - эра ТРДД. ТРДД различных типов являются наиболее распространенным классом ВРД, используемых на самолетах, от высокоскоростных истребителей-перехватчиков с ТРДДФсм с малой степенью двухконтурности, до гигантских коммерческих и военно-транспортных самолетов с ТРДД с высокой степенью двухконтурности.

Схема турбореактивного двухконтурного двигателя:
1. компрессор низкого давления;
2. внутренний контур;
3. выходной поток внутреннего контура;
4. выходной поток внешнего контура.

В основу двухконтурных турбореактивных двигателей положен принцип присоединения к ТРД дополнительной массы воздуха, проходящей через внешний контур двигателя, позволяющий получать двигатели с более высоким полетным КПД, по сравнению с обычными ТРД.

Пройдя через входное устройство, воздух попадает в компрессор низкого давления, именуемый вентилятором. После вентилятора воздух разделяется на 2 потока. Часть воздуха попадает во внешний контур и, минуя камеру сгорания, формирует реактивную струю в сопле. Другая часть воздуха проходит сквозь внутренний контур, полностью идентичный с ТРД, о котором говорилось выше, с той разницей, что последние ступени турбины в ТРДД являются приводом вентилятора.

Одним из важнейших параметров ТРДД, является степень двухконтурности (m), то есть отношение расхода воздуха через внешний контур к расходу воздуха через внутренний контур. (m = G 2 / G 1 , где G 1 и G 2 расход воздуха через внутренний и внешний контуры соответственно.)

При степени двухконтурности меньше 4 (m<4) потоки контуров на выходе, как правило, смешиваются и выбрасываются через общее сопло, если m>4 - потоки выбрасываются раздельно, так как из-за значительной разности давлений и скоростей смешение затруднительно.

В ТРДД заложен принцип повышения полетного КПД двигателя, за счёт уменьшения разницы между скоростью истечения рабочего тела из сопла и скоростью полета. Уменьшение тяги, которое вызовет уменьшение этой разницы между скоростями, компенсируется за счёт увеличения расхода воздуха через двигатель. Следствием увеличения расхода воздуха через двигатель является увеличение площади фронтального сечения входного устройства двигателя, следствием чего является увеличение диаметра входа в двигатель, что ведет к увеличению его лобового сопротивления и массы. Иными словами, чем выше степень двухконтурности - тем большего диаметра будет двигатель при прочих равных условиях.

Все ТРДД можно разбить на 2 группы:

  • со смешением потоков за турбиной;
  • без смешения.

В ТРДД со смешением потоков (ТРДДсм ) потоки воздуха из внешнего и внутреннего контура попадают в единую камеру смешения. В камере смешения эти потоки смешиваются и покидают двигатель через единое сопло с единой температурой. ТРДДсм более эффективны, однако наличие камеры смешения приводит к увеличению габаритов и массы двигателя

ТРДД как и ТРД могут быть снабжены регулируемыми соплами и форсажными камерами. Как правило это ТРДДсм с малыми степенями двухконтурности для сверхзвуковых военных самолетов.

Военный ТРДДФ EJ200 (m=0,4)

Двухконтурный турбореактивный двигатель с форсажной камерой (ТРДДФ)

Двухконтурный турбореактивный двигатель с форсажной камерой - модификация ТРДД. Отличается наличием форсажной камеры. Нашел широкое применение.

Продукты сгорания, выходящие из турбины, смешиваются с воздухом, поступающим из внешнего контура, а затем к общему потоку подводится тепло в форсажной камере, работающей по такому же принципу, как и в ТРДФ . Продукты сгорания в этом двигателе истекают из одного общего реактивного сопла. Такой двигатель называется двухконтурным двигателем с общей форсажной камерой .

ТРДДФ с отклоняемым вектором тяги (ОВТ).

Управление вектором тяги (УВТ) / Отклонение вектора тяги (ОВТ)

Специальные поворотные сопла, на некоторох ТРДД(Ф), позволяют отклонять истекающий из сопла поток рабочего тела относительно оси двигателя. ОВТ приводит к дополнительным потерям тяги двигателя за счёт выполнения дополнительной работы по повороту потока и усложняют управление самолетом. Но эти недостатки полностью компенсируются значительным повышением маневренности и сокращением разбега самолета при взлете и пробега при посадке, до вертикальных взлета и посадки включительно. ОВТ используется исключительно в военной авиации.

ТРДД с высокой степенью двухконтурности / Турбовентиляторный двигатель

Схема турбовентиляторного двигателя:
1. вентилятор;
2. защитный обтекатель;
3. турбокомпрессор;
4. выходной поток внутреннего контура;
5. выходной поток внешнего контура.

Турбовентиляторный двигатель (англ. Turbofan engine ) - это ТРДД с высокой степенью двухконтурности (m>2). Здесь компрессор низкого давления преобразуется в вентилятор, отличающийся от компрессора меньшим числом ступеней и большим диаметром, и горячая струя практически не смешивается с холодной.

В данном типе двигателей используется одноступенчатый вентилятор большого диаметра, обеспечивающий высокий расход воздуха через двигатель на всех скоростях полета, включая низкие скорости при взлёте и посадке. По причине большого диаметра вентилятора сопло внешнего контура таких ТРДД становится достаточно тяжёлым и его часто выполняют укороченным, со спрямляющими аппаратами (неподвижными лопатками, поворачивающими воздушный поток в осевое направление). Соответственно, большинство ТРДД с высокой степенью двухконтурности - без смешения потоков .

Устройство внутреннего контура таких двигателей подобно устройству ТРД, последние ступени турбины которого являются приводом вентилятора.

Внешний контур таких ТРДД, как правило, представляет собой одноступенчатый вентилятор большого диаметра, за которым располагается спрямляющий аппарат из неподвижных лопаток, которые разгоняют поток воздуха за вентилятором и поворачивают его, приводя к осевому направлению, заканчивается внешний контур соплом.

По причине того, что вентилятор таких двигателей, как правило, имеет большой диаметр, и степень повышения давления воздуха в вентиляторе не высока - сопло внешнего контура таких двигателей достаточно короткое. Расстояние от входа в двигатель до среза сопла внешнего контура может быть значительно меньше расстояния от входа в двигатель до среза сопла внутреннего контура. По этой причине достаточно часто сопло внешнего контура ошибочно принимают за обтекатель вентилятора.

ТРДД с высокой степенью двухконтурности имеют двух- или трёхвальную конструкцию.

Достоинства и недостатки .

Главным достоинством таких двигателей является их высокая экономичность.

Недостатки - большие масса и габариты. Особенно - большой диаметр вентилятора, который приводит к значительному лобовому сопротивлению воздуха в полете.

Область применения таких двигателей - дальне- и среднемагистральные коммерческие авиалайнеры, военно-транспортная авиация.


Турбовинтовентиляторный двигатель (ТВВД)

Турбовинтовентиляторный двигатель (англ. Turbopropfan engine ) -

Внешне турбовинтовой двигатель самолета сильно похож на моторы поршневого типа. Но их сходства только визуальны, так как во всем остальном они совершенно отличаются. У данного двигателя совсем другие характеристики, тип и режим работы, также отличаются и их возможности.

ТВД – по сути, являться газотурбинным двигателем, который нашел большой спрос в авиастроении. Газотурбинный двигатель был создан для единственной цели, он должен был стать универсальным преобразователем энергии, благодаря этой особенности он стал использоваться в авиации.

ГТД является своего рода тепловой машиной. В момент сгорания топлива идет выброс газов, которые и вращают турбину, тем самым создают крутящий момент. Также есть возможность прикрепить к валу турбины необходимые дополнения. К ТВД отличным дополнением будет воздушный винт.

ТВД является некой смесью моторов поршневого типа с турбореактивным. Изначально самолеты были оснащены только поршневыми двигателями. Они выглядели как цилиндры и устанавливались в форме звезды, в центре этой звезды ставился вал, благодаря которому и и происходило вращение воздушного винта. Но из-за их низких характеристик и ограничения в скорости было принято решение об отказе от данного двигателя. На замену им как раз пришли турбовинтовые двигатели (ТВД).

Самый первый двигатель был создан в СССР, первые успешные испытания были проведены еще в 30-х годах, ТВД поступили на массовое производство спустя 20 лет. Его почти сразу же начали устанавливать в гражданские и военные самолеты. Что позволило улучшить преимущество в небе.

Строение двигателя является очень простым, в нем нет никаких сложных схем. В нем находиться воздушный винт с редуктором, компрессор, камера сгорания топлива, турбина и сопла (выходное устройство). С помощью компрессора происходит нагнетания и сжатие воздуха, после этого он отправляет этот воздух в камеру сгорание, куда подается топливо. Горючая смесь образуется во время смешивания сжатого воздуха и топливом.

После воспламенения смесь оставляет после себя газ с большим энергичным потенциалом. После газ начинает расширяться и выходит на лопасть турбины, тем самым начинает ее вращать. Вследствие этого начинается и вращение воздушного винта с компрессором, их вращение начинается за счет работы лопастей.

Не использованный газ выходит в сопло, и с помощью него образуется реактивная тяга. Величина тяги может доходить до 10 процентов тяги самого мотора. Из-за незначительно тяги ТВД не является реактивным двигателем. Если обратить внимание на строение и принцип работы двигателя, то его можно сравнить с турбореактивным двигателям. Но есть одна особенность в реактивном двигателе, остатки энергии не выходят в виде воздуха через сопло, они до конца расходиться на работу винта.

Вал

Существует две разновидности двигателя, в первом случае в двигателе находиться один рабочий вал, а во втором установлено два вала. В одновальном двигателе все расположено на единственном валу, в то время как на двухвальном ТВД, на одном валу расположена турбина с компрессором, а на втором находиться винт и редуктор, также они никак не связанны друг с другом.

Если в мотор двухвального типа, то его структура выглядит примерно так: в нем находиться две турбины, которые связанны между собой с помощью газодинамики. Одна турбина служит для работы компрессора, а другая в то время отвечает за работу самого винта. ТВД двухвального типа используют намного чаще, чем другой вариант двигателя, так как его характеристики намного лучше, чем у одновального типа. Но двигатель второго типа выглядит намного сложнее, чем другой тип двигателя. Также двухвальный ТВД способен начать выработку энергии до начала запуска самого винта.

Компрессор у ТВД обладает ступенчатой конструкцией, количество ступени варьируется от 2 до 6. Благодаря такой системе двигатель лучше работает с перепадами температуры и давлением, благодаря этому пилот может с легкостью регулировать обороты двигателя. Такая конструкция позволяет не только лучше работать мотору, но и из-за ступенчатой системы появилась возможность облегчить вес мотора.

Эта особенность очень важна для авиации, так как вес самолета также снижается, а за счет этого есть возможность развивать необходимую скорость и совершать перелеты на более длинные дистанции, так как топливо затратность зависит от веса самолета. В составе компрессора находиться: рабочие колеса с лопатками и направляющий аппарат.

Существует несколько видов аппарата, первый это регулируемый, в направляющем аппарате установлены лопатки, с помощью которых его можно поворачивать вокруг оси. А второй вариант не имеет возможности регулирования.

Благодаря воздушному винту создается тяга, но у каждого винта есть свои ограничения в скорости. Самая идеальная скорость вращения винта является 750-1,5 тысячи оборотов в минуту, в данной частоте уровень коэффициента полезного действия винта самый большой, но если скорость заходит за эти пределы, КПД начинает значительно падать.

В тоже время винт начинает приносить не повышение скорости, а наоборот начинает работать как тормоз. Такую особенность еще называют как «эффект запирания».

Такой эффект происходит из-за того что одна часть лопастей начинает набирать завышенные обороты и тем самым превышает скорость звука, из-за чего двигатель начинает неправильно работать. Такой эффект сработает также если лопастям увеличить их в диаметре, так как чем лопасть длиннее, тем выше скорость потока на концах лопастей.

Турбина в двигателе может разогнаться до 20 тысяч оборотов в минуту, но воздушный винт не сможет справиться с такой скоростью и просто выйдет из строя. Из-за этого турбину оснащают редуктором, который в свою очередь занижает вращение и увеличивает крутящий момент. Несмотря на строения и формы редуктором, задача у них остается одной и той же, уменьшение скорости и повышение крутящего момента.

Из-за этого ТВД не может раскрыть всего своего потенциала, эти недостатки сильно ударяют по военным самолетам, так как им очень важна скорость и маневренность. Авиаконструкторы и инженеры не оставляют надежны в разработке нового двигателя, который позволит избежать таких неудобств.


Турбовинтовой двигатель ВК-1500 производится на объединении ОАО «Мотор Сич».
Предназначен для установки в качестве маршевого двигателя на самолеты воздушных линий пассажировместимостью до 30 чел.
Высокий уровень культуры проектирования, производства в сочетании с применением современной системы регулирования дали возможность создать двигатель с высокими эксплуатационными характеристиками, надежностью и большими ресурсами.
Вертолетный вариант двигателя ВК-1500 может устанавливаться на вертолетах среднего класса. ...


Турбовинтовой двигатель ТВД-20 разработан в Омском авиамоторном КБ на базе турбовинтового двигателя ТВД-10.
Первая серийная версия двигателя получила обозначение ТВД-20–01. Эта версия двигателя, выпускаемая с 1992 года, устанавливается на легкий многоцелевой самолет Ан-3.
Усовершенствованная версия двигателя получила обозначение ТВД-20М. Этот двигатель используется на легком самолете Аэропрогресс Т-101В с трехлопастным пропеллером АВ-17. ...

Турбовальный двигатель ТВ3–117 предназначен для установки на вертолеты. Он является одним из лучших двигателей в мире по экономичности в своем классе, что достигнуто благодаря высоким КПД основных узлов (КПД компрессора равен 86%, КПД турбины компрессора — 91%, КПД свободной турбины — 96%). Величины удельного расхода топлива и удельной массы соответствуют лучшим мировым стандартам. Двигатель имеет большие запасы газодинамической устойчивости. В конструкции двигателя применены прогрессивные технические решения: титановый ротор компрессора, сваренный из отдельных дисков электронно-лучевой сваркой; рабочие и направляющие лопатки компрессора из титанового сплава, полученные методом холодной вальцовки; контактные графитовые уплотнения масляных полостей; на новейших модификациях применяется электронно-гидромеханическая система регулирования и управления и др. Двигатель имеет большой ресурс, обладает высокой надежностью, простотой обслуживания, хорошей ремонтопригодностью. ...


В 1960 году был объявлен конкурс на создание газотурбинного двигателя мощностью 1250 л.с. для перспективного вертолёта Ми-8. Победителем конкурса проектов стало ОКБ-117 им. В.Я.Климова под руководством С.П.Изотова, которому и была поручена разработка двигателя и главного редуктора ВР-8. ТВ2–117 стал первым отечественным специализированным вертолётным двигателем. Первые образцы двигателей изготовлены летом 1962 года. Серийное производство организовано в 1965 году.
Двигатель имеет девятиступенчатый осевой компрессор, камеру сгорания кольцевого типа и двухступенчатую турбину. ...


Разработка турбовинтового двигателя ТВ-12 для бомбардировщика Ту-95 началась в ОКБ-276 под руководством Н.Д.Кузнецова в 1951 году. В декабре 1953 года Министерство авиационной промышленности утвердило общую компоновку двигателя. Летом 1954 года начались доводочные испытания ТВ-12 на летающей лаборатории Ту-4ЛЛ. В декабре новый двигатель был установлен на втором прототипе Ту-95 («95–2»). В 1955 году началось серийное производство двигателя на Куйбышевском моторостроительном заводе №24 под обозначением НК-12.
НК-12 состоит из редуктора, осевого компрессора, камеры сгорания, реактивной турбины и нерегулируемого реактивного сопла. Редуктор двигателя — дифференциальный, с передаточным отношением от ротора к воздушному винту 0,088. Редуктор передаёт мощность турбины на соосный воздушный винт (передний винт потребляет 54,4% мощности, задний — 45,6%). ...


Винтовентиляторный двигатель Д-27 разработан в Запорожском МКБ им. И.Г.Ивченко в середине 80-х годов. В разработке двигателя активное участие принимали специалисты ЦИАМ и ЦАГИ. Винтовентиляторы СВ-27 с широкохордовыми саблевидными лопастями разработатывались в НПО «Авиасила» (г. Ступино). Автоматическая система управления двигателем СУ-77 разрабатывалась в Уфимском НПО «Молния». Первые стендовые испытания проведены в 1988 году. В 1990 году двигатель испытывался на летающей лаборатории Ил-76. В 1993 году 4 двигателя Д-27 были установлены на первом прототипе транспортного самолёта Ан-70. Серийное производство предполагается на запорожском заводе «Мотор-Сiч» и Уфимском моторостроительном заводе.
Запуск двигателя автоматический с раскруткой ротора высокого давления воздушным турбостартером от ВСУ, аэродромного источника сжатого воздуха или от работающего двигателя. ...


Турбовинтовентиляторный трехвальный двигатель Д-236 разрабатывался как демонстратор технологий на Запорожском ЗМКБ "Прогресс".
Основой для двигателя послужил турбовентиляторный двигатель Д-36. Разработка двигателя была начата в 1979 году. На двигатель установлен пропеллер СВ-36. Первоначальные испытания двигателя проходили на самолете Ил-76. С 1987 года к испытаниям подключилось ОКБ им. Яковлева. Д-236 был установлен на специализированную версию самолета Як-42Е-ЛЛ вместо одного из двигателей Д-36. Первый полет самолета с такой двигательной установкой состоялся в марте 1991 года. ...


Двигатель АИ-24 конструкции А.Г. Ивченко одновальный турбовинтовой. В настоящее время на предприятиях гражданской авиации в основном эксплуатируются двигатели АИ-24 II серии.
Двигатель АИ-24 состоит из следующих узлов: дифференциального планетарного редуктора; лобового картера; 10-ступенчатого осевого компрессора; кольцевой камеры сгорания; 3-ступенчатой осевой реактивной турбины; нерегулируемого реактивного сопла.
Для обеспечения работы двигателя имеются системы: смазки и суфлирования; топливорегулирования; запуска; управления воздушным винтом; противопожарная; противообледенительная.
На самолетах Ан-24 и Ан-24Б, эксплуатируемых в условиях высоких температур наружного воздуха, силовая установка оборудуется системой впрыска воды в компрессор двигателя. ...


Двигатель турбовинтовой высотный АИ-20Д серии 5, 5Э является дальнейшим развитием широко известного базового двигателя АИ-20, используется на самолетах, выполняющих перевозки на линиях средней и дальней протяженности.
Оборудован системами: Автоматизированного запуска
Противообледенения
Противопожарной
Следящего упора для защиты по отрицательной тяге и автоматического флюгирования воздушного винта
Успешно эксплуатируются во многих странах мира (Индия, Бангладеш, Эфиопия, Перу, Никарагуа и др.) в условиях высоких температур наружного воздуха и высокогорных аэродромов. ...

Турбовинтовой авиационный двигатель НК-12 (ТВ-2, ТВ-12).

Разработчик: ОКБ-276, Н.Д.Кузнецов
Страна: СССР
Построен: 1954 г.
Начало гос. испытаний: 1955 г.
Принят на вооружение: 1955 г.

В 1946 году в посёлке Управленческий, расположенном на берегу Волги в 30 км от Куйбышева, был организован опытный завод № 2. На его базе было сформировано два конструкторских бюро: ОКБ-1 (главный конструктор А.Шайбе) и ОКБ-2 (главный конструктор К.Престель), численность работающих в 1947 году составляла около 2500 человек, из них 662 — немецкие специалисты. При организации завода предполагалось, что в СССР немцы продолжат работы, начатые ими в Германии — создание форсированных образцов серийных немецких ТРД «Jumo-004» и «BMW-003» и новых мощных реактивных двигателей «Jumo-012» и «BMW-018». Однако в конце 1946 года появилась новая задача: разработка турбовинтовых двигателей.

После серии опытно-конструкторских работ по турбовинтовым двигателям «022» и «028», мотокомпрессорному реактивному двигателю «032» и турбореактивному «003с» в 1948 году было принято решение объединить два ОКБ и сосредоточить усилия на разработке одного двигателя — «022». В середине 1948 года проектирование двигателя завершилось, три экземпляра передали в производство. В 1949 году, в самый разгар работ по «022», на завод № 2 пришел новый руководитель — Николай Дмитриевич Кузнецов. Он уже имел опыт работы по немецким реактивным двигателям — в 1946 году вместе с Климовым и Бранднером на заводе в Уфе осваивал производство «Jumo-004».

В 1951 году двигатель «022» получил наименование ТВ-2 (турбовинтовой двигатель-2). Вместо обычного четырёхлопастного пропеллера были применены соосные винты противоположного вращения.

Специалистам выдали новое задание: построить ТВД большой мощности — 12000 л.с. Такие двигатели требовались для нового стратегического бомбардировщика Ту-95 .
Самым простым методом обеспечить требуемые характеристики новой силовой установки было соединение вместе двух форсированных ТВ-2 с передачей мощности на один общий редуктор. Однако, сначала стендовые испытания, а затем и катастрофа Ту-95 с двигателями 2ТВ-2Ф показали, что для надежной работы необходимо создавать новый двигатель.

На новом двигателе число ступеней турбины увеличили до пяти. Благодаря созданию нового жаропрочного сплава нимоник появилась возможность повысить давление в компрессоре и увеличить температуру газа перед турбиной. Для повышения КПД двигателя выполнили большое количество исследований по уменьшению потерь в лопаточных машинах, применили уплотняющие вставки, позволяющие минимизировать радиальные зазоры в турбине, создали пустотелые охлаждаемые лопатки оригинальной конструкции. Был изготовлен новый редуктор, решены вопросы регулирования ТВД с соосными винтами противоположного вращения.

В результате всех этих мероприятий удалось добиться требуемой мощности, высокой надежности и хорошей топливной эффективности двигателя. По удельному расходу топлива он оказался намного экономичнее своего предшественника ТВ-2.

В начале 1953 года закончилась сборка двигателя. Он получил обозначение ТВ-12. Стендовые испытания ТВ-12 прошли успешно. Двигатель продемонстрировал требуемую мощность и высокий ресурс. Создание ТВ-12 (НК-12) было финальной работой, в которой участвовали немецкие специалисты. В конце 1953 года последние немцы покинули завод. Окончательными испытаниями и последующим усовершенствованием двигателя занимался советский коллектив под руководством Н.Д.Кузнецова.

Для его лётных испытаний в 1953 году специально были оборудованы три самолета Ту-4ЛЛ (Летающая Лаборатория). Двигатель ТВ-12 был установлен на месте правого внутреннего поршневого мотора АШ-73 . При этом ТВ-12 превосходил АШ-73 по мощности более чем в 5 раз, а его винты по диаметру были больше примерно в 1,5 раза. Испытания проводили ведущий летчик-испытатель М.А.Нюхтиков и ведущий инженер Д.И.Кантор. После Госиспытаний в конце 1954-го — феврале 1955 года был совершен первый полет самолета «95-2», второго прототипа Ту-95 с двигателями ТВ-12. Серийный двигатель стал называться НК-12 — по первым буквам имени и фамилии руководителя опытного завода.

Одновальный турбовинтовой двигатель НК-12МВ состоит из следующих основных узлов:
-14-ступенчатого осевого компрессора;
-кольцевой камеры сгорания;
-реактивной 5-ступенчатой турбины;
-нерегулируемого реактивного сопла и дифференциального редуктора (передаточное отношение 0,0882).

Степень повышения давления в компрессоре меняется от 9 до 13 в зависимости от высоты, а также от положения механизации компрессора. Номинальная скорость вращения вала двигателя - 8300 об/мин, каждого из двух винтов - 735 об/мин. НК-12 является самым мощным и экономичным турбовинтовым двигателем в мире (удельный расход топлива в крейсерском полете - 0,161 кг/л.с.ч.), его также отличает чрезвычайно высокая надёжность.

Двигатель подвешивается к демпферам гондолы двигателя самолёта на четырёхстержневой раме-подвеске.

Силовая, несущая часть двигателя состоит из:
-картера вала заднего винта;
-картера редуктора;
-картера турбины, соединённого с картером редуктора четырьмя силовыми раскосами;
-статора турбины;
-задней опоры.
Эти узлы вместе с картером компрессора образуют остов двигателя, внутри которого размещаются ходовая часть редуктора с валами воздушных винтов, ротор компрессора, ротор турбины, камера сгорания, приводы агрегатов и другие узлы и детали.

Ротор имеет правое направление вращения, смотря по направлению полёта. Компрессор осевого типа, 14-ступенчатый с регулируемым входным направляющим аппаратом (ВНА) и с 5-ю клапанами перепуска воздуха дроссельного типа с гидравлическим управлением. ВНА управляется в зависимости от высоты и скорости полёта, клапаны перепуска воздуха управляются в зависимости от оборотов — при запуске и работе на режиме земного малого газа открыты, при повышении оборотов до 7900 об/мин поочерёдно закрываются. Камера сгорания кольцевая с 12 головками, турбина реактивная 5-ступенчатая. КПД компрессора — 0,88, турбины — 0,94, что является рекордом до настоящего времени. Для уменьшения радиальных зазоров были применены легкосрабатываемые покрытия на элементах проточной части статора. Для лопаток турбины были использованы литейные жаропрочные сплавы, которые при высокой температуре имеют пределы длительной прочности выше, чем деформируемые сплавы.

На НК-12 впервые были применена система регулирования подачи топлива в едином блоке (командно-топливный агрегат), регулирование радиальных зазоров в турбине. Из практики зарубежного авиадвигателестроения известно, что попытка создания ТВД мощностью более 10000 л.с. вызвала большие трудности в конструировании достаточно надежного редуктора с высоким КПД и малой массой и окончилась неудачей. В ОКБ Н.Д.Кузнецова эта задача была решена в содружестве с М.Л.Новиковым — профессором Военно-воздушной академии им. Н.Е.Жуковского благодаря применению зубчатых передач оригинальной конструкции.

Кроме того, на НК-12 впервые были применены:
— регулировка компрессора клапанами перепуска воздуха;
— система регулирования подачи топлива в едином блоке (командно-топливный агрегат);
— автоматическое флюгирование винтов как система защиты двигателя;
— регулирование радиальных зазоров в турбине.

С двигателем используются тянущие автоматические соосные винты изменяемого шага, с центробежным фиксатором шага, гидроцентробежным механизмом поворота лопастей с установкой лопастей во флюгерное положение и на упор промежуточного угла — АВ-60К либо АВ-60Н на Ту-95 , Ту-114 и Ту-142 , АВ-90 на Ан-22 . АВ-60К состоит из двух четырёхлопастных флюгируемых винтов противоположного вращения с изменяемым в полёте шагом и электрической системой противообледенения. Направление вращения винтов, если смотреть по направлению полета, переднего винта — правое, заднего винта — левое. Вес воздушного винта: переднего 518 кг, заднего 637 кг, общий 1155 кг, диаметр 5,6 м. Автоматическое флюгирование винтов используется как система защиты двигателя и самолёта. Винты разработаны в ОКБ-150 (позднее, Ступинское КБ машиностроения, сейчас — НПП «Аэросила»). Руководитель ОКБ-150, К.И.Жданов, получил в 1957 году за их разработку Ленинскую премию.

Модификации:

ТВ-2 — Доведен до производства, использовался очень ограниченно.
-2ТВ-2Ф — сдвоенный вариант ТВ-2. Испытания окончились неудачей.
-ТВ-12, он же НК-12 — первый серийный вариант. Предполагалось установить на транспортно-десантный самолет, но проект был закрыт.
-НК-12М — ТВД повышенной мощности. Первое испытание НК-12М состоялось в сентябре 1955 года, Госиспытания 19 июня 1956 года.
-НК-12МА — устанавливался на самолёт Ан-22. Воздушный винт АВ-90 диаметром 6,2 м.
-НК-12МВ — устанавливался на Ту-95К , Ту-114, Ту-126 , ТУ-142. Воздушный винт диаметром 5,6 м и массой 1155 кг.
-НК-12МК — устанавливался на экранолёт «Орлёнок».
-НК-12МП — двигатель для ракетоносца Ту-95МС . Увеличен ресурс, снижен расход топлива, применены новые приводы для более мощных генераторов. Устанавливался также на Ту-142М.
НК-16 (ТВ-16): мощность увеличена до 16000 л.с.
НК-12СТ, НК-14СТ: приводы газоперекачивающих агрегатов.
НК-14Э: привод генератора в блочно-модульных электростанциях.

Технические характеристики двигателя НК-12МВ:

Топливо (ГТД): керосин
Турбина, тип: реактивная
Турбина, количество ступеней: 5
Редуктор, передаточное число: 0,0882
Компрессор, кол-во ступеней: 14
Камера сгорания, тип: кольцевая с 12 головками
Обороты двигателя, взлетный режим, об/мин / %: 8300 ± 50
Обороты двигателя, номинальный режим, об/мин / %: 8300 ± 50
Обороты двигателя, малый газ, об/мин / %: 6600 + 200.

Двигатель НК-12 в экспозиции музея.