Что такое рычаг подвески. Подвеска на продольных рычагах

Есть кузов и есть колеса. Возникает вопрос: как подсоединить колеса к кузову, чтобы была возможность управлять автомобилем, передавать непрерывно на ведущие колеса тягу от двигателя и в то же время комфортно преодолевать все неровности дорог с различными покрытиями и без этих самых покрытий? При этом связь колес с кузовом должна быть достаточно жесткой, чтобы автомобиль при выполнении каких-либо маневров просто-напросто не перевернулся. Ответ прост – установить колеса на промежуточное звено. В качестве такого звена используют подвеску.

Элементы подвески должны иметь как можно меньший вес и обеспечивать максимальную изоляцию от дорожных шумов. Помимо этого, следует отметить, что подвеска передает на кузов силы, возникающие при контакте колеса с дорогой, поэтому ее проектируют таким образом, что она обладает повышенной прочностью и долговечностью (смотрите рисунок 6.1).

Рисунок 6.1

В связи с высокими требованиями, предъявляемыми к подвеске, каждый из ее элементов должен проектироваться по определенным критериям, а именно: применяемые шарниры должны легко поворачиваться, но в то же время быть достаточно жесткими и вместе с тем обеспечивать шумоизоляцию кузова, рычаги должны передавать силы, возникающие при работе подвески во всех направлениях, а также воспринимать усилия, которые возникают при торможении и наборе скорости; при этом они не должны быть слишком тяжелыми или дорогими в изготовлении.

Устройство подвески

Составные части

Любая, какой бы она ни была, подвеска должна включать в себя следующие элементы:

  • направляющие/связывающие элементы (рычаги, штанги);
  • демпфирующие элементы (амортизаторы);
  • упругие элементы (пружины, пневматические подушки).

О каждом из этих элементов мы поговорим ниже, так что не пугайтесь.

Классификация подвесок

Для начала давайте рассмотрим классификацию существующих типов подвесок, которые применяются на современных автомобилях. Итак, подвеска может быть зависимой и независимой . При использовании зависимой подвески, колеса одной оси автомобиля связаны, то есть при перемещении правого колеса начнет изменять свое положение и левое колесо, как это наглядно показано на рисунке 6.2. Если же подвеска независимая, то каждое колесо подсоединено к автомобилю отдельно (рисунок 6.3).

Подвески также классифицируют по количеству и расположению рычагов. Так, если в конструкции два рычага, то и подвеска называется двухрычажной . Если рычагов более двух, то подвеска - многорычажная . Если два рычага, к примеру, будут расположены поперек продольной оси автомобиля, то в названии появится дополнение - «с поперечным расположением рычагов» . Однако конструкций огромное множество, потому рычаги могут располагаться и вдоль продольной оси автомобиля, тогда в характеристиках напишут: «с продольным расположением рычагов» . А если не так и не этак, а под определенным углом к оси автомобиля, то говорят, что подвеска с «косыми рычагами» .

Интересно
Нельзя сказать, какая из подвесок лучше или хуже, все зависит от назначения автомобиля. Если это грузовик или самый брутальный внедорожник, то для простоты, жесткости и надежности конструкции незаменимой будет зависимая подвеска. Если же это легковой автомобиль, главными качествами которого являются комфорт и управляемость, то нет ничего лучше, чем подвешенные по отдельности колеса.


Рисунок 6.2


Рисунок 6.3


Рисунок 6.4

Подвески классифицируются и по типу применяемого демпфирующего элемента - амортизатора. Амортизаторы могут быть телескопическими (напоминают удочку «телескоп» или подзорную трубу), как на всех современных автомобилях, или рычажными , которых сейчас при всем желании не найдешь.

И последний признак, по которому подвески относят к разным классам, - это тип применяемого упругого элемента. Это может быть рессора, витая пружина, торсион (представляет собой стержень, один конец которого закреплен и никак не двигается на кузове, а второй конец подсоединен к рычагу подвески), пневматический элемент (основанный на способности воздуха сжиматься) или гидропневматический элемент (когда воздух выступает дуэтом с гидравлической жидкостью).

Итак, подведем итоги.
Подвески различают по следующим признакам:

  • по конструкции: зависимая, независимая;
  • по количеству и расположению рычагов: однорычажная, двухрычажная, многорычажная, с поперечным, продольным и косым расположением рычагов;
  • по типу демпфирующего элемента: с телескопическим или рычажным амортизатором;
  • по типу упругого элемента: рессорная, пружинная, торсионная, пневматическая, гидропневматическая.

В дополнение ко всему вышесказанному следует отметить, что подвески также различают и по управляемости, то есть по степени контролируемости состояния подвески: активные, полуактивные и пассивные.

Примечание
К активным относятся подвески, в которых может регулироваться жесткость амортизаторов, дорожный просвет, жесткость стабилизатора поперечной устойчивости. Управление такой подвеской может быть как полностью автоматическим, так и с возможностью ручного контроля.
Полуактивные - это подвески, возможности управления которыми ограничены корректировкой высоты дорожного просвета.
Пассивные (неактивные) – это обычные подвески, выполняющие свою роль в чистом виде.

Хочется еще сказать о подвесках с электронно-управляемыми амортизаторами, которые способны изменять свою жесткость в зависимости от дорожных условий. Наполнены данные амортизаторы не обычной, а специальной жидкостью, которая под воздействием электрического поля может изменять свою вязкость. Если упрощенно представить принцип действия, то получится следующее: когда тока нет, автомобиль очень мягко проезжает по всем неровностям, а после подведения тока по неровностям ехать будет не очень приятно, зато станет очень приятно управлять автомобилем на скоростных трассах и в поворотах.

Поворотный кулак и ступица колеса

Поворотный кулак

Поворотный кулак является связующим звеном между рычагами подвески и колесом. Схематическое изображение этой детали приведено на рисунке 6.4. В общем случае такую деталь называют цапфой. Однако, если цапфа установлена на подвеске с управляемыми колесами, то она называется поворотным кулаком. Если колеса не управляемые, то остается название «цапфа».

Если поворотный, значит поворачивается, участвует в процессе изменения направления движения. Именно к поворотному кулаку крепятся элементы рулевой трапеции или рулевые тяги (об этих элементах подробно описано в главе «Рулевое управление»). Поворотный кулак - массивная деталь, так как воспринимает все удары и вибрации от дороги.

Конструкция поворотных кулаков зависит от типа привода автомобиля. Так, если привод комбинированный (когда колеса и управляемые, и тяговые одновременно, что характерно для переднеприводных автомобилей), то поворотный кулак будет иметь сквозное отверстие для внешней части приводного вала, как показано на рисунке 6.4. Если же колеса только управляемые, то поворотный кулак будет иметь опорную ось с конусным сечением, как, например, показано на рисунке 6.7.

Ступица колеса

Ступица колеса (показана на рисунке 6.4) является связующим звеном между колесом и поворотным кулаком/цапфой. Поворотный кулак только передает усилия на элементы подвески, сам же не вращается. Для обеспечения свободного вращения колеса необходима ступица. На ступицу устанавливается тормозной диск (или тормозной барабан, о которых подробно сказано в главе «Тормозная система ».), к ней же крепится колесо, а ступица, в свою очередь, установлена в поворотный кулак в случае, показанном на рисунке 6.4, на подшипниках, обеспечивающих плавное вращение колеса.

Примечание
Тормозной диск конструктивно может быть выполнен как одно целое со ступицей колеса.
В зависимости от конструкции подшипники ступицы могут быть роликовыми или шариковыми.

Полезно знать
Всегда после снятия и установки ступицы или замены подшипников необходимо производить регулировку натяга (что это, смотрите в примечании ниже) подшипников ступицы.

Примечание
Если простым языком, то натяг - это усилие, с которым сжали подшипники ступицы при затягивании гайки крепления. Величина натяга влияет на силу сопротивления вращению колеса. Каждый производитель дает свои рекомендации по поводу величины усилия сопротивления вращению колеса. Поэтому при выполнении ремонтных работ, связанных со снятием ступицы, всегда интересуйтесь, выполняли или нет регулировку натяга подшипника ступицы колеса.

Направляющие/связывающие элементы

С помощью направляющих и связывающих элементов колесо крепится к кузову или подрамнику. Эти элементы крепления разделяются на рычаги и штанги. Штанга - это пустотелый профиль, обычно круглого сечения, реже - квадратного. По сути, это просто трубка с приваренными к обоим концам проушинами для установки в них резиновых втулок, с помощью которых выполняется крепление к кузову и поворотному кулаку или цапфе. Рычаги - конструктивно более сложные элементы. Они могут быть сварены из трубок (такая конструкция применяется, в основном, в спортивных автомобилях), отлиты, например, из алюминиевого сплава (чтобы были легче) или отштампованы из листового металла (чтобы были дешевле). Количество и расположение рычагов влияют на плавность хода и управляемость автомобиля.

Подвеска Мак-Ферсона

Пожалуй, одна из самых распространенных в настоящее время конструкций подвесок - со стойкой Мак-Ферсона (рисунок 6.5), она же «свеча» (самый яркий пример - это передняя подвеска у ВАЗ 2109 и ему подобных). Она отличается простотой конструкции, дешевизной, ремонтопригодностью (это значит, ремонтировать ее будет несложно) и относительной комфортностью. Так называемая амортизаторная стойка сверху крепится к кузову и имеет возможность вращаться в опоре, а снизу - к поворотному кулаку. Поворотный кулак, в свою очередь, подсоединен к нижнему поперечному рычагу подвески, который соединен с кузовом - все, кольцо сомкнулось. Иногда для придания дополнительной жесткости в конструкцию вводят продольную тягу, подсоединяя ее к поперечному рычагу (снова, как пример, ВАЗ 2109). На стойке есть плечо, к которому крепится рулевая тяга. Так, при управлении автомобилем вращается вся стойка, поворачивая колесо, не прекращая сжиматься и растягиваться, преодолевая неровности дорожного покрытия. Но следует обратить внимание и на недостатки однорычажной (а в описанном выше случае она именно однорычажная) подвески. Это «клевки» автомобиля при торможении и небольшая энергоемкость подвески.


Рисунок 6.5

Примечание
Под «клевком» понимают следующее: при интенсивном торможении вес автомобиля смещается в сторону передка, из-за этого передняя часть проседает, а после остановки резко возвращается в исходное положение, вот это характерное движение на грани встряски и называют «клевком». Энергоемкость подвески – это прочность всей конструкции, способность сопротивляться всем ударам и моментам, возникающим при этих ударах без пробоев.
Пробой подвески – замыкание, контакт металлических элементов подвески друг с другом с резко возрастающей ударной нагрузкой - обычно при наезде на дорожное препятствие внушительных размеров заявляет о себе характерным звонким металлическим звуком со стороны опоры (или опор) подвески.

Подвеска на двух поперечных рычагах

Чтобы избавиться от «клевков», улучшить управляемость и повысить энергоемкость, применяют одну из самых старых конструкций подвески, которая до наших времен дошла со значительными преобразованиями – подвеску на двух поперечных рычагах (пример которой приведен на рисунке 6.6).


Рисунок 6.6

В данной конструкции присутствует рычаг опорный (нижний) и рычаг направляющий (верхний), которые крепятся к поворотному кулаку. На опорный рычаг установлена нижняя часть амортизаторной стойки либо же отдельно пружина и отдельно амортизатор. Верхний рычаг выполняет функцию направления движения колеса в вертикальной плоскости, минимизируя его отклонения от вертикали. То, как установлены рычаги друг относительно друга, имеет непосредственное влияние на поведение автомобиля во время его движения. Обратите внимание на рисунок 6.6. Здесь верхний рычаг максимально отведен от нижнего рычага вверх. Чтобы уменьшить воздействие усилий на кузов автомобиля при работе подвески, пришлось удлинить поворотный кулак. К тому же, этот рычаг установлен под определенным углом к горизонтальной оси автомобиля во избежание пресловутых «клевков». Суть остается та же, а внешний вид, геометрические и кинематические параметры изменяются.

Примечание
Несмотря на все достоинства, один очень существенный недостаток в данной конструкции все же существует - это отклонение колеса от вертикальной оси при работе подвески. Решение вроде бы есть – удлинение рычагов, однако это хорошо, если автомобиль рамный, а вот если кузов несущий, то удлинять некуда - дальше моторный отсек. Вот и подходят к решению нестандартно: нижний рычаг стараются сделать как можно длиннее, а верхний установить как можно дальше от нижнего.
Следует отметить тот факт, что, если пружина и амортизатор или амортизаторная стойка своим нижним концом крепятся к верхнему рычагу (как в случае, изображенном на рисунке 6.7), то опорным становится именно верхний рычаг, нижний в таком случае переходит в разряд направляющих.


Рисунок 6.7

Многорычажные подвески

Когда ресурсы по развитию какого-либо одного плана решения проблемы исчерпываются, а цели не достигнуты, конструкцию приходится усложнять, несмотря на увеличение стоимости. Именно по такому пути пошли конструкторы при разработке многорычажной подвески. Да, она получилась дороже двух- или однорычажной, однако по итогу получили практически идеальное перемещение колеса - без отклонений в вертикальной плоскости, отсутствие эффекта подруливания при прохождении поворотов (об этом ниже) и стабильность.

Задняя полузависимая подвеска

Примечание
Практически все схемы, описанные выше, могут применяться и в конструкции задней подвески.

Это одно из самых простых, дешевых и надежных решений для задней подвески, однако не лишенное многих недостатков. Суть конструкции состоит в том, что два продольных рычага, на которые опираются пружины и амортизаторы, соединили балкой, как показано на рисунке 6.8. Частично подвеска получилась зависимой, поскольку колеса связаны между собой, однако за счет свойства балки колеса имеют возможность перемещаться друг относительно друга.


Рисунок 6.8

Демпфирующие элементы

Демпфирующие элементы - это элементы подвески, призванные гасить колебания подвески при движении автомобиля. А зачем гасить колебания? Упругий элемент подвески, каким бы он ни был, призван сводить на нет все ударные нагрузки, возникающие при наезде колеса на препятствия на дороге. Но будь то пружина или воздух в пневмоподушке, после сжатия или разжатия упругого элемента сразу последует возврат в исходное положение. Сожмите в руках любую пружинку, а потом отпустите ее, и она полетит настолько далеко, насколько позволят ей силы, возникшие при разжатии. Еще пример: возьмите обычный медицинский шприц, наберите в него чистого воздуха, зажмите выходное отверстие и попробуйте переместить поршень - он переместится, но до определенного момента (пока у вас сил хватит сжимать воздух), после отпускания штока воздух начнет расширяться, возвращая поршень в исходное положение. Так и в автомобиле: при наезде автомобиля на какое-либо препятствие пружина в подвеске сожмется, но потом под действием упругих сил начнет разжиматься. Поскольку автомобиль имеет определенную массу, то пружина, распрямляясь, вынуждена будет преодолевать инерцию автомобиля, что будет выражаться покачиванием с постепенным затуханием колебаний. Ввиду постоянных разнонаправленных перемещений подвески такое раскачивание недопустимо, так как в определенный момент может наступить резонанс, что в конечном итоге просто-напросто разрушит подвеску частично или полностью. Чтобы не допустить таких колебаний, в конструкцию подвески внедрили еще один элемент - амортизатор.

Принцип работы амортизатора прост. Попробуем объяснить это на примере того же шприца. Но в этот раз будем набирать в него, к примеру, воду. Скорость набора и слива жидкости в данном случае ограничена вязкостью воды и пропускной возможностью отверстия шприца.

В подвеске объединили амортизатор с пружиной (или другим упругим элементом) и получили отличный «механизм», в котором один элемент не позволяет раскачиваться, а второй воспринимает все нагрузки.

Ниже рассмотрим демпфирующие элементы подвески на примере телескопического амортизатора.

Самыми распространенными типами демпферов на легковых автомобилях являются двухтрубные и однотрубные газонаполненные амортизаторы.

Примечание
У любого амортизатора есть две важнейшие характеристики: сила сопротивления на отбой и на сжатие.

Интересно
Сила сопротивления амортизатора на сжатие меньше, чем сила сопротивления на отбой. Сделано это для того, чтобы при наезде на препятствие колесо как можно легче и быстрее переместилось вверх, а при проезде выбоины оно как можно медленнее опускалось в нее. Таким образом достигаются наилучшие показатели по комфорту езды.

Двухтрубные гидравлические амортизаторы

Название амортизатора данного типа говорит само за себя. Простейший вид амортизатора - это две трубы, внешняя и внутренняя (представлен на рисунке 6.9). Внешняя труба еще выполняет роль корпуса всего амортизатора и резервуара для рабочей жидкости. Внутренняя труба амортизатора называется цилиндром. Внутри цилиндра установлен поршень, выполненный как одно целое со штоком. В поршне есть отверстия, в которые установлены односторонние клапаны, часть клапанов направлена в одну сторону, остальные – в обратную. Одни клапаны называются компенсационными, другие – клапанами отбоя.


Рисунок 6.9

Примечание
Односторонний клапан - это клапан, открывающийся только в одном направлении.
Применительно к амортизатору клапаны называются клапанами отбоя и сжатия.
Отбой и сжатие - это растягивание и сжатие амортизатора соответственно.

Полость между цилиндром и корпусом называется компенсационной. Эта полость, а также цилиндр амортизатора заполнены рабочей жидкостью. Цилиндр с одной стороны имеет отверстие для штока поршня, а с другой стороны заглушен пластиной с отверстиями и односторонними клапанами в них - компенсационными и клапанами сжатия.

При перемещении поршня в цилиндре масло перетекает из полости под поршнем в полость над поршнем, при этом часть масла выдавливается через клапан, находящийся снизу цилиндра. Часть жидкости через клапаны сжатия перетекает во внешний компенсационный резервуар, где сжимает воздух, прежде находившийся под атмосферным давлением в верхней части корпуса амортизатора. Поскольку эта жидкость имеет определенную вязкость и текучесть, то быстрее, чем предопределено, процесс перетекания проходить не будет. То же самое, только в обратном направлении, происходит на ходе отбоя, когда поршень перемещается вверх. При этом задействуются компенсационные клапаны пластины цилиндра и клапаны отбоя в поршне.

Однако данная конструкция имеет один, но существенный недостаток: при длительной работе амортизатора рабочая жидкость нагревается, начинает смешиваться с воздухом в компенсационном резервуаре и вспенивается, в результате происходит потеря эффективности работы и выход из строя.

Двухтрубные газо-гидравлические амортизаторы

Чтобы решить проблему вспенивания рабочей жидкости в амортизаторе, решили в компенсационный резервуар вместо воздуха закачать инертный газ (обычно используют азот). Давление может колебаться от 4 до 20 атмосфер.

Принцип работы ничем не отличается от двухтрубного гидравлического амортизатора, с той лишь разницей, что рабочая жидкость не вспенивается так интенсивно.

Однотрубные газонаполненные амортизаторы

Отличительной особенностью данных амортизаторов от вышеупомянутых конструкций является то, что у них есть только одна труба - она выполняет роль и корпуса, и цилиндра. Устройство такого амортизатора отличается только тем, что в нем нет компенсационных клапанов (рисунок 6.10). В поршне есть клапаны отбоя и сжатия. Однако особенностью данной конструкции является плавающий поршень, отделяющий резервуар с рабочей жидкостью от камеры с газом, который закачан под очень высоким давлением (20–30 атмосфер).

Однако не стоит думать, что, если корпус не двойной, значит цена ниже. Так как всю работу выполняет только поршень, то львиную долю цены амортизатора составляет стоимость расчета и подбора поршня. Правда, результатом столь трудоемких работ является повышенная эффективность всех характеристик амортизатора.

Одно из преимуществ данной схемы состоит в том, что рабочая жидкость в амортизаторе значительно лучше охлаждается ввиду того, что в корпусе всего одна стенка. Следующими преимуществами можно назвать уменьшение массы и габаритов и возможность установки «вверх тормашками» - таким образом можно снизить величину неподрессоренных масс *.

Примечание
* Неподрессоренной массой является все, что находится между поверхностью дороги и элементами подвески. Углубляться в теорию подвески и колебаний не будем, скажем лишь, что, чем меньше неподрессоренная масса, тем меньше ее инерционность и тем быстрее колесо вернется в исходное положение после наезда на какое-либо препятствие.

Однако существуют и значительные недостатки газонаполненных амортизаторов, такие как:

  • уязвимость для внешних повреждений: любая вмятина обернется заменой амортизатора;
  • чувствительность к температуре: чем она выше, тем выше давление газового подпора и жестче работает амортизатор.

Упругие элементы

Пружины

Самым простым и часто используемым упругим элементом, применяемым в конструкции подвески, является пружина. В наиболее простом варианте используется цилиндрическая витая пружина, но, вследствие гонки за оптимизацией и улучшением эффективности работы подвески, пружины могут принимать самые разнообразные формы. Так, пружины могут быть бочкообразными, вогнутыми, конусообразными и с переменным диаметром сечения витка. Сделано это для того, чтобы характеристика жесткости пружины стала прогрессивной, то есть при увеличении степени сжатия упругого элемента должно увеличиваться и его сопротивление этому сжатию, причем функция зависимости должна быть нелинейной и непрерывно возрастающей. Пример графика зависимости возникающей жесткости от величины сжатия приведен на рисунке 6.12.

Бочкообразные пружины иногда называют «миниблоком» (пример таких пружин приведен на рисунке 6.13). Такие пружины при тех же характеристиках жесткости, что и у обычной цилиндрической пружины, имеют меньшие габаритные размеры. Также исключается контакт витков при полном сжатии пружины.

Рисунок 6.12

Рисунок 6.13

Рисунок 6.14

В обычных цилиндрических витых пружинах эта зависимость линейная. Чтобы как-то решить эту проблему, стали изменять сечение и шаг витка.

Изменяя форму пружины (рисунок 6.14), стараются приблизить жесткость к идеальной, ориентируясь по графику (рисунок 6.12).

Рессоры

Рессора - самый простой и древний вариант упругого элемента в подвесках автомобилей. Чего проще: взять несколько стальных листов, соединить их вместе и подвесить на них элементы подвески. К тому же, рессора обладает свойством гашения колебаний за счет трения между листами. Рессорная подвеска хороша для тяжелых внедорожников и пикапов, в отношении которых нет особых требований к комфорту передвижения, но есть высокие требования к грузоподъемности.

Также рессора до недавнего времени применялась и в таком автомобиле, как Chevrolet Corvett, правда, там она располагалась поперечно и была выполнена из композитного материала.


Рисунок 6.15

Торсион

Торсион - тип упругого элемента, который часто применяется для экономии места. Он представляет собой стержень, один конец которого подсоединен к рычагу подвески, а второй зажат с помощью кронштейна на кузове автомобиля. Когда рычаг подвески перемещается, этот стержень скручивается, выступая в роли упругого элемента. Основное преимущество заключается в простоте конструкции. К недостаткам можно отнести то, что торсион для нормальной работы должен быть достаточно длинным, но из-за этого возникают проблемы с его размещением. Если торсион расположен продольно, то он «съедает» место под кузовом или внутри него, если он поперечный - уменьшает параметры геометрической проходимости автомобиля.


Рисунок 6.16 Пример подвески с продольно расположенным торсионом (длинным стержнем, закрепленным спереди на рычаге, сзади – на поперечине кузова).

Пневматический элемент

По мере загрузки автомобиля ручной поклажей и пассажирами, задняя подвеска проседает, уменьшается дорожный просвет, возрастает вероятность пробоя подвески (о том, что это такое, мы говорили выше). Чтобы этого избежать, сначала решили заменить пружины задней подвески пневматическими элементами (пример такого элемента представлен на рисунке 6.17). Данные элементы представляют собой резиновые подушки, в которые закачан воздух. Если задняя подвеска нагружена, в пневматических элементах поднимается давление воздуха, положение кузова относительно поверхности и ход подвески остаются неизменными, вероятность замыкания элементов ходовой части сводится к минимуму.


Рисунок 6.17


Рисунок 6.18

Для расширения возможностей пневмоэлементов установили мощные компрессоры, электронный блок управления и предусмотрели возможность автоматического и ручного управления подвеской. Так получилась полуактивная подвеска, которая, в зависимости от режима движения и дорожной обстановки, автоматически изменяет величину дорожного просвета. После введения в конструкцию амортизаторов с изменяемой жесткостью на выходе получили активную подвеску.

Подрамник

Чтобы обеспечить шумо- и виброизоляцию детали подвески часто крепятся не к самому кузову, а к промежуточной поперечине или подрамнику (пример которого приведен на рисунке 6.18), образующему вместе с элементами подвески единую сборочную единицу. Такая конструкция упрощает сборку на конвейере (а значит, снижает себестоимость автомобиля), регулировочные работы и последующий ремонт.


Рисунок 6.19

Стабилизатор поперечной устойчивости

При прохождении поворотов автомобиль наклоняется в сторону, противоположную повороту, - на него действуют центробежные силы. Есть два пути минимизации данного эффекта: сделать очень жесткую подвеску или установить стержень, связывающий колеса одной оси, особым образом. Первый вариант интересен, но чтобы бороться с кренами автомобиля в поворотах, пришлось бы сделать очень жесткую подвеску, что свело бы на нет показатели комфорта автомобиля. Еще один вариант - установка активной подвески со сложным электронным управлением, которая в поворотах делала бы подвеску внешних колес более жесткой. Но этот вариант очень дорогостоящий. Потому пошли по простейшему пути – установили стержень, которым связали через стойки или напрямую рычаги подвесок колес с обеих сторон автомобиля (смотрите рисунок 6.19. Таким образом, при прохождении поворота, когда колеса, находящиеся с внешней стороны относительно центра поворота, поднимаются вверх (относительно кузова), стержень скручивается и как бы подтягивает к кузову внутреннее колесо, тем самым стабилизируя положение автомобиля. От этого и название - «стабилизатор поперечной устойчивости ».

Основными недостатками обычного стабилизатора поперечной устойчивости являются ухудшение плавности хода и снижение общего хода подвески из-за небольшой, но все таки связи между колесами одной оси. Первый недостаток бьет по автомобилям класса люкс, второй – по внедорожникам. В эпоху электроники и технологических прорывов конструкторы не могли не воспользоваться всеми возможностями инженерии, потому придумали и внедрили активный стабилизатор поперечной устойчивости, который состоит из двух частей – одна часть подсоединена к подвеске правого колеса, вторая - к подвеске левого колеса, а посредине два конца стержня стабилизатора зажимаются в гидравлическом или электромеханическом модуле, который имеет возможность скручивать ту или иную часть, повышая тем самым стабильность автомобиля, а когда автомобиль движется прямо, «распускает» эти два конца стержня, давая тем самым возможность каждому из колес вырабатывать отведенный им ход подвески.

Геометрическая проходимость автомобиля

Под геометрической проходимостью автомобиля понимают совокупность его параметров, влияющих на способность беспрепятственно передвигаться в тех или иных условиях. К таким параметрам относят высоту дорожного просвета автомобиля, углы съезда и въезда, угол рампы, величину свесов. Дорожный просвет или клиренс автомобиля - это высота от самой низкой точки кузова, узла (например, деталей подвески) или агрегата (к примеру, картера двигателя) машины до поверхности земли. Угол съезда и въезда - это параметры, определяющие возможность автомобиля взбираться на горку под определенным углом или съезжать с нее. Величина этих углов напрямую связана с другим параметром, входящим в понятие геометрической проходимости - длины переднего и заднего свесов. Как правило, если свесы короткие, то машина может иметь большие углы въезда и съезда, что помогает ей без труда взбираться на крутые горки и съезжать с них. В свою очередь, знать длину свесов важно, чтобы понимать, можно ли припарковать свое авто к тому или иному бордюру. Наконец, еще один параметр - угол рампы, зависящий от длины колесной базы и высоты кузова автомобиля над поверхностью. Если база длинна, а высота мала, то автомобиль не сможет преодолеть точку перехода из вертикальной плоскости в горизонтальную - проще говоря, машина, поднявшись на гору, не сможет перевалить через ее пик, и «сядет» на днище.


Please enable JavaScript to view the

Ни для кого не секрет, что подвеска – одна из самых главных деталей в автомобиле, влияющих на такие важные параметры, как управляемость, плавность хода и устойчивость автомобиля в целом. Сегодня мы постараемся разобраться в том, какие типы подвесок существуют и для каких автомобилей они подходят лучше всего.

Теория

Для начало нам необходимо понять, на что именно влияет конструкция подвески? Изначально подвеска отвечает за поведение колеса во время сжатия и отбоя. Идеальным считается случай, когда траектория движения колеса всегда остается перпендикулярным дороге – именно в этом случае пятно контакта покрышки с поверхностью остается максимально возможным. Однако это не всегда так, как правило, в процессе сжатия подвески у колес меняется угол развала, а в случае прохождения поворота угол колеса меняется в месте с наклоном кузова. Как вы понимаете, в таком случае это приводит к уменьшению пятна контакта покрышки с поверхностью. Таким образом, именно строение подвески автомобиля напрямую влияет на сцепные свойства шин.

Всю подвеску в современных автомобилях можно разделить на три группы элементов:

  • направляющие элементы – рычаги;
  • упругие элементы – пружины и стабилизаторы;
  • демпфирующие элементы – амортизаторы.

Все эти элементы в конечном счете сказываются на плавности хода автомобиля, а также его экономичности. Также не стоит забывать о том, какое влияние подвеска оказывает на уровень кренов автомобиля. За этот параметр в подвеске отвечают не пружины и амортизаторы, а рычаги. Именно от их расположения зависит центр поперечного крена, то есть точка, вокруг которой начинает накреняться кузов автомобиля.

Одними из самых главных параметров подвески является развал и схождение колес:

  • Развал – это отклонение плоскости колеса от перпендикуляра, которым, по сути, является дорожное полотно. Если верхняя часть колеса завалена наружу, значит, угол развала положительный, если внутрь – отрицательный.
  • Схождение – это угол между направлением движения и самой плоскостью вращения колеса.

Опираясь на эти факты, можно сделать вывод, что проектирование подвески – отнюдь не самая тривиальная задача. Инженерам необходима уйма времени, чтобы найти необходимый баланс между сильными кренами, управляемостью и комфортом. Теперь от теории перейдем к практике и посмотрим на основные типы подвески, применяемые сегодня.

Практика

На данный момент можно различить аж семь видов различных типов подвесок. Для лучшего восприятия мы посмотрим на каждый тип по отдельности.

Зависимая подвеска. Это тип подвески автомобиля – один из старейших, но тем не менее, успешно используется по сей день. Отличительная черта данного типа подвески – жесткая связь осей колес по средствам моста или обыкновенной балки.

Изначально в качестве упругих направляющих элементов зависимой подвески использовались рессоры, но в современных аналогах применяется специальная поперечина, которая удерживается по бокам продольными рычагами. Сегодня чаще всего такой тип подвески можно встретить на внедорожниках и недорогих переднеприводных автомобилях.

Многие считают, что эта подвеска не имеет преимуществ, по сравнению с современными аналогами, но это не совсем так. Зависимая подвеска очень проста, имеет крайне низкий вес и не нуждается в регулировке развала колес. Но есть и один существенный недостаток – нестабильность поведения на неровном покрытии, что может привести к заносу.

Полузависимая подвеска (торсионно-рычажная). Этот тип подвески имеет много общего с предыдущим вариантом. Но в отличие от зависимой подвески поперечина между колесами находится не на одной оси колес, а смещена ближе к опорам рычагов. Кроме того, сама поперечина в данном случае не только противодействует боковым силам, но и играет роль стабилизатора поперечной устойчивости. Отличить данную подвеску очень легко по типу сечения поперечины, которое обычно имеет U-образную форму.

Как и в случае с зависимой подвеской, данный тип не меняет угол развала на относительно ровном покрытии. Но как только дорога становится хуже или необходим поворот поперечина скручивается, тем самым препятствуя наклону колес.

На данный момент этот тип подвески является самым популярным и применяется во многих автомобилей компактного класса. Простота конструкции, стабильность на прямой дороге и солидная устойчивость в поворотах сделали её мегапопулярной. Единственный существенный недостаток этого типа – необходимость большего пространства для её размещения под днищем.

Подвеска на продольных рычагах. Данный тип подвески является самым простым представителем так называемых независимых подвесок. Каждое из колес держится на собственном рычаге, который к тому же должен противодействовать продольным и боковым усилиям. Сами понимаете, насколько крепким должен быть рычаг в такой подвеске.

Во время эксплуатации данного типа подвески существует ряд как положительных, так и отрицательных моментов. Например, колеса в такой подвеске вращаются строго в продольной плоскости, что отлично на идеально ровном покрытии. Но с другой стороны, на неровном покрытии и во время поворотов колеса накреняются вместе с кузовом, что уменьшает сцепные свойства шин.

Казалось бы, зачем такой неуклюжий тип подвески? Ответ банально прост – данный тип подвески занимает очень мало места на днище автомобиля, кроме того её конструкция очень проста.

Подвеска на двойных рычагах. Данный тип подвески разработан в 1930-х годах прошлого века, но несмотря на это она до сих пор используется в большинстве спортивных автомобилей. Колесо крепится к кузову или подрамнику при помощи двух рычагов. Кроме того, обычно верхний рычаг всегда делают немного короче, что в момент сжатия подвески заваливает верхнюю часть колеса внутрь. Это в свою очередь обеспечивает лучшее сцепление колеса с поверхностью во время прохождения поворота.

Но такая податливость имеет и обратную, негативную сторону. Например, во время торможения колеса также сжимаются, что приводит к ухудшению контакта. Кроме того, сама структура подвески требует большой высоты установки, по этой причине в основном применяется она только на передней оси.

MacPherson. Этот тип подвески – самый популярный на сегодняшний день. Конструкция Макферсона очень проста и компактна, что позволяет отдавать больше места подкапотному пространству. Конструкция подвески этого типа состоит из нижнего поперечного рычага и стойки амортизатора, который играет роль верхнего направляющего элемента. Это приводит к тому, что данный тип подвески лишился возможности изменять развал при стабильной колее. Зато при разработке очередного автомобиля на подвеске MacPherson есть возможность изначально задавать развал. Например, выдвинув нижний рычаг наружу, можно получить лучшее сцепление в поворотах. А сдвинув рычаг внутрь, можно обеспечить стабильность колеи, но ухудшить поведение в поворотах.

Главный недостаток данного типа подвески – повышенная нагрузка на стойку амортизатора, а также на место его крепления.

Подвеска на «косых» рычагах. Данный тип подвески сегодня уже практически не применяется, но тем не менее, по нашим дорогам ездит еще достаточно автомобилей, выпущенных в 1990-годах, когда данный тип подвески был сверхпопулярен.

Строение подвески очень простое, как и в случае с подвеской на продольных рычагах, в этом типе применяются также два, но косых рычага. На стадии разработки автомобиля инженерам было необходимо выбрать угол наклона и длину рычага, чтобы обеспечить нужные кинематические свойства подвески будущего автомобиля.

Чаще всего данный тип подвески можно было встретить на задней оси в автомобилях концерна BMW. Баварские инженеры сразу отметили одно очень важное свойство этой подвески – в случае резкого торможения, кузов максимально прижимается к земле, что делает поведение автомобиля более прогнозируемым. Кроме того, меняя различные параметры (о которых описано чуть выше), можно влиять на управляемость авто, делая его склонным, например, к избыточной поворачиваемости.

Многорычажная подвеска. Данный тип подвески был разработан с целью объединить в себе достоинства двухрычажной и подвески на косых рычагах. Другими словами, многорычажка представляет собой двухрычажную подвеску, в которую интегрировали продольные рычаги, которые должны утягивать колесо в момент сжатия. Обычно данный тип подвески применяется на задней оси. Если автомобиль переднеприводный, то её настраивают нейтрализацию недостаточной поворачиваемости, а если заднеприводный, то данный тип подвески противодействует избыточной поворачиваемости.

Главными недостатками данного типа подвески можно считать дороговизну конструкции и её сложность. По этой причине чаще всего её можно встретить только в дорогих автомобилях.

Итог

Подводить итоги и говорить, какая из подвесок является лучшей, крайне сложно. Все описанные конструкции имеют право на существование и применяются производителями для решения определённого круга задач.

  • , 19 Окт 2015

– это комплекс механизмов, благодаря которым происходит эластичная связь среди колес и мостов автомобиля, снижение тяжести на несущие детали, а также регулировка позиции кузова во время езды.

Подвеска, это переходная составляющая между шасси автомобиля и поверхностью дороги. Главной задачей инженеров сделать так, чтобы подвеска обладала малым весом и обеспечивала необходимую безопасность автомобиля во время движения.

Двухрычажный тип подвески

Данный тип ходовой представляет собой схему двух рычагов, соединение которых производится с помощью поворотного кулака. Как правило, нижний рычаг установлен посредством сайлентблоков на подрамнике, а верхний установлен таким же образом, но уже на . Такая схема минимизирует раскачку и ход колес, а также небольшой угловой шаг при колебаниях вверх-вниз. Форма такой конструкции дает возможность любой оси отдельно чувствовать неровности и находиться вертикально относительно дороги, не передавая колебания противоположной оси.

Многорычажная подвеска

Схема данной подвески немного похожа на вышеупомянутую и пользуется всеми ее лучшими качествами. Такие типы подвесок по своей структуре сложнее и дороже, но отличаются большой пластичностью и превосходным координированием машины. Широкий перечень деталей (сайлентблоки и шаровые опоры) лучше других гасят неровности отечественных дорог. Все части прикреплены к подрамнику. А внушительные сайлентблоки между деталями и подрамником увеличивают изоляцию шума. Многорычажная независимая подвеска находит употребление чаще всего на легковых автомобилях S-класса. Она стабилизирует соприкосновение колес с самыми разными видами покрытия дорог и четко регулирует автомобиль в минуты изменения направления.

Плюсы многорычажной подвески

  • Самостоятельная деятельность каждого колеса свободно от других;
  • Небольшой вес;
  • Суверенные поперечная и продольная корректировки;
  • Отличная способность поворачивать;
  • Идеальный вариант для полноприводных моделей авто.

Отрицательный момент – это сложность механизма, и, конечно же, дороговизна.

Подвеска McPherson

Однако, вопреки усовершенствованию, зависимые подвески отличаются одним моментом: при разгоне авто как бы «приседает», а вот при торможении опускается «нос», т.е. теряется баланс. Дабы устранить дисбаланс, применяются вспомогательные элементы направления.

Задняя зависимая подвеска

Традиционным образцом данной схемы работает задняя подвеска, у которой эластичными элементами оказываются винтовые пружины в форме цилиндра. Помимо этого, чтобы повысить процент стабильного управления, уменьшить наклон кузова при маневрах, а также улучшить гладкость хода, подвеска снабжена поперечной реактивной штангой.

Минус заключается во внушительной тяжести балки заднего моста. А если мост ведущий, то масса его еще больше, что становится серьезным ухудшением гладкости хода и приводит появлению колебаний.

Полузависимая задняя подвеска

Выполнена данная ходовая часть при участии двух продольных рычагов, в центре объединенные продольной балкой. Такая разновидность может быть задействована исключительно в задней части легковых автомобилей, но почти все они переднеприводные.

Преимущества конструкции в простоте монтирования, малогабаритных размерах и незначительном весе, а главное – обеспечивается наиболее оптимальное расположение колес на равноудаленном расстоянии.

Недостаток только один: данная конструкция беспрекословно подходит именно для пассивного заднего моста.

Подвеска — это совокупность устройств, обеспечивающих упругую связь между подрес­соренной и неподрессоренными массами Подвеска уменьшает динамические нагрузки, действующие на подрессоренную массу. Она состоит из трех устройств:

  • упругого
  • направляющего
  • демпфи­рующего

Упругим устройством 5 на подрессоренную массу передаются вертикальные силы, действующие со стороны дороги, уменьшаются дина­мические нагрузки и улучшается плавность хода.

Рис. Задняя подвеска на косых рычагах автомобилей БМВ:
1 – карданный вал ведущего моста; 2 – опорный кронштейн; 3 – полуось; 4 – стабилизатор; 5 – упругий элемент; 6 – амортизатор; 7 – рычаг направляющего устройства подвески; 8 – опорная стойка кронштейна

Направляющее устройство 7 – механизм, воспринимающий действующие на колесо продольные и боковые силы и их моменты. Кинематика направляющего устройства определяет характер перемещения колеса относительно несущей системы.

Демпфирующее устройство () 6 предназначено для гашения колебаний кузова и колес путем преобразования энергии колебаний в тепловую и рассеивания ее в окружающую среду.

Конструкция подвески должна обеспечивать требуемую плавность хода иметь кинематические характеристики, отвечающие требованиям устойчивости и управляемости автомобиля.

Зависимая подвеска

Зависимая подвеска характеризуется зависимостью перемещения одного колеса моста от перемещения другого колеса.

Рис. Схема зависимой подвески колес

Передача сил и моментов от колес на кузов при такой подвеске может осуществляться непосредственно металлическими упругими элементами – рессорами, пружинами или с помощью штанг – штанговая подвеска.

Металлические упругие элементы имеют линейную упругую характеристику и изготавливаются из специальных сталей, обладающих высокой прочностью при больших деформациях. К таким упругим элементам относятся листовые рессоры, торсионы и пружины.

Листовые рессоры на современных легковых автомобилях практически не применяются, за исключением некоторых моделей автомобилей многоцелевого назначения. Можно отметить модели легковых автомобилей, выпускавшиеся ранее с листовыми рессорами в подвеске, которые продолжают эксплуатироваться и в настоящее время. Продольные листовые рессоры устанавливались в основном в зависимой подвеске колес и выполняли функцию упругого и направляющего устройства.

На легковых автомобилях и грузовых или микроавтобусах применяются рессоры без подрессорников, на грузовых автомобилях – с подрессорниками.

Рис. Рессоры:
а) – без подрессорника; б) – с подрессорником

Пружины как упругие элементы применяются в подвеске многих легковых автомобилей. В передней и задней подвесках, выпускаемых различными фирмами большинства легковых автомобилей применяются винтовые ци­линдрические пружины с постоянными сечением прутка и шагом навивки. Такая пружина имеет линейную упругую характеристику, а необходимые характеристики обеспечиваются дополнительными упругими элементами из полиуретанового эластомера и резиновыми буферами отбоя.

На легковых автомобилях Российского производства в подвесках применяют цилиндрические винтовые пружины с постоянными сечением прутка и шагом в сочетании с резиновыми отбойными буферами. На автомобилях производителей других стран, например, БМВ 3-й серии в задней подвеске устанавливают бочкообраз­ную (фасонную) пружину с прогрессивной харак­теристикой, достигаемой за счет формы пружины и применения прутка переменного сечения.

Рис. Спиральные пружины:
а) цилиндрическая пружина; б) бочкообразная пружина

На ряде автомобилей для обеспечения прогрес­сивной характеристики применяется комбинация цилиндрических и фасон­ных пружин с переменной толщиной прутка. Фасонные пружины имеют прогрессивную упругую характеристику и называются «миниблоками» за небольшие размеры по высоте. Такие фасонные пружины применяют, например в задней подвеске автомобилей «Фольксваген», «Ауди», «Опель» и др. Фасонные пружины имеют различные диаметры в средней части пружины и по краям, а пружины «миниблок» имеют и различный шаг навивки.

Торсионы, как правило, круглого сечения применяются на автомобилях в качестве упругого элемента и стаби­лизатора.

Упругий крутящий момент передается торсионом через шлицевые или четырехгранные головки, распо­ложенные на его концах. Торсионы на автомобиле могут быть установлены в продольном или поперечном направлении. К недостаткам торсионов следует отнести их большую длину, необходимую для создания требуемых жесткости и рабочего хода подвески, а также высокую соосность шлицов на концах торсиона. Однако следует отметить, что торсионы имеют небольшую массу и хорошую компактность, что позволяет успешно применять их на легковых автомобилях среднего и высокого классов.

Независимая подвеска

Независимая подвеска обеспечивает независимость перемещения одного колеса моста от перемещения другого колеса. По типу направляющего устройства независимые подвески делятся на рычажные, и подвески Макферсона.

Рис. Схема независимой рычажной подвески колес

Рис. Схема независимой подвески Макферсона

Рычажная подвеска – подвеска, направляющее устройство которой представляет собой рычажный механизм. В зависимости от количества рычагов могут быть двухрычажные и однорычажные подвески, а в зависимости от плоскости качания рычагов – поперечно-рычажные, диагонально-рычажные и продольно-рычажные.

Список видов подвесок легковых автомобилей

В настоящей статье рассмотрены лишь основные виды подвесок автомобилей, в то время как их видов и подвидов на самом деле существует намного больше и, к тому же инженерами постоянно разрабатываются новые модели и дорабатываются старые. Для удобства приведем список наиболее распространенных. В последующем каждая из подвесок будет рассмотрена подробней.

  • Зависимые подвески
    • На поперечной рессоре
    • На продольных рессорах
    • С направляющими рычагами
    • С упорной трубой или дышлом
    • «Де Дион»
    • Торсионно-рычажная (со связанными или с сопряжёнными рычагами)
  • Независимые подвески
    • С качающимися полуосями
    • На продольных рычагах
      • Пружинная
      • Торсионная
      • Гидропневматическая
    • Подвеска «Дюбонне»
    • На двойных продольных рычагах
    • На косых рычагах
    • На двойных поперечных рычагах
      • Пружинная
      • Торсионная
      • Рессорная
      • На резиновых упругих элементах
      • Гидропневматическая и пневматическая
      • Многорычажные подвески
    • Свечная подвеска
    • Подвеска «Макферсон» (качающаяся свеча)
    • На продольных и поперечных рычагах
  • Активные подвески
  • Пневматические подвески

Подвеска автомобиля – это слаженный механизм, состоящий из более мелких деталей. Создана была подвеска для того, чтобы неровности дороги не передавались напрямую от колес к кузову. Она является соединительным звеном между колесами и кузовом автомобиля и представляет собой часть шасси. Известны разные виды подвесок автомобиля.

Зачем нужна

Подвеска автомобиля нужна для механического соединения рамы или кузова автомобиля с колесами. Благодаря подвеске, неровности дороги не передаются на кузов, то есть подвеска отрабатывает удары колес и сглаживает их при передаче на кузов либо вообще не передает их. В конструкцию подвески входят упругие и направляющие элементы. Такой элемент подвески, как рессоры, которые устанавливались ранее на заднюю подвеску автомобиля, являлись одновременно и упругим и направляющим элементом. На данный момент подвеска автомобиля состоит из множества элементов, включая электронные устройства и датчики, что позволяет обеспечивать должный комфорт пассажирам автомобиля. Рессорная подвеска сейчас устанавливается только на грузовые автомобили, точнее, на карьерные самосвалы.

Классификация

Подвески настолько разнообразны, что их даже можно классифицировать по некоторым признакам.

Если брать в целом, то все виды подвесок легковых автомобилей делятся на две большие группы: зависимая подвеска и независимая. Они заметно различаются, но не имеют весомых преимуществ друг перед другом, чтобы можно было выявить однозначного лидера.

Независимая подвеска

Независимая подвеска получила свое название за то, что колеса одной оси не связаны между собой механически. То есть вполне возможно такое, что одно колесо крутится, а другое нет. Этот вид подвески был разработан позже зависимой подвески. Постоянные параметры, например такие, как схождение и развал колес, не имеют постоянного значения при работе подвески. Это значит, что во время отбоя подвески эти параметры временно нарушаются. Этот вид подвески наиболее дешев по сравнению с другими, поэтому чаще применяется на бюджетных автомобилях. Наиболее распространены такие типы независимой подвески, как, например, Мак-Ферсон или «многорычажная».

Зависимая подвеска

Эта подвеска подразумевает жесткую связь колес на одной оси. Движение одного колеса приводит в движение второе колесо. Это наиболее традиционный метод соединения колес, он известен еще со времен гужевых повозок.

Соединительная связь между колесами образуется посредством так называемой неразрезной балки. Минус этого вида подвески в том, что он несовершенен и на данный момент является устаревшим. Наезд на неровность одним колесом заставляет другое колесо менять угол наклона. Из-за этого на высоких скоростях может возникнуть отклонение оси. Если же зависимая подвеска применяется на ведущей оси, то на большой скорости также может возникнуть отклонение от проектируемой траектории движения. Применяется такая подвеска сейчас только на грузовиках и автобусах.

Модернизированная зависимая подвеска «Де Дион» лишена практически всех вышеназванных недостатков, но мало распространена из-за того, что для такой подвески нужно много места, так как необходима установка неразрезной балки. К тому же она имеет слишком высокую стоимость, что делает ее малоконкурентной.

Независимая подвеска с качающимися полуосями

Подвеска с качающимися полуосями отличается от остальных типов тем, что каждая из двух качающихся осей закреплена на шасси. Таким образом, каждое колесо всегда находится под углом 90 градусов к своей полуоси. Из-за этого создается эффект подрессоривания и подвеска становится несовершенной с кинематической точки зрения. Также существует зависимость схода и развала колеса, колеи от длины полуоси. Чем полуось длиннее, тем меньше зависимость. Из-за действия центробежной силы и несовершенства такой подвески в долгих поворотах возникает сила, направленная вверх, и она слегка «подбрасывает» ось вверх.

В качестве упругого элемента часто выступают поперечные рессоры либо пружины. Часто устанавливали такую подвеску на довоенные автомобили, так как они не развивали больших скоростей. По мере роста скорости такая подвеска становится некомфортной и опасной.

Со временем автомобили модернизировали и постепенно отказывались от такого типа подвески. Например, на «горбатом» запорожце использована именно такая подвеска, а на его преемнике ЗАЗ-966 использована модернизированная подвеска с использованием косых рычагов. В современном мировом автомобилестроении на легковых автомобилях такая подвеска не используется из-за ее несовершенства. Единственный грузовой автомобиль, на который до сих пор устанавливают эту подвеску - это Татра-815.

Подвеска типа «качающаяся свеча»

Является самой первой независимой подвеской. На современных автомобилях используется только на британских автомобилях спортивного типа.

Является предшественницей подвески типа Мак-Ферсон. Основой здесь является кулак поворотный, закрепленный пружиной. Имеет свободный ход вверх-вниз по трубчатой направляющей, намертво прикрепленной к раме автомобиля.

Езда на автомобиле с такой подвеской является очень жесткой и некомфортной. Именно из-за этого фактора, а также дороговизны, она не получила большого распространения.

Подвеска типа Мак-Ферсон

Подвеска типа Мак-Ферсон в отличие от свечной подвески дополнена нижним рычагом и имеет возможность качаться в поперечном направлении.

Является самой примитивной, но действенной и дешевой подвеской. Большинство бюджетных автомобилей оснащается именно такой простой, но надежной подвеской. Подвеска типа Мак-Ферсон первая по соотношению цена-качество. Отличается неубиваемостью и простотой обслуживания. Позволяет себя не обслуживать, не менять расходники. Например, при сроке службы поворотного кулака примерно 40–50 тысяч километров, такая подвеска спокойно может проехать и 200 тысяч километров.

Детали будут стучать, греметь, но автомобиль будет технически исправным и сможет продолжать движение. В конце службы, если за автомобилем не ухаживать, эта деталь просто развалится и машина остановится. Ремонт такой подвески несложный, поэтому, поменяв деталь, можно снова начинать движение – при поломке одной детали она не деформирует другие.

Активная подвеска

Активная подвеска – это подвеска, в которой по желанию водителя механически меняется клиренс и жесткость амортизаторов. Водитель, нажав на устройство управления подвеской, меняет также и режимы, например, спортивный, комфортный, нормальный.

Активная подвеска бывает трех видов: гидравлическая, гидропневматическая и самая распространенная пневматическая.

Пневмоподвеска еще в начале 2000-х годов начала использоваться на автомобилях марки Ситроен Ксара. В автомобилях среднего класса это был своеобразный прорыв. Но дальше в автомобильные массы он не пошел. Кроме таких мировых брендовых лидеров, как БМВ, Мерседес-Бенц и Ауди сейчас, пожалуй, только Ситроен серийно производит легковые автомобили с такой активной подвеской.

Работает подвеска на пневмобаллонах следующим образом: внутри пружины вместо стойки или амортизатора стоит пневмобаллон, содержащий воздух. В багажнике находится компрессор, с помощью которого в эти баллоны этот самый воздух поступает. Водитель внутри автомобиля может управлять подвеской с помощью тумблеров на панели. Накачал воздух в баллон – автомобиль поднялся. Спустил воздух – автомобиль опустился.

К плюсам пневмоподвески можно отнести неизменяющийся клиренс. То есть если даже в самом высоком положении машину загрузить пассажирами и грузом клиренс автомобиля не изменится. Также такая подвеска обеспечивает отсутствие кренов в поворотах и улучшенную управляемость.

Минусы такой подвески – это обязательная установка компрессора в багажнике, у которого небольшой срок службы, как и у пневмобаллонов. Долговечность работы компрессора напрямую зависит от климата – если в регионе высокая влажность воздуха, то при частой работе компрессора он выходит из строя. Такая подвеска стоит достаточно дорого, к тому же устанавливать ее должны профессионалы, а это и дорого и профессионалы есть не в каждом городе.

Пневмоподвеска может быть одно, двух или четырехконтурная. Одноконтурная способна опустить или поднять только весь автомобиль. Двухконтурная может опустить отдельно переднюю или заднюю ось. Четырехконтурная система способна изменять положение каждого колеса по отдельности.

Активная пневмоподвеска сейчас часто используется для тюнинга автомобилей. Молодые водители, желая выделить свой автомобиль из серой массы других, устанавливают такую подвеску на свои автомобили.

Видео

Обзор основных видов подвесок представлен в видеоматериале: