Что такое система зажигания. Современные автомобильные системы зажигания

Система зажигания двигателя нужна для воспроизводства токов повышенного значения и раздачи его на контактные свечи воспламенения топлива. С учетом изменения оборотов коленчатого вала и нагрузок на мотор импульс высоковольтного напряжения подается к свечам в заданный период. В наше время автомобили оборудуют контактными и бесконтактными системами момента воспламенения.

Устройство контактной системы зажигания

Низковольтные токи служат источником питания и исходят от генератора и аккумулятора автомобиля.

Как правило, значение такого напряжения равно двенадцати-четырнадцати вольтам. А для воспроизводства момента искры в свечах запала нужно подать на них до двадцати тысяч вольт. Учитывая этот фактор, система воспламенения имеет в своей конструкции две различные электрические цепи. Схема системы зажигания собрана из следующих устройств и элементов: АКБ, катушки, трамблера, регуляторов опережения воспламенения вакуумного и центробежного типов, контактных свечек, электропроводов, замкового устройства включения.

Отдельные элементы системы

Для преобразования токов низкого вольтажа в высокие в конструкции предусмотрена установка устройства катушки зажигания. Расположена она в подкапотном пространстве, как и большая часть элементов и механизмов воспламенения. Главный способ работы таковой следующий: по виткам обмотки не высокого вольтажа проходят электротоки, и в этот момент около обмотки преобразуется магнитное поле. В том случае, если прекратить подачу напряжения в витках, исчезнувшее магнитное поле возбуждает токи уже непосредственно в витках высокого напряжения. Процесс преобразования двенадцати вольт в двадцать тысяч происходит за счет разности витков в обмотках катушек. Именно такой высокий показатель напряжения необходим для образования искры между контактами свечей.

Работа прерывателя

Правильная работа системы зажигания невозможна без такого механизма, как прерыватель токовых напряжений не высоких показателей. Его работа заключается в том, чтобы прерывать токи в обмотках малого напряжения. Это, в свою очередь, способствует образованию высокого напряжения.

Далее ток направляется на основной контакт, расположенный под крышкой устройства распределителя. Гибкая пружина передвижного контакта все время прижимает его к неподвижному элементу, а расходятся они лишь на короткий промежуток времени. Это происходит в момент, когда кулачок валика привода механизма прерывателя воздействует на молоточек передвижного контакта.

Конденсатор

Чтобы исключить факт подгорания контактов в момент их размыкания, к ним параллельно подключен конденсатор. В период расхождения контактов механизма распределителя между кулачками возможно искрообразование. В этом случае конденсатор служит для поглощения большей части электроэнергии и сводит возможность образования искры к минимуму. Дополнительно он сопутствует увеличению напряжения во вторичных витках обмотки катушки. В момент срабатывания контактов прерывателя конденсирующее устройство отдает свой ток и таким образом создает обратные токи в цепи низкого напряжения. Это способствует ускорению исчезновения магнитных полей. И чем скорее это произойдет, тем выше будут токи в линии высоких напряжений. В том случае, когда конденсатор трамблера выйдет из строя, мотор также не будет запускаться и работать. Параметры напряжения витков будут слишком малы для возникновения оптимального искрообразования. Искра между электродами свечи будет «бедной», а этого недостаточно для воспламенения топливной смеси. Контакты прерывателя низких токов и распределитель высоких напряжений установлены в корпусе трамблера и приводятся в действие за счет коленчатого вала мотора.

Крышка трамблера

Раздача высокого напряжения на свечи цилиндров силового агрегата осуществляется за счет распределительной крышки трамблера. После образования в катушке токов высоких показателей они поступают на основной контакт колпака распределителя-прерывателя, а уже затем, через подвижной элемент, на пластину ротора. В то время, когда ротор вращается, напряжение проскакивает с пластины на контакты распределительной крышки.

Затем короткие импульсы по бронепроводам высокого напряжения поступают непосредственно на Контакты распределительной крышки имеют определенную нумерологию, которая соответствует определенному цилиндру двигателя.

Именно так и устанавливается момент работы цилиндров. Определенный порядок работы предусматривает равномерное распределение нагрузки на коленвал. В основном четырехцилиндровые моторы имеют следующий порядок работы: 1-3-4-2. Но он может несущественно изменяться в зависимости от производителя. В данном случае формула порядка работы означает, что изначально воспламенение происходит в первом цилиндре, затем в третьем, четвертом и втором. При этом система зажигания двигателя предусматривает подачу напряжения на свечи в момент окончания такта сжатия. Это происходит за счет установки

Опережение момента искрообразования необходимо из-за высокой скорости перемещения поршней в цилиндрах. В том случае, когда топливная смесь будет воспламеняться несколько позже или раньше предусмотренного, коэффициент полезного действия расширяющихся газов значительно снизится. Поэтому воспламенение топлива должно осуществляться в заданный момент, когда поршень подходит к ВМТ. При правильно установленном угле опережения на поршень будет воздействовать оптимальное количество газов, необходимое для нормальной работы двигателя. Угол опережения выставляется путем проворачивания корпуса прерывателя. Так подбирается определенный момент, когда контакты прерывателя разводятся.

Регулятор центробежный

Центробежный регулятор обеспечивает установку правильного угла опережения воспламенения в зависимости от оборотов двигателя. Конструкция механизма регулятора представляет собой пару грузов, которые вращаясь, воздействуют на пластину с контактами прерывателя.

Вакуумный регулятор

В зависимости от степени нагрузки на двигатель момент образования искры корректируется вакуумным регулятором. Это устройство монтируется на корпус трамблера. Вакуумный регулятор состоит из двух камер, разделенных диафрагмой. Одна камера взаимодействует с атмосферой, а вторая при помощи патрубка с емкостью дросселя. При помощи штока диафрагма имеет соединение с пластиной, которая оснащена контактами прерывателя.

С увеличением угла поворота дроссельной заслонки происходит уменьшение разряжения в полости дросселя. При этом диафрагма перемещает пластину на незначительный угол совместно с контактами по направлению к кулачку привода прерывателя. Исходя из этого, размыкание происходит с задержкой, и, соответственно, меняется угол.

Свечи искрообразования (система зажигания контактная)

Система зажигания оснащена стандартными элементами запала. Контактные элементы искрообразования нужны для преобразования электрической энергии в искру, для воспламенения топливной смеси в цилиндрах двигателя. В тот период, когда электрический импульс передается на свечи, ее контакты способствуют образованию искрового пробоя. Эта деталь является неотъемлемым элементом системы зажигания.

Бронепровода

Система зажигания контактная, система зажигания других типов в своем комплекте имеют оснащение бронепроводами, которые могут без повреждений и потерь пропускать через себя высоковольтное напряжение. В частности это электрический гибкий провод, с одной медной жилой и многослойной изоляцией.

При этом контактный провод выполнен в форме спирали, что исключает радиопомехи. Как правило, данные провода устанавливаются на свечи. При длительном использовании изоляция проводов может приобрести микротрещины, через которые возможны потери импульсов высоких значений.

Неисправности системы зажигания и их устранение

Первой и наиболее распространенной поломкой может быть отсутствие искры на свечах. Причинами такой неисправности могут служить следующие моменты:

  • Обрыв электропроводов в цепи низкого напряжения или же окисление их соединительных контактов.
  • Подгорание контактов распределителя и их разрегулировка.
  • Выход из строя катушки, перегорание конденсатора, дефекты крышки распределителя, повреждение бронепроводов и самих свечей.
  • Излишняя влага в устройствах.

Устранение неисправностей возможно следующим методом:

  • Проверка контрольно-измерительным прибором всей цепи и проводки.
  • Очистка контактов трамблера от нагара и регулировка зазора.
  • Замена неисправных и подозрительного состояния деталей системы.

Случается, что когда проворачивается ключ зажигания, не срабатывает стартер, а все системы визуально работают, в этом случае необходимо обратить внимание на блок предохранительных элементов, так как возможно перегорание или окисление посадочного места предохранителя, отвечающего за включение стартера.

Если двигатель автомобиля работает нестабильно и не развивает полной мощности, то причины могут крыться в следующем:

  • Выход из строя одной из свечей зажигания.
  • Слишком большой или, наоборот, маленький зазор на свечах и контактах распределителя.
  • Механическое повреждение ротора или крышки трамблера.
  • Неверно установлен угол опережения.

Ремонт заключается в следующем:

  • Установка новых деталей.
  • Регулировка необходимых зазоров.
  • Регулировка угла искрообразования.

Схема контактной системы зажигания довольно проста и широко применяется на различных автомобилях.

С применением новых технологий элементов зажигания автомобили постоянно усовершенствуются и модифицируются. К примеру, более новые модели машин различных производителей давно применяют электронные системы зажигания. При появлении неполадок в системе можно легко определить причину их возникновения и провести ремонт. Контактная система зажигания автомобиля ВАЗ не имеет кардинальных отличий от элементов иных производителей и обладает высокой эксплуатационной надежностью. При этом недорога в ремонте.

Контактно-транзисторная система

По сравнению с обычной контактной системой контактно-транзисторная имеет в своем оснащении транзистор. Применение его способствует улучшению рабочих характеристик и показателей. С установкой транзистора систему стали оснащать коммутатором.

Устройство контактно-транзисторной системы зажигания не сильно отличается от обычного зажигания и его принципа работы. Но все же она имеет некоторые незначительные отличия.

Ее главной отличительной особенностью является возможность воздействия прерывателя на устройство транзистора, а не на обмотку катушки. Во время прерывания токов в обмотке низкого напряжения в витках обмотки высокого напряжения происходит его образование.

Контактная система зажигания (ВАЗа в том числе) имеет ряд положительных характеристик.

Управление процессами, которые присущи катушке зажигания, способствует возможности повышения значений токов в первичной витковой обмотке, а в результате этого возможно:

  • Увеличение значений вторичного напряжения.
  • Увеличение зазоров между электродами свечей.
  • Улучшение и более стабильный момент искрообразования.
  • Облегчить запуск мотора в холодное время года.
  • Увеличение оборотов и мощности двигателя.

Подобная контактно-транзисторная система зажигания, предусматривает подключение катушки с отдельной первичной и вторичной обмотками.

При этом данная система снижает нагрузку на контакты прерывателя и уменьшает риск их подгорания. Это возможно из-за уменьшения показателей проходящих токов. Благодаря этому факту повышается степень надежности и долговечности всей системы.

К недостаткам такого зажигания можно отнести следующее: напряжение токов, поступающих к транзистору, оказывает значительное влияние на его работу. Понижение показаний токов, связанных с состоянием контактов прерывателя, сильно влияет на эксплуатационные показатели контактно-транзисторного зажигания. Неисправности системы зажигания данного типа идентичны неисправностям обычной контактной системы и устраняются таким же образом. Но дополнительно могут возникнуть проблемы с нарушением нормальной работы транзистора и коммутатора.

Система запуска двигателя

Запуск двигателя невозможно осуществить без дополнительных электронных устройств. В данном контексте речь пойдет о таком механизме, как стартер автомобиля. Этот механизм представляет собой электродвигатель, который приводит в первоначальное движение коленчатый вал мотора до момента воспламенения в цилиндрах и пуска двигателя. В работу стартер включается поворотом ключа в замке в соответствующее положение. Токи через реле зажигания поступают от аккумулятора к виткам стартера и приводят его в действие.

Если рассматривать подробно, то процесс пуска двигателя производится в три этапа:

  1. Втягивающий механизм стартера заводит пусковую шестерню в зацепление с венцом маховика.
  2. Далее происходит вращение ротора стартера совместно с приводной шестерней, а та, в свою очередь, передает крутящий момент на коленчатый вал, что приводит к запуску силового агрегата.
  3. После того как двигатель запускается, а ключ зажигания возвращается в исходное положение, втягивающий механизм выводит приводную шестерню стартера из зацепления с маховиком.

Назначение реле

Любое электрическое реле - это предохранительное устройство, которым оснащается система зажигания. Контактная система зажигания в этом плане тоже не исключение. Основным его назначением является размыкание и замыкание разнообразных участков в электрических цепях автомобиля. Устройства имеют различия по конструкции и способу управляющего сигнала, а также по установке. В данный момент широкое применение получили

Говоря простыми словами, этот вид электрооборудования авто предохраняет различные элементы от высоких токовых нагрузок. Попросту оно служит переключателем. В частности в системе зажигания реле предохраняет стартер автомобиля и генератор от воздействия на них высоких токов. К примеру, для запуска двигателя нужно провернуть и включить стартер в работу, который, в свою очередь, потребляет от 80 до 300А.

В этом случае если не использовать реле, то замок может сгореть, а также и некоторые элементы проводки. Для того чтобы этого не произошло, в систему включают реле зажигания. Когда на корпусе устройства имеется изображение значка диода, то это означает, что при его подключении важно соблюдать полярность клемм. В противном случае поломка неизбежна.

Заключение

В итоге стоит отметить, что первой, получившей широкое распространение на автомобильном рынке, была система зажигания контактная. Система зажигания эта использовалась достаточно уверенно, но на данный момент считается морально устаревшей. Самым слабым местом ее как раз и оказалось наличие в конструкции трамблера контактной пары. Ведь она требовала периодического обслуживания, сводившегося к потребности в проверке и регулировке зазора между контактами, чистке поверхности контактов от различного рода следов подгорания, которые могли значительно повлиять на работоспособность элементов в целом. На смену данной системе пришла бесконтактная, которая таких обслуживающих работ не требует и характеризуется автомобилистами как более надежная.

Итак, мы выяснили, какой имеет принцип работы контактно-транзисторная система зажигания автомобиля.

Одним из основных условий успешного запуска двигателя есть наличие исправной системы зажигания, отвечающей за воспламенение топливовоздушной смеси путем искрообразования в нужном цилиндре силового агрегата. Учитывая всю важность указанной системы, знание ее устройства и принципов работы пригодится любому автолюбителю, чтобы в случае необходимости можно было самостоятельно устранить возникшую неисправность.

1. Особенности системы зажигания

Основными требованиями , которые обычно предъявляются к системе зажигания, есть:

1. Необходимость образования искры в цилиндре (находящемся на такте сжатия) соответственно общему порядку работы цилиндров;

2. Обеспечение своевременного момента зажигания, то есть искра должна появляться в конкретный момент, который соответствует оптимальному углу его опережения (при текущих рабочих условиях мотора) и зависит как от оборотов двигателя, так и от нагрузки на него;

3. Снабжение искры достаточной энергией, то есть тем ее количеством, которое необходимо для возгорания рабочей смеси (на этот показатель оказывает влияние состав, плотность и температура рабочей смеси);

4. Рабочая надежность, выражающаяся в непрерывном искрообразовании.

На сегодняшний день существует несколько видовых вариантов системы зажигания, среди которых выделяют контактную, бесконтактную и электронную. Все они имеют ряд общих особенностей. Например, в данных системах отсутствует традиционный распределитель, а его место занимает четырехвыводная катушка зажигания, в состав которой входят две двухвыводные, объединенные в один блок.

В первичных обмотках зажигания, управление током осуществляется с помощью специального контроллера, который получает информационные данные от соответствующих датчиков. Положительной особенностью системы зажигания есть отсутствие в ней подвижных деталей, благодаря чему она не нуждается в постоянном обслуживании или регулировках , а в рабочих целях используется метод распределения искры, который еще часто именуют «методом холостой искры». Цилиндры силового агрегата объединены в пары – 1 с 4, а 2 с 3, причем образование искр проходит сразу в двух цилиндрах: в том, где заканчивается такт сжатия, и в том, где проходит такт выпуска.

Учитывая, что ток в обмотках катушек имеет постоянное направление, образование искры на одной свече всегда проходит от центрального электрода на боковой, а на второй – наоборот, от бокового на центральный. Процесс управления зажиганием выполняется специальным контролером. Датчик положения коленвала передает ему некий опорный сигнал, исходя из которого, контроллер проводит расчет последовательности срабатывания катушек модуля зажигания, а для того чтобы управление было точным, устройству нужна следующая информация:

- частота вращения коленвала силового агрегата;

Нагрузка, которую испытывает мотор автомобиля;

Температура охлаждающей жидкости системы;

Положение коленвала;

Положение распредвала;

Наличие детонации.

Несмотря на некоторое конструктивное различие разных систем зажигания, можно выделить следующие, общие элементы всех устройств:

1. Источник питания – бортовая сеть автомобиля, вместе со своими источниками, представленными в виде аккумуляторной батареи и генератора;

2. Выключатель зажигания;

3. Устройство, отвечающее за управление накопителем энергии. В его задачу входит определение момента начала накопления и момента передачи энергии на свечу зажигания, то есть определение самого момента зажигания. Исходя из конструктивных особенностей системы зажигания конкретного автомобиля, данное устройство может иметь разный вид.

Механический прерыватель – осуществляет непосредственное управление процессом накопления (первичной цепью) и отвечает за замыкание/размыкание питания первичной обмотки. Контакты прерывателя можно увидеть, заглянув под крышку распределителя. Пластичная пружина подвижного контакта прижимает его к недвижимому контакту. Их размыкание выполняется только на короткий срок, а конкретно в момент, когда набегающий кулачок валика привода оказывает давление на молоточек подвижного контакта.

Параллельно контактам включен и конденсатор, который предотвращает их обгорание в момент размыкания. Это стало возможным благодаря поглощению большей части электроразряда, из-за чего существенно уменьшается искрение. Однако, это еще не все полезное влияние конденсатора. Вторая половина преимущества его присутствия базируется на создании в цепи низкого напряжения обратного тока, что положительно влияет на скорость исчезновения магнитного поля. Чем быстрее это произойдет, тем больший ток появится в цепи высокого напряжения. Если конденсатор выйдет из строя – мотор не сможет нормально работать, ведь силы напряжения во вторичной цепи не хватит, чтобы обеспечить стабильное искрообразование.

Прерыватель находится в том же корпусе, что и распределитель высокого напряжения, из-за чего последний получил название прерывателя-распределителя, а саму систему стали называть «классической системой зажигания».

Вместе с прерывателем-распределителем в корпусе находится еще одна важная деталь - центробежный регулятор опережения зажигания , использующийся с целью изменения момента образования искры в соответствии со скоростью вращения коленвала. Менять момент возникновения искры между электродами свечей способен и вакуумный регулятор опережения зажигания, только он делает это в зависимости от нагрузки на мотор автомобиля.

Если механический прерыватель оборудован транзисторным коммутатором, то в этом случае он управляет только ним, а тот, в свою очередь, отвечает за управление процессом накопления энергии. Такая конструкция существенно превосходит аналогичные устройства без транзисторного коммутатора, так как здесь контактный прерыватель более надежный, чему способствует протекание сквозь него тока меньшей силы, а значит, пригорание контактов во время размыкания практически полностью исключается. Соответственно, конденсатор, параллельно подключенный к контактам прерывателя, тут просто не нужен, а в остальном – система полностью идентична классическому варианту. Обе системы, имеющие механический прерыватель, обладают общим названием - «контактные системы зажигания».

Системы с транзисторным коммутатором, оборудованные бесконтактным датчиком (импульсным генератором), могут быть индуктивного типа, основанными на эффекте Холла или относиться к оптическому типу. В данном случае место механического прерывателя занимает импульсный датчик-генератор с преобразователем сигналов, который посредством транзисторного коммутатора осуществляет управление накопителем энергии. Как правило, датчик-генератор расположен внутри распределителя, конструкция которого ничем не отличается от конструкции аналогичной детали в контактной системе, поэтому указанный узел получил название «датчика-распределителя».

Одна из вариаций такой системы, оборудованная распределителем механического вида и катушкой зажигания, размещенной отдельно от распределителя и коммутатора, называется «бесконтактной системой зажигания». Конечно, существует много ее вариантов, предусматривающих применение одного или нескольких соответствующих датчиков.

Также, на основе управления зажиганием выделяют еще один вариант систем – микропроцессорные системы зажигания, которые оборудованы микропроцессорным блоком зажигания (или блоком управления работой мотора с подсистемой управления зажигания), а также имеют датчики и коммутатор. В таком случае, блок управления получает данные о работе силового агрегата (количестве оборотов, положении коленвала, положении распредвала, нагрузках на мотор и температуре охлаждающей жидкости) от датчиков, и уже исходя из результатов их алгоритмической обработки, осуществляет управление коммутатором, который, в свою очередь, управляет накопителем энергии. Процесс регулировки опережения зажигания реализован в блоке управления программно.

В системе зажигания электронного типа, в роли устройства управления накопителем энергии, выступает электронный блок управления (ЭБУ), который является главной составной частью такой системы. Его работа базируется на сборе информации, получаемой от различных датчиков (положения коленвала, положения распредвала, датчика детонации, датчика угла открытия дросселя), на расчете оптимального момента зажигания и времени зарядки катушки, а также через коммутатор – он отвечает за управление первичной цепью катушки.

На выпускаемых сегодня автомобилях блок управления зажиганием объединен с блоком, отвечающим за впрыск топлива.

4. Накопители энергии, которые, в зависимости от типа системы, могут разделяться на две группы:

С накоплением энергии в катушке (катушках) зажигания, где энергия собирается в первичной обмотке, а при размыкании первичной цепи, во вторичной образуется высокое напряжение, подающееся впоследствии на свечи зажигания. Такой вариант системы есть наиболее распространенным.

С накоплением энергии в конденсаторе, после чего, в нужный момент, она проходит через катушку зажигания. Во второй цепи также проходит индуцирование высокого напряжения, которое позже подается на свечи. Устройство накопителя энергии такого типа часто называют «зажиганием от разряда конденсатора» или «конденсаторным зажиганием», обозначая аббревиатурой CDI (Capacitor Discharge Ignition). Такая система хоть и не часто, но встречается на автомобилях, правда большее распространение она получила на мотоциклах, гидроциклах и скутерах. Ее главная отличительная черта в том, что энергия искры не зависит от оборотов мотора.

5. Система распределения зажигания. На транспортных средствах может применяться один из двух типов такой системы: система оборудована механическим распределителем или же система статистического распределения.

- Системы, обладающие механическим распределителем энергии, как правило, работают посредством трамблера, который и распределяет напряжение по свечам цилиндров силового агрегата. В системах зажигания контактного типа он, зачастую, объединен с прерывателем, а в бесконтактных – с импульсным датчиком. В более модернизированных системах трамблер либо вообще отсутствует, либо совмещен с катушкой зажигания, коммутатором и датчиками различных систем (CID, HEI, CIC).

Системы, основывающиеся на статическом распределении энергии, пришли на смену классическому распределителю. Они получили свое название из-за того, что у них отсутствуют движущиеся части, которые обычно входят в конструкцию распределителя. Системы такого рода обозначают аббревиатурой DLI (DistributorLess Ignition) и DIS (DistributorLess Ignition System), что означает "система без распределителя", и DI (Direct Ignition), подразумевающие "систему прямого, или непосредственного зажигания". DLI – имеет отношение ко всем системам без высоковольтного распределителя; DI - относится только к тем, в которых присутствуют индивидуальные катушки, а DIS – это системы синхронного зажигания, обладающие двухвыводными катушками. Возможно, такой подход и не совсем верный, но именно он чаще всего употребляется.

6. Высоковольтные провода. Выступают в роли соединительного элемента между накопителем энергии и ее распределителем (или свечами), а также соединяют распределитель со свечами зажигания. В системах зажигания типа COP («катушка на свече») данный элемент отсутствует.

7. Свечи зажигания. Применяются с целью создания искрового разряда и последующего воспламенения рабочей смеси, находящейся в камере сгорания. Свечи зажигания располагаются в головке цилиндра, и как только на них попадает импульс тока высокого напряжения, между их электродами тут же проскакивает искра, воспламеняющая рабочую смесь.

На большинстве транспортных средств обычно установлено по одной свече в каждый цилиндр, но иногда встречаются и более сложные системы, обладающие двумя свечами, причем они не всегда срабатывают одновременно. Например, при малых оборотах двигателя сначала срабатывает та свеча, которая находится ближе к впускному клапану, а за ней уже вторая, которая обеспечивает более быстрое и полное сгорание топливовоздушной смеси.

3. Как работает система зажигания?

Несмотря на то, к какому типу относится та или иная , все они имеют несколько общих рабочих этапов, предусматривающих накопление нужного заряда, его высоковольтное преобразование, распределение, образование на свечах искр и возгорание топливной смеси. Любой из них требует слаженной и точной работы, а значит, стоит выбирать только проверенные устройства, доказавшие свою надежность. В этом плане наилучшим вариантом принято считать электронную систему зажигания, где всем рабочим процессом (подачей искры и ее распределением по свечам) управляет электроника.

Электронная система зажигания – это не отдельный, самостоятельный компонент, а составляющая часть системы управления мотором, которая основывается на работе датчика положения , датчика, фиксирующего частоту его вращения и датчика массового расхода воздуха. Получив от них нужную информацию, ЭБУ принимает решение касательно момента подачи искры и распределения зажигания. Естественно, в блоке управления уже прописаны определенные команды, выполняющиеся после получения и анализа данных с упомянутых датчиков.

В такой системе воспламенения топливной смеси, полностью исключены механические движущиеся части, а благодаря специальным датчикам и особому блоку управления, образование и подача искры проходят намного быстрее и надежнее, нежели у аналогичных систем контактного и бесконтактного типа. Этот факт позволяет улучшить работу мотора, увеличив его мощность и снизив потребление топлива. Более того, нельзя не отметить высокую рабочую надежность устройств данного типа.

отличается тем, что не зависит напрямую от размыкания контактов, а главную роль в процессе образования искры здесь выполняет транзисторный коммутатор и специальный датчик. Отсутствие прямой зависимости от качества и чистоты поверхности контактной группы гарантирует более эффективное искрообразование. Однако, как и в контактном варианте системы зажигания, здесь также используется прерыватель-распределитель, отвечающий за своевременную передачу тока на свечу зажигания. Рабочий принцип бесконтактной системы предусматривает выполнение следующих действий.

Когда коленвал двигателя приходит в движение, датчик-распределитель формирует соответствующие импульсы напряжения и направляет их на транзисторный коммутатор, задача которого – создавать импульсы тока в первичной обмотке катушки зажигания. В момент прерывания во вторичной обмотке катушки проходит индуцирование тока высокого напряжения. Он подается на центральный контакт распределителя, а оттуда, посредством проводов высокого напряжения, поступает на свечи зажигания. Последние и осуществляют воспламенение топливовоздушной смеси.

В случае увеличения оборотов коленвала, за регулировку угла опережения зажигания отвечает центробежный регулятор, а при изменении нагрузки на силовой агрегат эта задача возлагается на вакуумный регулятор опережения зажигания.

Принцип работы контактного зажигания несколько отличается от вариантов, приведенных выше. Когда контакт прерывателя пребывает в замкнутом состоянии, ток низкого напряжения проходит по первичной обмотке катушки. В процессе их размыкания, во второй катушке происходит индуцирование тока высокого напряжения, и посредством высоковольтных проводов он передается на крышку распределителя, после чего расходится по свечам зажигания с определенным углом опережения зажигания.

Как только обороты коленвала увеличиваются, возрастают и обороты вала прерывателя-распределителя, вследствие чего грузики центробежного регулятора начинают расходиться, перемещая подвижную пластину вместе с кулачками прерывателя. Это приводит к тому, что размыкание контактов происходит несколько раньше, из-за чего увеличивается угол опережения зажигания. С уменьшением оборотов коленвала угол опережения зажигания тоже уменьшается.

Более модернизированным типом контактной системы является ее контактно-транзисторный вариант. Он отличается наличием транзисторного коммутатора в цепи первичной обмотки катушки, управление которым выполняется посредством контактов прерывателя. За счет его использования, удалось добиться снижения силы тока в цепи первичной обмотки, что положительно сказалось на длительности эксплуатации контактов прерывателя.

Подписывайтесь на наши ленты в

Система зажигания предназначена для поджигания топливовоздушной смеси в бензиновых и газовых двигателях внутреннего сгорания. Поджог осуществляется за счет электрического разряда между электродами свечи при подведении к ней напряжения в 18000 – 20000 Вольт.

Основные составные части системы зажигания (каждый из элементов описан подробно ниже):

  • выключатель зажигания;
  • катушка зажигания;
  • прерыватель-распределитель;
  • регуляторы опережения зажигания;
  • свечи зажигания;
  • провода, соединяющие данные элементы.

Система зажигания с распределителем

На рисунке 10.6 приведена типичная схема системы зажигания с распределителем.

Рисунок 10.6

Выключатель зажигания

Выключатель зажигания собран в сборе с замком зажигания. Основная функция данного выключателя - запитывание потребителей электрическим током от источников питания. Система зажигания в целом - это тоже потребитель электротока. Как видно из схемы ниже, через выключатель от источника питания запитывается первичная обмотка катушки зажигания.

Катушка зажигания

По сути, катушка зажигания - это трансформатор, который преобразует низкое напряжение от бортовых источников питания (12 В) в напряжение, достаточное для получения мощной искры между электродами свечи, необходимой для поджигания топливовоздушной смеси в цилиндре двигателя. Достаточное напряжение – это 20 – 30, а то и 60 тысяч вольт.

Для такого рода преобразования в корпусе катушки имеются две обмотки – первичная и вторичная, а также сердечник. Каждая обмотка имеет различное количество витков и сечение проводов.

Когда вы поворачиваете ключ и включаете зажигание от аккумуляторной батареи, электрический ток поступает на первичную обмотку и через контакты замыкается на «массу». При прохождении через первичную обмотку тока вокруг катушки создается электромагнитное поле. Как только контакты разомкнутся и течение тока через первичную катушку резко прекратится, во вторичной катушке возникнет необходимое напряжение и ток. И уже ток в 30 и более тысяч вольт от вторичной обмотки катушки зажигания потечет через распределитель к свече зажигания.

Прерыватель-распределитель

Прерыватель-распределитель (в простонародии - «трамблер») предназначен для того, чтобы прерывать и распределять: прерывать - ток, текущий через первичную обмотку катушки зажигания, распределять – ток от вторичной катушки зажигания между свечами зажигания в той последовательности, которая предусмотрена порядком работы двигателя. В центр крышки распределителя подсоединен высоковольтный провод от вторичной обмотки катушки зажигания, а по периметру крышки расположены выводы, которые через высоковольтные провода соединены со свечами зажигания.

Прерыватель может быть контактным и бесконтактным. В контактном прерывателе разрыв цепи первичной обмотки катушки зажигания происходит за счет контактов, что очень ненадежно.

Примечание
Причина ненадежности контактов в том, что исчезающее магнитное поле пересекает витки не только вторичной, но и первичной обмотки, вследствие чего в ней возникает ток самоиндукции и напряжение около 250-300 вольт. Это приводит к искрению и обгоранию контактов, кроме того, замедляется прерывание тока в первичной обмотке, что приводит к уменьшению напряжения во вторичной обмотке. Конечно, это решается установкой конденсатора (обычно емкостью в 0,25 мкф). Однако все-таки имеет место такое явление, как эрозия – постепенное разрушение поверхности контактов, вследствие которого контакты прилегают неплотно и понижается напряжение, возникающее во вторичной обмотке катушки зажигания.

Чтобы исключить механическую составляющую прерывателя, вместо контактов установили специальное устройство, называемое датчиком Холла. Никаких контактов, только управляющие импульсы, которые контролируют работу катушки зажигания.

Регуляторы опережения зажигания

Для того чтобы топливовоздушная смесь успела сгореть, пока поршень движется от верхней мертвой точки к нижней, ее необходимо поджигать немного раньше. Основным показателем момента зажигания является угол опережения зажигания, который говорит нам о том, за сколько градусов до ВМТ на такте сжатия возникнет пробой между электродами свечи.

В распределителях описанного выше типа изменение угла опережения зажигания осуществляется механическим путем - проворачиванием контактов относительно приводного вала в ту или иную сторону.

Свечи зажигания

Элемент, благодаря которому в цилиндре поджигается топливовоздушная смесь, называется свечой зажигания . Устройство этого элемента простейшее (смотрите рисунок 10.7): корпус с нарезанной резьбой и электродом (отрицательным, так как контактирует с «массой» - головкой блока цилиндров), изолятор, внутри которого проходит положительный электрод. К этому электроду с одной стороны через наконечник подсоединен высоковольтный провод системы зажигания. Положительный электрод расположен рядом с отрицательным электродом (воздушный зазор между ними составляет 0,8-1,2 мм - в зависимости от модели свечи). Когда от распределителя зажигания высоковольтный разряд по проводу подводится к положительному электроду, воздушный зазор пробивается, то есть возникает искра - довольно мощная, чтобы поджечь топливовоздушную смесь.


Рисунок 10.7

Микропроцессорная система зажигания

Как уже не раз было сказано, развитие автомобилестроения движется семимильными шагами и на смену системе зажигания с распределителем пришли микропроцессорные системы. В них нет каких-либо вращающихся и подвижных частей (смотрите рисунок 10.8), но есть катушки зажигания (все чаще - по катушке на каждый цилиндр), электронный блок управления (с интегрированным блоком зажигания) и коммутатор (если блок катушки зажигания один) или коммутаторы (если катушек зажигания несколько).


Рисунок 10.8

В электронный блок управления стекаются данные от ряда датчиков, обрабатывая которые ЭБУ выдает управляющий сигнал на коммутатор (или коммутаторы), определяющий, в какой момент поджечь в цилиндре топливовоздушную смесь. Получение каждого искрового разряда производится по электронным сигналам с очень высокой точностью и без использования каких-либо подвижных частей. Во многих двигателях искра образуется не только во время такта сжатия (это значит, что каждая свеча генерирует искровой разряд каждый раз, когда поршень доходит до ВМТ). Содержание вредных компонентов в отработавших газах при этом несколько снижается.


Please enable JavaScript to view the

Д.Соснин

На легковых автомобилях, оборудованных бензиновым двигателем внутреннего сгорания, применяются различные системы электроискрового зажигания: контактные, контактно-транзисторные, бесконтактно-транзисторные, электронно-цифровые, микропроцессорные.

1. Транзисторные системы зажигания

Транзисторные системы зажигания принято подразделять на две группы:

Контактно-транзисторные (КТСЗ) и бесконтактно-транзисторные (БТСЗ). В контактно-транзисторной системе зажигания контактная пара прерывателя в первичной цепи катушки зажигания отсутствует и заменена транзисторным ключом КТ. Но сам транзисторный ключ управляется по базе контактной парой механического прерывателя К прежней конструкции. Это позволило уменьшить ток разрыва в контактной паре и за счет усиления в транзисторе увеличить ток разрыва в индуктивном накопителе (в первичной обмотке катушки зажигания). При этом коэффициент запаса по вторичному (выходному) напряжению увеличился. Эксплуатационная надежность системы зажигания стала несколько выше. Наряду с контактно-транзисторными системами зажигания были разработаны также и контактно-тиристорные системы с емкостным накопителем, которые не нашли широкого практического применения.

Бесконтактно-транзисторная система зажигания (БТСЗ) - это первая система с чисто электронным устройством управления первичным током катушки зажигания и с бесконтактным электроимпульсным датчиком момента зажигания, который, как и контактная пара в классическом прерывателе-распределителе, расположен на подвижной площадке приводного валика механического высоковольтного распределителя. Положение подвижной площадки относительно оси приводного валика (угол разворота) может регулироваться аппаратами опережения зажигания (центробежным и вакуумным). Подвижная площадка и установленный на ней активатор бесконтактного датчика представляют собой электромеханическое устройство управления моментом зажигания. Такое устройство управления в совокупности с высоковольтным распределителем образуют так называемый датчик-распределитель .

Электронное устройство управления первичным током в БТСЗ конструктивно выполнено в виде отдельного блока, который называется коммутатором. По выходу коммутатор соединен с катушкой зажигания, а по входу - управляется электроимпульсным входным датчиком на распределителе.

Таким образом, бесконтактно-транзисторная система зажигания (рис. 1) -

Это совокупность электронного коммутатора К, датчика-распределителя РР, катушки зажигания КЗ и традиционной выходной исполнительной периферии: высоковольтных проводов ВВП и свечей зажигания.

Бесконтактно-транзисторные системы зажигания (БТСЗ) стали устанавливаться на легковых автомобилях в конце 60-х годов и с тех пор постоянно совершенствовались.

В качестве бесконтактных входных датчиков с механическим приводом от распредвала ДВС были испытаны магнитоэлектрические, индукционные, электромагнитные генераторные, параметрические, оптоэлектронные и прочие преобразователи механического вращения в электрический сигнал (рис. 2).

Бесконтактный датчик выполняет в системе зажигания следующие функции: задает установочный угол* опережения зажигания; управляет моментом зажигания при изменении частоты вращения и нагрузки двигателя; определяет тактность работы ДВС. По совокупности перечисленных функций бесконтактный датчик выдает на вход коммутатора оптимальную величину

* Установочным называется угол опережения зажигания на предельно низких (холостых) оборотах двигателя, когда центробежный и вакуумный регуляторы еще не работают. текущего значения угла опережения зажигания для различных режимов работы двигателя.

Вначале, как более простой и достаточно надежный, широкое практическое применение получил магнитоэлектрический датчик. Но с разработкой активатора на эффекте Холла последний стал основным элементом для всех последующих бесконтактных датчиков электронных систем зажигания.

Не менее значительной модернизации подвергались электронные коммутаторы БТСЗ. От тиристорных коммутаторов быстро отказались, так как система зажигания с емкостным накопителем выдает на свечи очень короткий импульс высокого напряжения (не более 250...300 мкс), что не приемлемо для большинства современных бензиновых автомобильных двигателей.

Первые простейшие транзисторные коммутаторы работали без ограничения амплитуды первичного тока, т.е. в режиме постоянной скважности импульсов зарядного тока для индуктивного накопителя (отечественный коммутатор 13.3734).

В системах зажигания с такими коммутаторами амплитуда высоковольтного импульса на вторичной обмотке катушки зажигания, как и в контактной системе, зависит от частоты вращения двигателя, а также от напряжения в бортсети автомобиля.

На смену коммутаторам с постоянной скважностью (КПС) пришли коммутаторы с нормируемой скважностью (КНС), в которых ток заряда индуктивного накопителя поддерживается в заданных пределах ограничения путем управляемого насыщения выходного транзистора. Это защищает выходной транзистор коммутатора от перегрузки по току, а также стабилизирует амплитуду тока заряда при изменении напряжения в бортсети. Выходное напряжение U2 при этом также стабилизируется.
Но ограничение тока мощного транзистора насыщением приводит к значительному выделению тепловой энергии на коллекторно-эмиттерном переходе и, как следствие, к низкой функциональной надежности системы зажигания в целом.

Исключить этот недостаток в коммутаторах с нормируемой скважностью можно введением в схему электронного регулятора времени накопления энергии (времени протекания тока заряда через индуктивный накопитель). Так появились коммутаторы с программным регулятором времени накопления (коммутатор 36.3734), а вслед за ними и более совершенные коммутаторы с адаптивным регулированием (коммутатор 3620.3734). Последние, помимо основной функции регулирования времени, обеспечивают более высокую точность поддержания параметров тока заряда при воздействии на систему зажигания различных дестабилизирующих факторов (неустойчивая работа двигателя, окружающая среда, старение и уход номиналов радиоэлементов и пр.).

Электронные коммутаторы БТСЗ исключительно разнообразны не только по схемотехническому, но и по технологическому исполнению. Электронные схемы коммутаторов,первоначально аналоговые и на дискретных радиоэлементах, были вытеснены интегральными микросхемами с цифровым принципом действия. Стали появляться коммутаторы на так называемых заказных (специально разработанных для АСЗ) больших интегральных и монокристальных схемах.

Известно более 60-ти разновидностей бесконтактных систем зажигания с электронными коммутаторами, серийно выпускаемых за рубежом. Из отечественных транзисторных коммутаторов наиболее распространены одноканальные 36.3734 и 3620.3734, а также двухканальный 6420.3734 .

В качестве примера схемной реализации бесконтактно-транзисторной системы зажигания рассмотрим один из вариантов ее принципиальной электрической схемы (рис. 3).


Выходной каскад ВК, помимо традиционной катушки зажигания и транзисторного ключа VT3, содержит ряд дополнительных элементов. VD1 - диод для защиты транзисторного ключа VT3 от обратного прохождения тока (от инверсного включения) во время емкостной фазы разряда, когда имеет место обратная полу волна напряжения в первичной обмотке катушки зажигания (инверсное включение VT3 образуется и при случайном обратном включении аккумуляторной батареи). VD2 - стабилизирующий диод для ограничения величины падения напряжения на участке эмиттер-коллектор закрытого (разомкнутого) транзистора VT3 (защита от перенапряжения). Конденсатор С1 с первичной обмоткой катушки зажигания образует последовательный колебательный контур ударного возбуждения, что увеличивает скорость нарастания выходного напряжения системы зажигания. Резистор R3 ограничивает ток разряда конденсатора С1 через открытый (замкнутый) ключ VT3. Для того чтобы ключ VT3 работал стабильно, т.е. при включении и выключении обеспечивал крутые фронты и постоянство амплитуды импульса первичного тока в катушке зажигания, управляющий (базовый) импульс тока транзистора VT3 должен быть с крутыми фронтами и достаточно большим по амплитуде для глубокого насыщения транзистора. На формирование управляющего импульса тока работает предварительный усилитель-ограничитель на транзисторе VT1 и стабилизирующий транзистор обратной связи VT2.

Перечисленные элементы составляют электрическую схему коммутатора ТСЗ.

Датчик-распределитель содержит механическое устройство управления моментом зажигания, в кото рое входят магнитная система М датчика Холла с индукцией поля В, активатор ЭХ датчика Холла, усилительограничитель УО, триггер Шмитта ТШ, разделительный транзистор VT и стабилизатор напряжения СТ.

В датчик-распределитель входят также центробежный (ЦБР) и вакуумный (ВР) регуляторы, магнитный атенюатор А датчика Холла и собственно сам ротационный высоковольтный распределитель РР. Следует отметить, что электронный коммутатор в БТСЗ является лишь формирователем формы импульса тока в первичной обмотке катушки зажигания, а значит и скорости нарастания вторичного напряжения но к формированию момента зажигания коммутатор прямого отношения не имеет. Момент зажигания в БСЗ, как и в контактных системах, формируется электромеханическим устройством управления - бесконтактным датчиком на распределителе. Это обстоятельство является принципиальным недостатком всех бесконтактно-электронных систем зажигания. Второй недостаток - наличие в системе ротационного высоковольтного распределителя. Дальнейшее совершенствование автомобильных систем зажигания шло по пути устранения этих недостатков.

2. Электронные и микропроцессорные системы зажигания

Рассмотренные выше системы зажигания (КТСЗ, БТСЗ) в настоящее время имеют ограниченное применение, а на импортных легковых автомобилях высокого потребительского класса, начиная с середины 90-х годов, вообще не используются. Им на смену пришли системы зажигания четвертого поколения - это системы с электронно-вычислительными устройствами управления и без высоковольтного распределителя энергии по свечам в выходном каскаде. Такие системы принято подразделять на электронно-вычислительные или просто на электронные (ЭСЗ) и микропроцессорные (МСЗ).

Электронные и микропроцессорные системы зажигания имеют три принципиальных отличия от предшествующих систем:

1. Их устройства управления (УУ) являются электронно-вычислительными блоками дискретного принципа действия, выполнены с применением микроэлектронной технологии (на универсальных или на больших интегральных микросхемах) и предназначены для автоматического управления моментом зажигания. Эти устройства называются контроллерами.

2. Применение микроэлектронной технологии, помимо получения преимуществ по надежности, позволяет значительно расширить функции электронного управления. Стало возможным внедрение в автомобильную систему зажигания бортовой самодиагностики и принципов схемотехнического резервирования.

3. Выходные каскады этих систем в подавляющем большинстве случаев многоканальные и, как следствие, не содержат высоковольтного распределителя зажигания.

Электронные и микропроцессорные системы зажигания отличаются друг от друга способами формирования основного сигнала зажигания, т.е. того сигнала, который от ЭБУ подается на спусковое устройство накопителя.

В ЭСЗ основной сигнал зажигания формируется с применением время-импульсного способа преобразования информации от входных датчиков. Это когда контролируемый процесс задается временем его протекания, с последующим преобразованием времени в длительность электрического импульса. Таким образом, в ЭСЗ контроллер содержит электронный хронометр и управляется аналоговыми сигналами. Компонентный состав современной ЭСЗ показан на рис. 4.

В МСЗ, структурная схема которой показана на рис. 5, для формирования сигнала зажигания применяется число-импульсное преобразование, при котором параметр процесса задается не временем протекания, а непосредственно числом электрических импульсов.


Функции электронного вычислителя здесь выполняет число-импульсный микропроцессор, который работает от электрических импульсов, стабилизированных по амплитуде и длительности (от цифровых сигналов). Поэтому между микропроцессором и входными датчиками в ЭБУ МСЗ устанавливаются число-импульсные преобразователи аналоговых сигналов в цифровые (ЧИПы).

В отличие от электронной, микропроцессорная система зажигания работает по заранее заданной для данного двигателя внутреннего сгорания программе управления. Поэтому в вычислителе микропроцессорной системы зажигания имеется электронная память (постоянная и оперативная).

Программа управления для конкретной конструкции двигателя определяется экспериментально, в процессе его разработки. На испытательном стенде имитируются все возможные режимы двигателя при всех возможных условиях его работы. Для каждой экспериментальной точки подбирается и регистрируется оптимальный угол опережения зажигания. Получается набор многочисленных значений угла для момента зажигания, каждое из которых отвечает строго определенной совокупности сигналов от входных датчиков. Графическое изображение такого множества представляет собой трехмерную характеристику зажигания, которая в виде матрицы показана на рис. 6.

Координаты трехмерной характеристики "зашиваются" в постоянную память микропроцессора и в дальнейшем служат опорной информацией для определения угла опережения зажигания в реальных условиях эксплуатации двигателя на автомобиле. Изменение опорного (взятого из памяти) угла 8 опережения зажигания осуществляется автоматически. Увеличение угла 8 происходит: при повышении оборотов, при уменьшении нагрузки и при понижении температуры ДВС. Уменьшение угла 8 имеет место при увеличении нагрузки, при падении оборотов и при повышении температуры ДВС.

Если в МСЗ помимо основных датчиков используются дополнительные (например, датчик детонации в цилиндрах ДВС), то в микропроцессоре осуществляется коррекция опорного значения угла опережения зажигания по сигналам этих датчиков. При этом корректировка производится по каждому цилиндру в отдельности.

Электронные блоки управления для ЭСЗ и МСЗ, помимо функциональных и схемотехнических, имеют и принципиальные конструктивные различия.

В ЭСЗ блок управления является самостоятельным конструктивным узлом и называется контроллером (рис. 7).

На входы контроллера подаются сигналы от входных датчиков системы зажигания, а по выходу - контроллер работает на электронный коммутатор выходного каскада (см. рис. 4). Все электронные схемы контроллера низкоуровневые (потенциальные), что позволяет включать их в состав других бортовых электронных блоков управления (например, в ЭБУ системы впрыска топлива).

В МСЗ все функции управления интегрированы в центральный бортовой компьютер автомобиля и персональный блок управления для системы зажигания может отсутствовать. Функции входных датчиков МСЗ выполняют универсальные датчики комплексной системы автоматического управления двигателем. Основной сигнал зажигания подается на электронный коммутатор выходного каскада МСЗ непосредственно от центрального бортового компьютера.

Несмотря на значительные различия электронных и микропроцессорных систем зажигания, по устройствам управления выходные каскады этих систем имеют идентичное схемотехническое и конструктивное исполнение, при котором каждая свеча зажигания на многоцилиндровом ДВС получает энергию для искрообразования по отдельному каналу. Такое распределение называется статическим или многоканальным.

Что это дает автомобильной системе зажигания?

Надо вспомнить, что кроме обычных недостатков механического переключателя (низкая надежность и малая наработка на отказ вращающихся и трущихся частей) классический распределитель зажигания имеет и тот, что в нем реализуется коммутация высоковольтной энергии через электрическую искру. Это, помимо дополнительных потерь энергии, приводит к неравномерному выгоранию контактов в изоляционной крышке распределителя и, как следствие, к явлению разброса искр по цилиндрам и к низкой функциональной надежности системы зажигания. Разброс искр между выводами даже исправного механического распределителя может достигать 2...3 угловых градусов по повороту коленвала ДВС.

Ясно, что в электронных и особенно в микропроцессорных системах зажигания, высоконадежных и высокоточных в функциональном отношении, формирование момента зажигания в которых реализуется с точностью 0,3...0,5° для каждого цилиндра в отдельности, применение высоковольтного механического распределителя совершенно недопустимо. Здесь приемлемы электронные способы переключения каналов на низкопотенциальном уровне непосредственно в электронном блоке управления с дальнейшим статическим разделением каналов по высокому напряжению на многовыводных или индивидуальных катушках зажигания. Это неизбежно приводит к многоканальности выходного каскада системы зажигания.

3. Выходные каскады с многовыводными катушками зажигания

Реализация многоканального распределения энергии может быть осуществлена в системах зажигания несколькими способами. Наиболее простой из них - применение двухвыводного высоковольтного выходного трансформатора или двухвыводной катушки зажигания в выходном каскаде. Такой способ разделения каналов приемлем для реализации в системе зажигания с любым типом накопителя.

Откуда пришла такая идея? Известно, что в системе зажигания, на выходе которой установлен высоковольтный распределитель, во время разряда накопителя имеют место две искры: одна основная (рабочая) в свече зажигания и другая вспомогательная - между бегунком распределителя и контактом одного из его свечных выводов. Вторичная обмотка выходного трансформатора (катушки зажигания) высоковольтным выводом соединена с центральным бегунком распределителя, а другой вывод обмотки является нулевым, так как во время разряда накопителя соединяется с "массой" автомобиля (см. рис. 3, ). Энергия вспомогательной искры в распределителе тратится бесполезно, и эту искру стремятся всячески подавить. Отсюда ясно, что вспомогательную искру из-под крышки распределителя можно перенести во вторую свечу зажигания, соединив ее с первой через массу головки блока цилиндров последовательно. Для этого достаточно исключить распределитель из выходного каскада, отсоединить от массы автомобиля заземляемый вывод катушки зажигания и подключить к нему вторую электроискровую свечу (рис. 8).

При одновременном искрообразовании в двух свечах зажигания одна искра является высоковольтной (12...20 кВ) и воспламеняет топливовоздушную смесь в конце такта сжатия (рабочая искра). При этом другая искра низковольтная (5...7 кВ), холостая. Явление перераспределения высокого напряжения от общей вторичной обмотки между искровыми промежутками в двух свечах зажигания есть следствие глубоких различий условий, при которых происходит искрообразование. В конце такта сжатия незадолго до появления рабочей искры температура топливовоздушного заряда еще недостаточно высокая (200...300°С), а давление, наоборот - значительное (10...12 атм). В таких условиях пробивное напряжение между электродами свечи - максимально. В конце такта выпуска, когда имеет место искрообразование в среде отработавших газов, пробивное напряжение минимально, так как температура выхлопных газов высокая (800...1000°С), а давление низкое (2...3 атм). Таким образом, при статическом распределении высокого напряжения с помощью двухвыводной катушки зажигания (на двух последовательно соединенных свечах - одновременно) почти вся энергия высоковольтного электроискрового разряда приходится на рабочую искру.

Впервые двухвыводная катушка была применена в контактной батарейной системе зажигания для двухцилиндрового 4-х тактного двигателя. Примером может служить система зажигания для двигателя польского автомобиля ФИАТ-126Р (рис. 9). Аналогичная по принципу действия система зажигания установлена на отечественном автомобиле ОКА (с электронным управлением).

Если в ДВС четыре цилиндра, потребуется две двухвыводных катушки зажигания и два раздельных энергетических канала коммутации в выходном каскаде (см. рис. 5). На рис. 10 приведена диаграмма последовательности искрообразования в цилиндрах 4-х цилиндрового четырехтактного двигателя, оснащенного системой зажигания с двумя двухвы-водными катушками зажигания. Для шестицилиндрового двигателя потребуется три двухвыводных катушки зажигания и три энергетических канала.


В настоящее время разработан ряд автомобильных систем зажигания, в которых две двухвыводных катушки зажигания собираются на общем Ш-образном магнитопроводе и тем самым образуется одна 4-выводная катушка зажигания (например для автомобиля ВАЗ-2110). Такая катушка имеет две первичных и две вторичных обмотки и управляется от двухканального коммутатора. Четырехвыводная катушка зажигания может иметь и одну вторичную двухвыводную обмотку при двух первичных. Вторичная обмотка такой катушки дооборудована четырьмя высоковольтными диодами - по два на каждый высоковольтный вывод .

Недостатком любой системы зажигания с двухвыводными катушками является то, что в одной свече искра развивается от центрального электрода к массовому (боковому), а во второй свече - в обратном направлении (см. рис. 8). Так как центральный электрод заострен и всегда значительно горячее бокового, то истечение носителей заряда с его острия при искрообразовании требует затраты меньшего количества энергии, чем при истечении с бокового электрода (на центральном электроде начинает проявляться термоэлектронная эмиссия). Это приводит к тому, что пробивное напряжение на свече, работающей в прямом направлении, становится несколько ниже (на 1,5.2 кВ), чем на свече с обратным включением полярности. Для современных электронных и микропроцессорных систем зажигания с большим коэффициентом запаса по вторичному напряжению и с управляемым временем накопления энергии это не имеет принципиального значения.

4. Выходные каскады с индивидуальным статическим распределением

В современных электронных и микропроцессорных системах зажигания широко используются выходные каскады с индивидуальными катушками зажигания для каждой свечи в отдельности. Примером может служить система зажигания фирмы BOSCH, интегрированная в электронную систему автоматического управления (ЭСАУ) двигателем, которая известна под названием Motronic.

На рис. 11 показана функциональная схема ЭСАУ Motronic М-3,2,

Которая устанавливается на четырехцилиндровых двигателях автомобилей AUDI-A4 (выпуск после 1995 года).

В контроллере J220 имеется микропроцессор с блоком памяти, в котором хранится трехмерная характеристика зажигания (см. рис. 6). По этой характеристике, а также по сигналам датчика ДО G-28 (датчик частоты вращения двигателя) и датчика ДН G-69 (датчик нагрузки двигателя) устанавливается начальный угол Q(кю) = F(n) опережения зажигания. Далее по сигналам датчиков ДХ G-40, ДТ G-62 и ДД G-66 в цифровом микропроцессоре производится вычисление текущего (необходимого для данного режима работы ДВС) значения угла опережения зажигания, который с помощью электронной схемы переключения каналов подается в виде основного импульса S зажигания в соответствующий канал электронного коммутатора К-122. К этому времени в этом канале индуктивный накопитель N находится в заряженном (от бортсети +12 В) состоянии и по сигналу S разряжается на соответствующую свечу зажигания. Через 180° поворота коленвала описанные процессы будут иметь место в следующем (по порядку работы двигателя) канале коммутатора.

Основные преимущества системы зажигания, интегрированной в ЭСАУ Motronic, состоят в следующем:

- индивидуальное статическое распределение высокого напряжения по свечам зажигания;
- катушки зажигания с заземленной вторичной обмоткой;
- все входные датчики (датчик Холла, датчик частоты вращения ДВС, датчик температуры ДВС, датчики дроссельной заслонки, датчик детонации) - это формирователи электрических сигналов из неэлектрических воздействий бесконтактного принципа действия. Аналоговые сигналы от этих датчиков преобразуются в контроллере в цифровые сигналы;
- селективная коррекция угла опережения зажигания по детонации (в каждом цилиндре в отдельности);
- отключение цилиндров ДВС при перебоях в искрообразовании (защита дорогостоящих компонентов - кислородного датчика и каталитического газонейтрализатора экологической системы автомобиля от повреждений);
- наличие в контроллере функций самодиагностики и резервирования.

5. Выходной каскад с управляемым трансформатором зажигания

Известны попытки применить в многоканальном выходном каскаде автомобильной системы зажигания высоковольтный трансформатор с насыщающимися сердечниками.
Если магнитопровод трансформатора ввести в режим насыщения, то его коэффициент трансформации резко падает и энергия из первичной обмотки во вторичную не трансформируется.

Электрическая схема выходного каскада с трансформатором насыщения показана на рис. 12.

Выходной трансформатор имеет два магнитопровода - М1 и М2, охваченных общей первичной обмоткой Каждый магнитопровод оснащен отдельной обмоткой управления Wв и Wв") и отдельной двухвыводной вторичной обмоткой (W2" и W2""). Когда по управляющей обмотке Wв" протекает ток, достаточный для насыщения сердечника М1, а обмотка Wв" обесточена, то высокое напряжение будет наводиться только во вторичной обмотке W2". Если обесточить управляющую обмотку Wв" и пропустить ток насыщения по обмотке Wв", то насытится сердечник М2 и высокое напряжение будет трансформировано только в обмотку W2"".

Система зажигания с трансформатором насыщения обладает высокой надежностью, малыми габаритами и весом, но ее промышленный выпуск пока не реализован из-за значительных технических трудностей изготовления (для трансформатора насыщения требуются тороидальные сердечники из высококачественного пермалоя. Намотка многовитковых обмоток на такие сердечники крайне затруднена).

6. Высоковольтные провода

В системах зажиганиях с высоковольтным механическим распределителем длина высоковольтных проводов всегда значительна (20...60 см). И так как по проводам в момент электроискрового разряда в свечах протекает высокочастотный ток высокого напряжения, то длинные провода излучают радиопомехи. Источниками радиопомех являются также свечи зажигания.

Есть три способа подавления радиопомех от АСЗ: экранизация высоковольтных проводов, свечей, катушки зажигания и высоковольтного распределителя; введение в центральный токовод высоковольтного провода распределенной индуктивности и распределенного сопротивления; установка помехоподавительного резистора непосредственно в изолятор свечи зажигания.

Экранизация требует увеличения запаса по вторичному напряжению и делает выходной каскад АСЗ громоздким. Высоковольтный провод с распределенными параметрами имеет недостаточно высокую конструктивную надежность, сложную технологию изготовления и высокую стоимость.

В современных системах зажигания применяют свечи с помехоподавительным резистором 4...10 кОм, а длину высоковольтных проводов стремятся свести к минимуму. Последнее становится возможным благодаря применению индивидуальных катушек зажигания, установленных непосредственно на свечах (см. рис. 11).

Высоковольтные провода подразделяют на низкоомные (до 0,5 Ом/м - в устаревших конструкциях проводов) и высокоомные (1...10 кОм/м). Провода маркируются двумя способами: цветом и текстовой надписью вдоль провода.

Отечественные провода светло-коричневой или пестрой расцветки - низкоомные. Провода красного или розового цвета ПВВП-8 обладают распределенным сопротивлением 2000+200 Ом/м; синего цвета ПВППВ-40 - 2550±250 Ом/м. На высоковольтных проводах импортного производства электрические параметры чаще обозначаются текстом вдоль провода. Содержание текста можно расшифровать по фирменному каталогу.

Любой из трех указанных способов подавления радиопомех приводит к некоторому падению высоковольтного выходного напряжения системы зажигания, что иногда сказывается при пуске холодного двигателя в слякотную зимнюю погоду, когда провода покрываются тонким инеем. Чтобы устранить этот недостаток, в современных микропроцессорных системах зажигания стали применять грязевлагозащиту высоковольтных проводов и свечей зажигания (укрытие проводов в изоляционную трубку или под пластмассовую крышку вместе со свечами).

* В заключение следует отметить, что автомобили с центральным бортовым компьютером (ЦБК) - пока редкость. Но перспектива очевидна. В недалеком будущем ЦБК станет единым электронным блоком управления, общим для всех функциональных систем на борту автомобиля, таких как: впрыск топлива, электроискровое зажигание, антиблокировка тормозов, управление дифференциалами ведущих колес, антипробуксовка колес и т.д. и т.п. Но даже при полной интеграции функций управления в центральный бортовой компьютер принципы построения электронных схем для электроискровых систем зажигания надолго останутся такими же, как и в современных микропроцессорных системах.

Литература

1. Д.Соснин. Современные автомобильные системы зажигания. Ремонт&Сервис, №10, 1999 г., с. 45-47
2. Д.Соснин, А.Фещенко. Автомобильные катушки зажигания. Ремонт&Сервис, №9, 1999 г., с. 46-53
3. В.Е.Ютт. Электрооборудование автомобилей. М. Транспорт. 1995 г. Продолжение следует

Система зажигания предназначена для воспламенения рабочей смеси в цилиндрах бензиновых двигателей. Основными требованиями к системе зажигания являются:

  • Обеспечение искры в нужном цилиндре (находящемся в такте сжатия) в соответствии с порядком работы цилиндров.
  • Своевременность момента зажигания. Искра должна происходить в определенный момент (момент зажигания) в соответствии с оптимальным при текущих условиях работы двигателя углом опережения зажигания, который зависит, прежде всего, от оборотов двигателя и нагрузки на двигатель.
  • Достаточная энергия искры. Количество энергии, необходимой для надежного воспламенения рабочей смеси, зависит от состава, плотности и температуры рабочей смеси.
  • Общим требованием для системы зажигания является ее надежность (обеспечение непрерывности искрообразования).

Неисправность системы зажигания вызывает неполадки как при запуске, так и при работе двигателя:

  • трудность или невозможность запуска двигателя;
  • неравномерность работы двигателя — «троение» или прекращение работы двигателя при пропусках искрообразования в одном или нескольких цилиндрах;
  • детонация, связанная с неверным моментом зажигания и вызывающая быстрый износ двигателя;
  • нарушение работы других электронных систем за счет высокого уровня электромагнитных помех и пр.

Существует множество типов систем зажигания, отличающихся и устройством и принципами действия. В основном системы зажигания различаются по:
а) системе определения момента зажигания.
б) системе распределения высоковольтной энергии по цилиндрам.

При анализе работы систем зажигания исследуются основные параметры искрообразования, смысл которых практически не отличается в различных системах зажигания:

  • угол замкнутого состояния контактов (УЗСК, Dwell angle) — угол, на который успевает повернуться коленчатый вал от момента начала накопления энергии (конкретно в контактной системе — момента замыкания контактов прерывателя; в других системах — момента срабатывания силового транзисторного ключа) до момента возникновения искры (конкретно в контактной системе — момента размыкания контактов прерывателя). Хотя в прямом смысле данный термин можно применить только к контактной системе — он условно применяется для систем зажигания любых типов.
  • угол опережения зажигания (УОЗ, Advance angle) — угол, на который успевает повернуться коленчатый вал от момента возникновения искры до момента достижения соответствующим цилиндром верхней мертвой точки (ВМТ). Одна из основных задач системы зажигания любого типа — обеспечение оптимального угла опережения зажигания (фактически — оптимального момента зажигания). Оптимально поджигать смесь до подхода поршня к верхней мертвой точке в такте сжатия — чтобы после достижения поршнем ВМТ газы успели набрать максимальное давление и совершить максимальную полезную работу на такте рабочего хода. Также любая система зажигания обеспечивает взаимосвязь угла опережения зажигания с оборотами двигателя и нагрузкой на двигатель. При увеличении оборотов, скорость движения поршней увеличивается, при этом время сгорания смеси практически не изменяется — поэтому момент зажигания должен наступать чуть раньше — соответственно при увеличении оборотов, УОЗ надо увеличивать.
    На одной и той же частоте вращения коленчатого вала двигателя, положение дроссельной заслонки (педали газа) может быть различным. Это означает, что в цилиндрах будет образовываться смесь различного состава. А скорость сгорания рабочей смеси как раз и зависит от ее состава. При полностью открытой дроссельной заслонке (педаль газа «в полу») смесь сгорает быстрее и поджигать ее нужно позже — соответственно при увеличении нагрузки на двигатель, УОЗ надо уменьшать. И наоборот, когда дроссельная заслонка прикрыта, скорость сгорания рабочей смеси падает, поэтому угол опережения зажигания должен быть увеличен.
  • напряжение пробоя — напряжение во вторичной цепи в момент образования искры — фактически — максимальное напряжение во вторичной цепи.
  • напряжение горения — условно-установившееся напряжение во вторичной цепи в течение периода горения искры.
  • время горения — длительность периода горения искры.

Обобщенно структуру системы зажигания можно представить следующим образом:

Рассмотрим подробнее каждый из элементов системы:

1. Источник питания для системы зажигания — бортовая сеть автомобиля и ее источники питания — аккумуляторная батарея (АКБ) и генератор.

2. Выключатель зажигания.

3. Устройство управления накоплением энергии — определяет момент начала накопления энергии и момент «сброса» энергии на свечу (момент зажигания). В зависимости от устройства системы зажигания на конкретном авто может представлять из себя:

Механический прерыватель, непосредственно управляющий накопителем энергии (первичной цепью катушки зажигания). Данный компонент нужен для того, чтобы замыкать и размыкать питание первичной обмотки катушки зажигания. Контакты прерывателя находятся под крышкой распределителя зажигания. Пластинчатая пружина подвижного контакта постоянно прижимает его к неподвижному контакту. Размыкаются они лишь на короткий срок, когда набегающий кулачок приводного валика прерывателя-распределителя надавит на молоточек подвижного контакта.Параллельно контактам включен конденсатор (condenser). Он необходим для того, чтобы контакты не обгорали в момент размыкания. Во время отрыва подвижного контакта от неподвижного, между ними хочет проскочить мощная искра, но конденсатор поглощает в себя большую часть электрического разряда и искрение уменьшается до незначительного. Но это только половина полезной работы конденсатора — когда контакты прерывателя полностью размыкаются, конденсатор разряжается, создавая обратный ток в цепи низкого напряжения, и тем самым, ускоряет исчезновение магнитного поля. А чем быстрее исчезает это поле, тем больший ток возникает в цепи высокого напряжения. При выходе конденсатора из строя двигатель нормально работать не будет — напряжение во вторичной цепи получится недостаточно большим для стабильного искрообразования.Прерыватель располагается в одном корпусе с распределителем высокого напряжения — поэтому распределитель зажигания в такой системе называют прерывателем-распределителем. Такая система зажигания называется классической системой зажигания.Общая схема классической системы:

Устройство катушки зажигания в системе COP (с интегрированным воспламенителем):

Система статического синхронного зажигания с двухвыводными катушками зажигания (одна катушка на две свечи) — DFS (нем. Doppel Funken Spule) система. Кроме систем, с индивидуальными катушками, используются и системы, где одна катушка обеспечивает высоковольтный разряд на двух свечах одновременно. При этом получается, что в одном из цилиндров, который находится в такте сжатия, катушка дает «рабочую искру», а в сопряженном с ним, который находится в такте выпуска) дает «холостую искру» (поэтому такая система часто называется системой зажигания с холостой искрой — «wasted spark»). Например, в 6-цилиндровом V-образном двигателе на цилиндрах 1 и 4 поршни занимают одно и то же положение (оба находятся в верхней и нижней мертвой точке одновременно) и движутся в унисон, но находятся на разных тактах. Когда цилиндр 1 находится на компрессионном ходу, цилиндр 4 — на такте выпуска, и наоборот.


Высокое напряжение, вырабатываемое во вторичной обмотке, подается напрямую на каждую свечу зажигания. В одной из свечей зажигания искра проходит от центрального электрода к боковому электроду, а в другой свече искра проходит от бокового к центральному электроду:

Напряжение, необходимое для образования искры, определяется искровым промежутком и давлением сжатия. Если искровой промежуток между свечами обоих цилиндров равен, для разряда необходимо напряжение, пропорциональное давлению в цилиндре. Вырабатываемое высокое напряжение разделяется в соответствии с относительным давлением цилиндров. Цилиндр на ходу сжатия требует и использует больший разряд напряжения, чем на ходу выпуска. Это происходит потому, что цилиндр на ходу выпуска находится примерно под атмосферным давлением, поэтому расход энергии гораздо ниже.

По сравнению с системой зажигания с распределителем, общий расход энергии в системе без распределителя практически такой же. В системе зажигания без распределителя потеря энергии от искрового промежутка между ротором распределителя и клеммой колпачка заменяется потерей энергии на холостую искру в цилиндре на ходу выпуска.

Катушки зажигания в системе DFS могут устанавливаться как отдельно от свечей и связываться с ними высоковольтными проводами (как в системе EFS), так и прямо на свечах (как в системе COP, но в этом случае высоковольтные провода все равно используются для передачи разряда на свечи смежных цилиндров — условно такую систему можно назвать «DFS-COP»).


Общая схема системы «DFS-COP»
Варианты системы «DFS-COP»

Также в этой системе коммутаторы могут быть объединены с соответствующими катушками — вот как выглядит такой вариант на примере Mitsubishi Outlander:

6. Высоковольтные провода — соединяют накопитель энергии c распределителем или свечами и распределитель со свечами. В системах зажигания COP отсутствуют.

7. Свечи зажигания (spark plug) — необходимы для образования искрового разряда и зажигания рабочей смеси в камере сгорания двигателя. Свечи устанавливаются в головке цилиндра. Когда импульс тока высокого напряжения попадает на свечу зажигания, между ее электродами проскакивает искра — именно она воспламеняет рабочую смесь. Как правило, устанавливается по одной свече на цилиндр. Однако, бывают и более сложные системы с двумя свечами на цилиндр, причем не всегда свечи срабатывают одновременно (например, на Honda Civic Hybrid используется система DSI — Dual Sequential Ignition — при малых оборотах две свечи одного цилиндра срабатывают последовательно — сначала та из них, что ближе к впускному клапану, а затем вторая — чтобы топливовоздушная смесь сгорала быстрее и полнее).

Любая система зажигания четко делится на две части:

  • низковольтную (первичную, англ. primary) цепь — включает первичную обмотку катушки зажигания и непосредственно связанные с ней цепи (прерывателя, коммутатора и других компонентов в зависимости от устройства конкретной системы).
  • высоковольтную (вторичную, англ. secondary) цепь — включает вторичную обмотку катушки зажигания, систему распределения высоковольтной энергии, высоковольтные провода, свечи.

Учитывая все возможные модификации и комбинации приведенных Выше элементов, на автомобилях используются не менее 15-20 разновидностей систем зажигания.