Что такое сателлиты в коробке. Автомобильный дифференциал — назначение, устройство и принцип работы

Доброго вам дня дорогие читатели! В данной статье мы рассмотрим один из интереснейших механизмов — планетарная передача принцип действия и какая это красивая идея конструктора. В материале будет описано из каких узлов она состоит. Так же рассмотрим где же применяется такой вид передачи в автомобильном транспорте.

Что такое планетарный механизм

Прежде чем рассматривать устройство и принцип работы планетарного механизма необходимо обозначить его назначение. Он служит для изменения скорости (иногда направления) вращения выходного вала.

В работе этого механизма прослеживается такая зависимость, чем ниже скорость выходного вала, тем больший на нем крутящий момент (другими словами большое соотношение входного и выходного валов).

Теперь узнаем, что же такое планетарная передача, принцип действия которой основан на вращении шестеренок. Шестерни бывают следующих видов:

  • солнечная шестерня;
  • сателлиты;
  • коронная шестерня.

Планетарный механизм получил свое название из-за размещения шестеренок в нем как планет вокруг солнца.

А схема следующая: в центре находиться солнечная шестерня, вокруг нее крутятся сателлиты (как планеты) связанные между собой водилом, а снаружи сателлитов идет коронная шестерня. Все виды шестеренок могут быть связаны или с входным валом или выходным.

Принцип работы планетарной передачи заключается в том, чтобы один из видов шестерней (солнечная, водило или коронная) был закреплен жестко. Тогда этот закрепленный узел является передающим звеном.

Например, при закреплении коронной шестерни, входной вал подает крутящий момент на солнечную шестерню. Та же передает вращение далее на сателлиты, которые проходя по коронной шестерне начинают вращать водило. Ну а водило выводит уже крутящий момент на выходной вал.

На этом принципе строиться планетарная коробка передач в состав которой входят дополнительно системы затормаживания и блокировки узлов механизма.

Планетарная передача принцип действия которой может быть двух видов:

  1. Одноступенчатый (блокируется только один вид шестерней);
  2. Многоступенчатый (могут блокироваться разные виды шестерней).

Помимо этого, планетарный ряд может быть, как с закрепленным элементом как мы рассматривали ранее, так и дифференциальным. Во втором случае ни один из узлов механизма жестко не фиксируется, позволяя изменять вращения самостоятельно, на основе сил, приложенных к разным валам системы.

Ее механизм устроен так что позволяет быстрее вращаться валу, который меньше всего нагружен.

Узлы и агрегаты на основе планетарного механизма

Самым распространенным агрегатом на основе планетарного механизма является . Он установлен на каждой ведущей оси автомобиля.

Здесь стоит планетарная передача, принцип действия которой основан на дифференциальной системе. Это когда ни один узел системы не закреплен жестко.

Входной вал подает крутящий момент на шестерню (не коронную, поскольку зубья размещены не вниз, а в сторону), та передает тягу на сателлиты, к которым присоединено две солнечные шестерни.

Механика здесь следующая: сателлиты вращаются с одной скоростью, а солнечные шестерни могут иметь разные скорости вращения отличные друг от друга, но сума их скоростей всегда одинакова.

На втором месте по распространению идет гидромеханическая планетарная коробка передач, принцип работы, которой основан так же на вращении трех видов шестеренок.

Но здесь все устроена намного сложнее так как в современном мире требуется от пяти и больше передач переднего хода. А это на одном планетарном механизме реализовать невозможно.

Для реализации современной трансмиссии инженеры связывают из нескольких планетарных механизмов в один каскад. Который в свою очередь может реализовать диапазон соотношений от 0,7:1 на высших передачах до 4,5:1 при движении на низких скоростях Приведенное соотношение можно расшифровать так, что на один оборот выходного вала коробка делает 0,7 оборота входного вала и т.д.

Для переключения передач в состав входят механизмы которые сначала притормаживают необходимые шестеренки, а затем и вовсе их блокируют для задействования других узлов.

Так же планетарная передача принцип действия которой основан на блокировке одного или нескольких узлов применяется в постройке станков, подъёмного оборудования и тракторов. Ведь у такого механизма есть масса преимуществ, а именно:

  • невысокая шумность;
  • небольшие размеры (все шестерни находятся на одной оси и рядом друг с другом);
  • маленькая нагрузка на зубья (так как число их большое, на каждый приходиться меньшее усилие);
    большие значения передаточных чисел (поскольку зубья выдерживают большие нагрузки к тому же большое количество шестерней разных размеров).

Ну и без недостатков такой механизм не обошелся, а они следующие:

  • сложность конструкции и изготовления (очень много узлов позиционирование которых должно быть очень точным);
  • при проектировании систем с большими нагрузками снижается КПД (поскольку большое количество шестерней имеют большие потери на трение).

Подведя итог следует сказать, что планетарный механизм прочно вошел в современное автомобилестроение. Хотя агрегаты, построенные на его базе, имеют довольно сложную структуру, но сам механизм простой в понимании принципов работы.

Многие покупатели при выборе внедорожника наверняка сталкивались в описании той или иной модели с термином «электронная блокировка дифференциала». Но что это такое, и как работает этот самый дифференциал, знают далеко не все потенциальные владельцы автомобилей этого класса. В нашем сегодняшнем материале мы подробно расскажем, для чего машине дифференциал, каковы его разновидности и на какие автомобили он устанавливается.

На фото самоблокирующиеся дифференциалы

История создания и назначение дифференциала

На автомобилях, оснащенных двигателем внутреннего сгорания, дифференциал появился через несколько лет после их изобретения. Дело в том, что первые экземпляры машин, приводимых в действие двигателем, имели очень плохую управляемость. Оба колеса на одной оси при повороте вращались с одинаковой угловой скоростью, что приводило к пробуксовке колеса, идущего по внешнему, большему, чем внутренний, диаметру. Решение проблемы было найдено просто: конструкторы первых автомобилей с ДВС позаимствовали у паровых повозок дифференциал – механизм, изобретенный в 1828 году французским инженером Оливером Пекке-Ром. Он представлял собой устройство, состоящее из валов и шестерней, через которые крутящий момент от двигателя передается на ведущие колеса. Но после установки на автомобиль дифференциала обнаружилась еще одна проблема – пробуксовка колеса, утратившего сцепление с дорогой.

Обычно это проявлялось, когда автомобиль двигался по дороге, покрытой участками льда. Тогда колесо, попавшее на лед, начинало вращаться с большей скоростью, чем то, которое находилось на грунте или бетоне, что в итоге приводило к заносу автомобиля. Тогда конструкторы задумались об усовершенствовании дифференциала с тем, чтобы при подобных условиях оба колеса вращались с одинаковой скоростью и автомобиль не заносило. Первым, кто проводил эксперименты с созданием дифференциала с ограниченным проскальзыванием, стал Фердинанд Порше.

Ему понадобилось три года, чтобы разработать, протестировать и выпустить на рынок так называемый кулачковый дифференциал – первый механизм с ограниченным проскальзыванием, который устанавливался на первые модели марки Volkswagen. Впоследствии инженеры разработали различные виды дифференциалов, о которых речь пойдет ниже.

В автомобиле дифференциал выполняет три функции: 1) передает от двигателя к ведущим колесам, 2) задает колесам разные угловые скорости, 3) служит в сочетании с главной передачей.

Устройство дифференциала

Усовершенствованный автомобильными конструкторами дифференциал устроен в виде планетарной передачи, где крутящий момент от двигателя передается через карданный вал и коническую зубчатую передачу на корпус дифференциала. Тот, в свою очередь, направляет крутящий момент на две шестерни, а уже они распределяют момент между полуосями. Сцепление между шестернями-сателлитами и полуосями имеет две степени свободы, что позволяет им вращаться с разными угловыми скоростями.

Таким образом, дифференциал обеспечивает разную скорость вращения колес, расположенных на одной оси, что предотвращает и пробуксовку при повороте. После того, как был изобретен , у автомобиля появилось два, а впоследствии и три (с межосевым) дифференциала, которые распределяли крутящий момент между ведущими осями.

Уже понятно, что без дифференциала не обходится ни один автомобиль. В передне- и заднеприводных автомобилях он расположен на ведущей оси. Если у автомобиля сдвоенная ведущая ось, то здесь в конструкции трансмиссии применяют два дифференциала — по одному на каждую ось. В полноприводных машинах дифференциалов два (для моделей с подключаемым полным приводом – по одному на каждую ось) или три (для моделей с постоянным полным приводом – по одному на каждую ось, плюс межосевой дифференциал, который распределяет крутящий момент между осями). Кроме количества механизмов, устанавливаемых на автомобили с разными типами приводов, дифференциалы различают по виду блокировки.

Разновидности дифференциалов

По виду блокировки дифференциалы делятся на два – ручная и электронная блокировка. Ручная, как следует из названия, производится водителем вручную при помощи кнопки или тумблера. В этом случае шестерни-сателлиты механизма блокируются, ведущие колеса двигаются с одинаковой скоростью. Обычно ручная блокировка дифференциала предусмотрена на внедорожниках.

Электронная или автоматическая блокировка дифференциала осуществляется при помощи электронного блока управления, который, анализируя состояние дорожного покрытия (используется информация с датчиков и антипробуксовочной системы), сам блокирует шестерни-сателлиты.

Задний дифференциал с электронным управлением Range Rover Sport

По степени блокировки это устройство делится на дифференциал с полной блокировкой и дифференциал с частичной блокировкой шестерен-сателлитов.

Полная блокировка дифференциала предполагает 100%-ную остановку вращения шестерен-сателлитов, при которой сам механизм начинает выполнять функцию обычной муфты, передавая равнозначный крутящий момент на обе полуоси. Вследствие этого оба колеса вращаются с одинаковой угловой скоростью. Если же одно из колес теряет сцепление с дорогой, весь крутящий момент передается на колесо с лучшим сцеплением, что позволит преодолеть бездорожье. Такое устройство дифференциала используется на внедорожниках , и других.

Частичная блокировка дифференциала предполагает неполную остановку вращения шестерен-сателлитов, то есть с проскальзыванием. Достигается такой эффект за счет так называемых самоблокирующихся дифференциалов. В зависимости от того, каким образом срабатывает этот механизм, их делят на два вида: Speed sensitive (функционируют при разнице в угловых скоростях вращения полуосей) и Torque sensitive (функционируют при уменьшении крутящего момента на одной из полуосей). Такое устройство дифференциала используется на внедорожниках Mitsubishi Pajero, Audi с , BMW с системой X-Drive и так далее.

Дифференциалы, относящиеся к группе Speed sensitive, имеют разную конструкцию. Существует механизм, в котором роль дифференциала играет вискомуфта. Она представляет собой резервуар, расположенный между полуосью и ротором карданного вала, заполненный специальной вязкой жидкостью, в которую, в свою очередь, погружены диски, сочлененные с полуосью и ротором. Когда угловая скорость вращения колес разнится (одно колесо вращается быстрее другого), диски в резервуаре тоже начинают вращаться с разными скоростями, но вязкая жидкость постепенно выравнивает их скорость, и, соответственно, крутящий момент. Как только угловые скорости обоих колес сравняются, вискомуфта отключается. По своим характеристикам вискомуфта менее надежна, чем фрикционный дифференциал, поэтому ее устанавливают на машины, предназначенные для преодоления бездорожья средней степени или спортивные модификации автомобилей.

Еще один механизм дифференциала, относящийся к группе Speed sensitive – героторный дифференциал. Здесь роль блокировки, в отличие от вискомуфты, играет масляный насос и фрикционные пластины, которые монтируются между корпусом дифференциала и шестерней-сателлитом полуосей. Но принцип действия во многом схож с таковым у вискомуфты: при возникновении разницы в угловых скоростях ведущих колес насос нагнетает масло на фрикционные пластины, которые под давлением блокируют корпус дифференциала и шестерню полуоси до тех пор, пока скорости вращения колес не сравняются. Как только это происходит, насос перестает работать и блокировка отключается.

Дифференциалы, относящиеся к группе Torque sensitive, тоже имеют разную конструкцию. К примеру, есть механизм, в котором используется фрикционный дифференциал. Его особенностью является разность угловых скоростей вращения колес при движении автомобиля на прямой и в повороте. При езде по прямой дороге угловая скорость обоих колес одинаковая, а при прохождении поворота ее значение различно для каждого колеса. Это достигается за счет установки между корпусом дифференциала и шестерней-саттелитом фрикциона, который способствует улучшению передачи крутящего момента на колесо, утратившее сцепление с дорогой.

Еще один тип дифференциалов — с гипоидным (червячным или винтовым) и косозубым зацеплением. Их условно делят на три группы.

Первая – с гипоидным зацеплением, в которой у каждой полуоси есть собственные шестерни-сателлиты. Они объединятся между собой при помощи прямозубого зацепления, причем ось шестерни располагается по отношению к полуоси перпендикулярно. При возникновении разницы в угловых скоростях ведущих колес, шестерни полуосей расклиниваются, образуется трение между корпусом дифференциала и шестернями. Происходит частичная блокировка дифференциала и крутящий момент передается на ту ось, угловая скорость вращения которой меньше. Как только угловые скорости колес выровняются, происходит деактивация блокировки.

Вторая – с косозубым зацеплением, в которой у каждой полуоси также есть свои шестерни-сателлиты (они винтовые), но их оси располагаются параллельно полуосям. А объединяются эти агрегаты между собой при помощи косозубого зацепления. Сателлиты в этой механизме установлены в специальных нишах на корпусе дифференциала. Когда угловая скорость вращения колес различается, происходит расклинивание шестерен, и они, сопрягаясь с шестернями в нишах корпуса дифференциала, частично блокируют его. При этом крутящий момент направляется на ту полуось, скорость вращения которой меньше.

Третья – с косозубыми шестернями полуосей и винтовыми шестернями сателлитов, которые располагаются параллельно друг другу. Такой тип используется в конструкции межосевого дифференциала. Благодаря планетарной конструкции дифференциала, имеется возможность посредством частичной блокировки смещать крутящий момент на ту ось, угловая скорость вращения колес которой меньше. Диапазон такого смещения весьма широк – от 65/35 до 35/65. При установлении равнозначной угловой скорости вращения колес передней и задней оси дифференциал разблокируется.

Эти группы дифференциалов получили самое широкое применение в автомобилестроении: их устанавливают как на «гражданские» модели, так и на спортивные.

Если говорить об автомобильных коробках передач, то наиболее распространенным вариантом всегда считался механический вид этого устройства, а коробка автомат ассоциировалась скорее с женщиной-водителем. Однако, в последнее время АКПП завоевывает все большую популярность не только у женщин, но и у представителей мужского пола.

Естественно, у каждого из видов имеются свои преимущества и недостатки, поэтому оценивать их как безусловно хороший или несомненно плохой, конечно же нельзя. В данной статье, мы попытаемся немного разобраться в работе автоматической КПП, уделив особое внимание некоторым ее составляющим, а точнее, так называемым сателлитам КПП.

Что такое сателлиты коробки передач?

В автомобильной практике, под понятием «сателлит» подразумевают один из элементов , называемый еще планетарной шестерней. С конструктивной точки зрения – это зубчатое колесо планетарной передачи, оборудованное подвижной осью вращения. Как правило, данная деталь размещается в месте стыка с солнечной шестерней. Солнечная шестерня – центральный элемент, вокруг которой и вращаются зубчатые колеса. Благодаря такой конструкции, принцип работы сателлита напоминает нашу Солнечную систему, вокруг которой вращаются планеты, от сюда и название передачи – планетарная.

Планетарная передача самая важная часть КПП , ведь именно она обеспечивает весь диапазон рабочих взаимоотношений автоматической передаточной коробки, а остальные устройства только помогают качественному ее функционированию.

В наше время, указанный вид получил широкое распространение не только в автомобильном мире, но еще и в повседневной жизнедеятельности человека. К примеру, планетарная передача является основой работы многих электрических шуруповертов.

В автомобильной коробке автомат, как правило, расположено две таких передачи, которые объединены в один компонент. Сюда входят солнечная шестерня (размещена в центре), водило и кольцевая шестерня. Каждая составляющая может играть роль входной или выходной шестерни, или же вообще блокироваться. Передаточное отношение определяется выбором функции каждого компонента. Такая система присутствует на многих АКПП и считается наиболее долговечной, так как из-за незначительной активности зубьев они редко выходят из строя. Кроме того, планетарная передача отличается простотой и компактностью, что позволяет более плавно переключать скорости, избегая разрывов в передачи мощности силового агрегата транспортного средства.

Замена сателлит коробки передач

Когда на шестернях дифференциала (в том числе и сателлитах) появляются трещины или начинают крошится зубья – это верный признак того, что указанный элемент подлежит замене. В случае незначительных повреждений поверхностей скольжения, присутствующий дефект можно устранить путем шлифовки мелкозернистой шкуркой, с последующей полировкой.

Выполняя замену сателлита коробки передач, необходимо выполнить ряд последовательных действий. Для начала выверните болты крепления ведомой шестерни главной передачи, при помощи которых она крепится к коробке дифференциала. Взаимное расположение коробки и шестерни стоит пометить. Затем, установите под шестерню какой-то упор и выпрессуйте из нее коробку дифференциала.

Выполнить эту задачу поможет молоток и выколотка из мягкого металла, через которую будут наноситься удары. Дальше, пользуясь бородком, выбивают фиксирующий штифт оси сателлитов и достают его из коробки. Теперь, когда он в руках, можно без проблем снять ось сателлитов, а за ней, проворачивая шестерни дифференциала, вынуть из коробки и сами сателлиты, вместе с полуосевыми шестернями и опорными шайбами. Проведите осмотр рабочих поверхностей деталей зубьев сателлитов, шлицов и зубьев полуосевых шестерен. Если теория о сильном износе их рабочих поверхностей подтвердилась и Вы заметили, что зубья и правда начали крошится, то процедуру замены лучше не откладывать.

На данном этапе, все, что нужно – это установить на место вышедших из строя деталей, новые элементы и собрать все в обратной последовательности.

Принцип работы сателлитов в коробке передач

Чтобы разобраться в принципе работы сателлитов коробки передач, рассмотрим ее более детально. Функционирование АКПП обеспечивается работой двух основных составляющих – гидромуфтой и уже упомянутой планетарной передачей . Гидромуфта представлена в виде двух лопастных колес, которые помещены в единый корпус, заполненный специальным маслом. Одно из колес – насосное, соединено с коленчатым валом двигателя, а второе – турбинное, непосредственно взаимодействует с трансмиссией.

Когда насосное колесо начинает вращаться, отбрасываемые потоки масла способствуют раскручиванию турбинного колеса, что позволяет передавать крутящий момент в соотношении 1:1. В случае с автомобилем, такой вариант совершенно не подходит, ведь здесь нужно, что бы крутящий момент мог меняться в широких диапазонах.

Поэтому, учитывая данный факт, между насосным и турбинным колесами начали устанавливать дополнительное колесо – реакторное, способное подстраиваться под рабочие режимы движения машины, что выражается либо в его вращении, либо в неподвижности. В неподвижном состоянии, реактор увеличивает скорость потока рабочей жидкости, которая циркулирует между колесами, а чем выше скорость ее движения, тем большее воздействие оказывается на турбинное колесо.

Таким образом, на турбинном колесе увеличивается, тоесть мы влияем на его трансформацию. Благодаря этому, устройство с тремя колесами, можно назвать уже не гидромуфтой, а гидротрансформатором.

Однако, и он не способен полностью трансформировать скорость вращения в нужных пределах. Кроме того, обеспечить движение автомобиля задним ходом, ему также не под силу. Именно поэтому, такое устройство дополняют набором из отдельных планетарных передач, обладающих разным передаточным коэффициентом. Со стороны это может выглядеть так, как будто несколько одноступенчатых КПП поместили в один общий корпус.

Планетарная передача – это механическая система, которая состоит из нескольких шестерен – сателлитов, вращающихся кругом центральной шестерни. Все вместе, сателлиты фиксируются благодаря водилу, а внешняя кольцевая шестерня, имеет внутренние зацепление с планетарными шестернями. Закрепленные на водиле сателлиты, вращаются кругом центральной шестерни, а внешняя шестерня, движется вокруг сателлитов. Разница передаточных отношений достигается путем фиксации разных деталей относительно друг друга.

За переключение передач отвечает система управления, которая изначально была полностью гидравлической, но в современном мире, на помощь ей пришла электроника.

Но почему же, в автоматической коробке передач, чаще всего, применяется именно планетарная передача? Можно же попробовать использовать валы с закрепленными на них шестернями (как в механической коробке)? Ту дело в том, что описанный тип передачи более компактный и обеспечивает быстрое, а главное плавное переключение скорости, без разрыва в передаче мощности мотора. Более того, за счет передачи нагрузки несколькими сателлитами, снижается напряжение зубьев, что обеспечивает сравнительно большую долговечность планетарных передач.

В одинарном варианте такой передачи, крутящий момент передается посредством двух ее элементов: один из которых ведущий, а второй – ведомый. Третий составляющий элемент остается в неподвижном состоянии.

Двухступенчатая планетарная передача представляет собой две объединенные передачи. Она состоит из одной кольцевой шестерни (всегда выходной), двух солнечных и двух наборов сателлитов. Расположение сателлитов в водиле выполнено таким образом, что один размещен ниже второго и не сопрягается с кольцевой шестерней, соединяясь только с другим сателлитом, посредством которого и достигается указанное соединение. Меньшие шестерни, сопрягаются исключительно с меньшей солнечной шестерней, а большие – соответственно, с большей шестерней, а также с меньшими сателлитами.

Преимущества и недостатки использования планетарных механизмов в КПП

Использование планетарных механизмов в КПП имеет ряд преимуществ, среди которых выделяют:

- сравнительно меньшие габариты трансмиссии;

Высокую надежность работы (работоспособность сохраняется даже в случае потери нескольких зубьев центральных колес);

Высокий коэффициент полезного действия при сравнительно больших передаточных числах;

Отсутствие поперечных нагрузок на основных валах;

Возможность отсоединения вала силового агрегата от трансмиссии, конечно, лишь при условии использования фрикционов передаточной коробки (в этом случае, коробка передач одновременно выполняет роль главного фрикциона);

Сравнительно высокую скорость переключения передач, что существенно повышает средний темп движения транспортного средства.

Однако, наряду с преимуществами, также, существуют и некоторые «минусы» применения планетарной передачи в КПП. Основными из них считаются необходимость в повышенном уровне точности изготовления, что объясняется наличием избыточных связей («лишних» сателлитов), и резкое снижение коэффициента полезного действия при работе с большими передаточными числами.

Зачастую, те планетарные передачи, в состав которых входят эпициклические колеса, имеют сравнительно больший уровень КПД, нежели те, которые состоят только лишь из колес внешнего зацепления. По этой причине, в планетарных КПП, применяются самые простые планетарные ряды с эпициклом. Количество переключений одного ряда, как правило, не превышает трех, что значительно упрощает систему управления фрикционами и тормозами. Кроме того, число планетарных рядов одной коробки передач, также, чаще всего, не превышает трех.

Наличие особенностей в проектировании и расчете таких передач, связано с присутствием избыточных кинематических связей (сателлитов). Гранично возможное число сателлитов в одном ряду, ограничивается условием соседства, которое гласит, что их количество должно быть таким, что бы они не соприкасались друг с другом.

Правда в реальности, число сателлитов редко превышает шесть, что объясняется трудностью равномерного распределения нагрузки между ними в случае большого их количества. Вторым необходимым условием существования и нормального функционирования планетарного ряда, является соблюдение условия соосности, а точнее соосности центральных колес, водила и эпицикла. В случае простого планетарного ряда, такое условие выражается в равенстве межосевых расстояний зацепления солнечного колеса и сателлита, а также зацепления сателлита и эпицикла.

Разветвление потока мощности при передаче силовых нагрузок посредством сателлитов, требует принятия определенных мер касательно обеспечения равномерности распределения поступающих нагрузок между всеми сателлитами. Среди основных причин отсутствия такой равномерности, выделяют следующие: неточности, допущенные при изготовлении зубчатых колес; разное межосевое расстояние сателлитов; перекос геометрии осей сателлитов (оси сателлитов и главная ось передачи непараллельные друг другу) и т.д.

В случае отсутствия обеспечения равномерного распределения нагрузки, расхождение в ее величине, у некоторых сателлитов, может достигать показателя в 70%. Выравнивания поступающей нагрузки между всеми сателлитами, можно достигнуть одним из следующих способов:

За счет повышения точности изготовления деталей планетарной передачи

Путем создания плавающего типа водила или одного из центробежных колес, благодаря чему они смогут иметь некую радиальную подвижность относительно корпуса и сопряженных элементов;

За счет применения упругих элементов конструкции (например, за счет использования обода эпицикла с повышенной гибкостью и осей сателлитов с малой жесткостью).

Расчет прочности описанного типа передач, производят по формулах, используемых в работе с цилиндрическими передачами. Определяя расчетный момент, который действует в зубчатом зацеплении, учитывают количество сателлитов, отвечающих за передачу рабочих нагрузок, а также неравномерность нагрузки на их зубья.

При изготовлении элементов планетарных передач, используются такие же материалы, как и при создании обычных зубчатых передач. Зачастую, это машиностроительные и легированные стали углеродистого происхождения, которые дополнительно подвергаются улучшенной термической обработке.

Подписывайтесь на наши ленты в

Дифференциал - механизм распределения крутящего момента входного вала между двумя выходными полуосями ведущих колес или, на автомобилях повышенной проходимости,для распределения крутящего момента между передней и задней ведущими осями.
Это часть трансмиссии, которая на автомобилях классической и переднеприводной компоновки обычно выполняется в виде единого блока с главной передачей ,а на внедорожниках встраивается в раздаточную коробку
Свободный дифференциал всегда делит поступающий на него крутящий момент поровну - не зависимо от того, с равными или с разными скоростями вращаются ведущие колеса (или ведущие оси).

Назначение дифференциала

При движении автомобиля по криволинейным участкам дороги - например, в поворотах - колеса ведущей оси катятся по окружностям разной длины. Внешнее (по отношению к центру поворота автомобиля) колесо проходит больший путь, чем внутреннее. Эта разница тем больше, чем круче поворот. Аналогичная проблема возникает и в движении по прямой, если используются ведущие колеса разной размерности и т.п. Если в этих ситуациях колеса соединить жесткой осью,окажется, что одно колесо вращается быстрей, чем нужно для прохождения заданной траектории,а другое медленней. Значит, оба колеса будут пробуксовывать, испытывать повышенные нагрузки, сильней нагреваться и изнашиваться. Увеличится и расход топлива. Наконец, это нарушает курсовую устойчивость автомобиля и ведет к его заносу или сносу - особенно, на скользких дорогах.
Для компенсации разницы проходимого ведущими колесами пути используется особый механизм - дифференциал. Простейший, свободный дифференциал уравнивает крутящие моменты (или тяговые силы) обоих ведущих колес, и если скорости их вращения (или линейного движения) разные, то и мощности на них пропорциональны этой разнице. Колесо, вращающееся быстрей, тратит на это несколько большую мощность, чем то, которое вращается медленней.
Таким образом дифференциал предназначен для обеспечения вращения ведущих колес с разными угловыми скоростями при постоянно передаче крутящего момента на оба колеса ведущей оси. Эта же логика присутствует и в работе межосевого дифференциала.

Устройство и принцип действия

Дифференциал классической конструкции устроен просто. Например, на заднеприводном автомобиле вращение от ведомого вала коробки передач передается через карданный вал на ведущую коническую шестерню главной передачи, которая находится в постоянном зацеплении с ведомой шестерней главной передачи. Ведомая шестерня является одновременно корпусом дифференциала, в котором перпендикулярно оси ведомой шестерни закреплена ось сателлитов - малых конических шестерен. Последние вращаются вместе с корпусом дифференциала относительно оси ведомой шестерней главной передачи. Сателлиты находятся в постоянном зацеплении с коническими шестернями левой и правой полуосей ведущих колес.
При прямолинейном движении автомобиля сателлиты относительно собственной оси не вращаются. Но каждый, подобно равноплечему рычагу, делит крутящий момент ведомой шестерни главной передачи поровну между шестернями полуосей.
Когда автомобиль движется по криволинейной траектории, внутреннее по отношению к центру описываемой автомобилем окружности колесо вращается медленней,наружное быстрей - при этом сателлиты вращаются вокруг своей оси, обегая шестерни полуосей. Но принцип деления момента поровну между колесами - сохраняется. Мощность же, подаваемая на колеса, перераспределяется,- ведь она равна произведению крутящего момента на угловую скорость колеса. Если радиус поворота настолько мал, что внутреннее колесо останавливается, тогда внешнее вращается с вдвое большей скоростью, чем при движении автомобиля по прямолинейной траектории. Итак, дифференциал не меняет крутящий момент, но перераспределяет между колесами мощность. Последняя всегда больше на том колесе, которое вращается быстрее.

Применение дифференциалов

В автомобилях с одной ведущей осью устанавливается один дифференциал, объединенный с главной передачей. В автомобилях с двумя и более ведущими осями дифференциалы устанавливаются в каждую ведущую ось (например, в трехосном грузовике или автобусе с двумя задними ведущими осями дифференциалы установлены в среднюю и заднюю оси). В автомобилях с подключаемым полным приводом дифференциалы устанавливаются в каждую ведущую ось (у двухосного полноприводного джипа с подключаемым передним ведущим мостом два дифференциала - по одному в каждой ведущей оси), но эксплуатация этих машин с постоянно подключенной передней осью не рекомендуется по причине повышенного износа главных передач и колес из-за неравномерно распределяемой мощности между осями. В свою очередь в автомобилях повышенной проходимости с постоянно подключенными ведущими осями применяют три дифференциала - по одному в каждой ведущей оси и один межосевой, установленный в раздаточной коробке. Межосевой дифференциал распределяет мощность между ведущими осями в зависимости от длины проходимого колесами оси пути. К примеру, передние колеса могут преодолевать возвышение, задние еще двигаться по прямой - передние колеса описывают более длинный путь, чем задние, соответственно, межосевой дифференциал обеспечивает передачу большей части мощности двигателя на переднюю ось, чем на заднюю. На многоосных транспортных средствах с несколькими ведущими осями применяют межтележечный дифференциал.
Дифференциал не применяется на транспортных средствах с одним ведущим колесом - в частности, на мотоциклах и трициклах с двумя передними управляемыми колесами. Если трицикл построен по схеме с одним передним управляемым колесом и двумя ведущими задними, то на нем применяют автомобильный ведущий мост с дифференциалом. Обычно подобные трициклы строят по индивидуальным заказам на базе популярных тяжелых моделей (пример - кастомные трициклы на базе «Харлей-Дэвидсон»).
На гоночных автомобилях на основе серийных моделей (например, на раллийных или для кольцевых гонок) дифференциал перед гонками блокируют, поскольку повороты такие машины проходят на большой скорости и с заносом. В данном случае склонность автомобиля к заносу из-за отсутствия дифференциала считается преимуществом.

Недостаток дифференциала

Главным недостатком дифференциала классической конструкции является проблема пробуксовки колеса, потерявшего контакт с поверхностью дорожного полотна. Когда одно из ведущих колес вращается в вывешенном состоянии его скорость вдвое больше, чем была бы при этих же оборотах ведомой шестерни дифференциала при нормальном движении по прямой. Зато второе колесо вообще не вращается. Причина проста. Момент сопротивления вращению вывешенного колеса ничтожен, соответственно мал и подводимый к нему крутящий момент. Значит, столь же мал крутящий момент и на противоположном колесе - оно стоит. Если же одно из колес буксует - с повышенными оборотами, но с существенным сопротивлением (например, в грязи, песке и т.п.), то такой же крутящий момент поступает и на другое, не буксующее, колесо. В результате автомобиль может двигаться с небольшой скоростью. При этом на буксующее колесо подается более высокая мощность - она тратится на нагрев шины, дороги и т.д. Эффект пробуксовки снижает проходимость автомобиля со свободным дифференциалом. Для решения этой проблемы автомобили оснащают механизмами блокировки дифференциала - ручной или автоматической - различной конструкции.

Механизмы блокировки дифференциала

  • Ручная блокировка дифференциала

Самым простым способом блокировки дифференциала является применение механизма с ручным управлением. Этот вид блокировки применяется на автомобилях повышенной проходимости. Блокировка производится блокировочными муфтами, которые фиксируют сателлиты. Дифференциал отключается. К достоинствам данного типа блокировки можно отнести простоту и надежность конструкции, к недостаткам - необходимость точно оценивать дорожную обстановку и отключать блокировку дифференциала при движении по качественным дорогам во избежание поломок главной передачи и ведущего моста в целом.

  • Блокировка дифференциала с электронным управлением

На современных полноприводных легковых автомобилях повышенной проходимости с развитым компьютерным управлением работой агрегатов и механизмов устанавливают антипробуксовочную систему с электронным управлением. Как только бортовой компьютер автомобиля (или электронный блок антипробуксовочной системы) получает от датчика вращения сигнал о том, что одно колесо оси вращается значительно быстрей второго, свободное колесо притормаживается рабочим тормозом - благодаря свободному дифференциалу мощность передается на колесо, которое не утратило контакта с дорожным покрытием. Эта система требует наличия системы раздельного привода тормозов всех четырех колес и точной отладки датчиков.
Антипробуксовочные системы позволяют достаточно тонко регулировать распределение мощности в зависимости от состояния дорожного покрытия и избежать потерь мощности двигателя при срабатывании дифференциала. С другой стороны, управляющая система из датчиков и исполнительных приводов тормозов (на соленоидах) обладает инерционностью, поэтому работает с некоторым запозданием, что приходится учитывать водителю.
На гоночных автомобилях иногда применяются фрикционные дифференциалы с тормозными ленточными механизмами, управляемыми электроникой.

  • Автоматическая блокировка с применением фрикционной муфты

На спортивные автомобили, выпускаемые малыми сериями или по заказу, иногда устанавливают фрикционные самоблокирующиеся дифференциалы. На серийных машинах эти дифференциалы редкость, поскольку они требуют особого обслуживания и подвержены интенсивному износу.
Фрикционные муфты устанавливаются между полуосевыми шестернями и корпусом дифференциала. При прямолинейном движении автомобиля полуоси вращаются с одинаковой угловой скоростью - сила трения во фрикционных муфтах равна нулю, дифференциал распределяет мощность между колесами ведущей оси поровну. Как только одна из полуосей начинает вращаться быстрей, диски фрикционной муфты сближаются, за счет возникающих сил трения муфта притормаживает вращение свободной полуоси. Этот тип дифференциала отличается невысокой эффективностью при большой разнице в угловых скоростях ведущих колес (например, на поворотах с малым радиусом закругления).

Его основное предназначение заключается в распределении, изменении и передачи крутящего момента, а при необходимости, для обеспечения вращения двух потребителей с различными угловыми скоростями.

Межколесный дифференциал – это дифференциал, предназначенный для привода ведущих колес, если же он установлен между ведущими мостами в полноприводном автомобиле – межосевой интервал.

Как правило, дифференциал автомобиля располагается в следующим местах:

  • Привод ведущих мостов в полноприводном автомобиле – в раздаточной коробке
  • Привод ведущих колес в полноприводном автомобиле – в картере заднего и переднего моста
  • Привод ведущих колес в переднеприводном автомобиле — в коробке передач
  • Привод ведущих колес в заднеприводном автомобиле – картер заднего моста

В основе дифференциала лежит планетарный редуктор. Используемый в редукторе вид зубчатой передачи условно делит дифференциал на три следующих вида:

  • Червячный
  • Цилиндрический
  • Конический

Червячный – самый универсальный дифференциал и может быть установлен как между осями, так и между колесами. Цилиндрический тип, как правило, располагается в автомобилях между осями. Конический тип применяется в основном как межколесный.

Различают также несимметричный и симметричный дифференциалы автомобиля. Несимметричный тип устанавливается между двумя приводными осями и позволяет передавать крутящий момент в различных пропорциях. Симметричный тип, как правило, устанавливается на главных передачах и позволяет передает на два колеса равный по значению крутящий момент.

Устройство автомобильного дифференциала

Основными элементами дифференциала являются:

  • Полуосевые шестерни
  • Шестерни сателлитов
  • Корпус

Схема дифференциала переднеприводного автомобиля:
1 — ведомая шестерня главной передачи; 2 — фрагмент ведущей шестерни главной передачи; 3 — ось сателлитов; 4 — сателлит; 5 — корпус дифференциала; 6 — правый фланцевый вал; 7 — сальник; 8 — конический роликовый подшипник; 9 — полуосевая шестерня; 10 — левый фланцевый вал; 11 — фрагмент картера коробки передач.

Шестерни сателлитов по своему принципу работы напоминают планетарный редуктор и служат для соединения между собой корпуса и полуосевой шестерни. Последние в свою очередь соединяются с помощью шлицов с ведущими колесами. В различных конструкциях используются четыре или два сателлита, в легковых автомобилей чаще используется второй вариант.

Чашка дифференциала или корпус – ее основное предназначение заключается в том, чтобы передавать через сателлиты крутящий момент от главной передачи к полуосевым шестерням. Внутри него располагаются оси для вращения сателлит.

Солнечные или полуосевые шестерни – предназначены для передачи крутящего момента с помощью полуосей на ведущие колеса. Левая и правая шестерни могут иметь как одинаковое, так и различное между собой число зубцов. В свою очередь шестерни с различным число зубов используются для образование несимметричного дифференциала, а с одинаковым количеством – для симметричного.

Принцип работы автомобильного дифференциала

Работает дифференциал следующим образом: вращая одно из ведущих колес автомобиля, второе начнет вращаться в противоположном направлении, но при этом должно выполняться условие неподвижности карданного вала. В данном случае стеллиты вращаются в свих осях, играя роль шестерни.

Если завести двигатель и включить сцепление и любую из передач, начнет свое вращение карданный вал, передающий свой крутящий момент через цилиндрические и конические шестерни коробке дифференциала.

Таким образом, во время движения автомобиля по кривой траектории одно колесо замедляет свой ход, второе наоборот увеличивает его. В результате устраняется пробуксовка и скольжение колес и каждое из них вращается с той скоростью, которая необходима для безопасного движения.

Во время движения автомобиля по прямой, ничего особенного не происходи и дифференциал передает крутящий момент на оба колеса в одинаковом соотношении. Шестерни полуосевые вращаются с одинаковой угловой скоростью, так как сателлиты в этом случае находятся в неподвижном состоянии.

При движении на скользких покрытиях дифференциал обладает одним существенным недостатком – он может вызвать боковой занос машины, так как на буксующем колесе низкая сила сцепления с покрытием и оно начинает вращаться в холостую.

Самые простейшие дифференциалы автомобиля обладают еще одним недостатком. При попадании грязи или прочих сторонних элементов между шлицами крутящий момент может передаваться в различном соотношении, даже 0 к 100. Таким образом, одно колесо останется в абсолютно статичном положение.

Современные модели практически лишены данного недостатка. Их устройство отличается ручной или автоматической более жесткой . Более того, во многих легковых современных машинах устанавливаются системы стабилизации и курсовой устойчивости, позволяющие оптимизировать в зависимости от траектории движения автомобиля распределение крутящего момента.

Как работает дифференциал — видео:

На этом всё, теперь вы знаете устройство дифференциала.