Напряжение свинцового аккумулятора. Свинцовые аккумуляторные батареи, устройство, эксплуатация, заряд

Свинцовый аккумулятор — это источник питания, конструкция которого осталась неизменной со времени его изобретения. Основное предназначение аккумуляторной батареи – оказать помощь при пуске двигателя и обеспечить питанием бортовую сеть автомобиля при неработающем двигателе. Сама аккумуляторная батарея электрический ток не вырабатывает – за счет химической реакции она его накапливает.

Иногда мы задаемся вопросом — что внутри автомобильного аккумулятора? А внутри — кислотный электролит, содержащий серную кислоту и свинцовые пластины. Это конечно упрощённо, далее расскажем поподробней.

Автомобильный аккумулятор является вторичным гальваническим элементом. Внимательное изучение его свойств и устройства поможет правильно выбрать необходимый нам продукт при покупке.

Что же такое гальванические элементы

Гальванический элемент — прибор, который преобразует химическую энергию в энергию электрическую. Главными составными частями любого гальванического элемента являются два электрода — катод и анод, размещенные в сосуде из не проводящего ток материала и заполненного электролитом.

Все многообразие применяемых гальванических элементов можно разделить на два главных типа: первичные элементы и вторичные элементы.

К числу первичных элементов относятся, например, всем известные так называемые «сухие» элементы. К вторичным элементам относятся аккумуляторные батареи всех типов. Различие между типами элементов обусловливается характером химических реакций, протекающих в них при эксплуатации.

Во вторичных элементах происходящие химические реакции обратимые. Отработавшая или разряженная АКБ может быть восстановлена (заряжена), если пропускать через неё постоянный электрический ток в обратном направлении. В процессе заряда электрическая энергия преобразуется в химическую. При следующем цикле разряда происходит обратная реакция.

Типы автомобильных аккумуляторов

Типы аккумуляторов бывают обслуживаемые и необслуживаемые.

У обслуживаемого аккумулятора можно:

  • физически просто выкрутить пробки с банок;
  • визуально определить уровень электролита и состояние свинцовых пластин;
  • замерить плотность, кипение электролита при заряде;
  • при необходимости добавить дистиллированную воду.

Если говорить языком автомобилиста – «добраться до внутренностей». Мы можем делать с аккумулятором все что захотим.

Но обслуживаемые АКБ имеют ряд недостатков:

  • из-за негерметичности батареи в процессе эксплуатации электролит может выкипать, что приводит к снижению его уровня и, как следствие, падает ёмкость, итог – проблемы с запуском автомобиля;
  • испарение воды приводит к повышению плотности электролита, следствием чего является разрушение пластин;
  • необходимо постоянно контролировать уровень электролита;
  • при нагревании электролита на внешней крышке аккумулятора (в местах расположения пробок) образуется специфический белый налет, что может привести к замыканию клемм и преждевременному частичному разряду.

Все эти недостатки – проблемы прошедших лет. Изобретатели долгие годы трудились над решением этих проблем и, наконец, нашли выход из положения – сделали аккумулятор необслуживаемым.

Необслуживаемый АКБ.

Отличительной чертой является отсутствие пробок на верхней крышке и как бы вы не хотели заглянуть внутрь – ничего не получится. Он стал полностью герметичным.

Какие достоинства у данного типа?

  • при нагревании электролита испаряемая жидкость в виде конденсата оседает на внутренних стенках батареи и стекает вниз.
  • АКБ можно кантовать как угодно, не боясь пролива электролита.
  • решена главная проблема – пластины всегда находятся в электролите.

Но без недостатков не бывает ни одного устройства.

На необслуживаемых батареях перемычки между банками расположены внутри корпуса. Проверить напряжение на банках практически невозможно.

На необслуживаемые аккумуляторы начали устанавливать так называемые «клапаны аварийного сброса давления». Срабатывает он в экстренных случаях, когда происходит сильный перезаряд. Наружу выходит часть испаряемого электролита, но вот обратно добавить его в батарею возможность отсутствует напрочь. Несколько перезарядов и как итог – батарея теряет ёмкость.

Характеристики свинцово-кислотных аккумуляторов

Наверняка более 90% автомобилистов знают об устройстве своего аккумулятора только из школьных уроков физики. Да в повседневной жизни это уже и не требуется. Купил – установил – забыл.

Характеристики аккумуляторных батарей, на которые обращают внимание автомобилисты при его выборе: тип батареи (обслуживаемая или безуходная), электрическая ёмкость батареи, номинальное напряжение батареи, саморазряд.

Термин «электрическая ёмкость АКБ» означает количество электричества, отдаваемого аккумулятором при разряде. Ёмкость определяется в ампер-часах.

Разрядная ёмкостью СР — количество электричества в ампер-часах, получаемое при разряде аккумулятора до допустимого напряжения. Разрядную ёмкость определяют исходя из формуле:

Ёмкость САБ существенным образом зависит от температуры электролита, особенно на стартерных режимах разряда.

Ёмкость аккумулятора может быть выражена двояко: в амперчасах или в ваттчасах. Термин «ёмкость» обозначает то количество электричества, которое можно получить от данного источника питания. Ёмкость же в ваттчасах есть мера энергии или способности производить работу.

При определении емкости какой-либо аккумуляторной батареи необходимо отмечать режим, при котором производится разряд, температуру и конечное напряжение. Ёмкость аккумулятора в основном определяется тремя факторами: разряд, температура и конечное напряжение, а при маркировке устанавливается в амперчасах.

Стандартной величиной номинального напряжения одного элемента аккумулятора является 2 вольта. Для легковых автомобилей выпускают аккумуляторы с напряжением 12в., а на грузовых применяют с напряжением 24в. Для специальной техники могут изготавливаться АКБ с напряжением, установленным производителем.

Самопроизвольный разряд аккумулятора – потеря емкости в процессе хранения, отключения внешних потребителей, температурного режима эксплуатации и качества ТО. При этом его рабочие характеристики снижаются.

Экспериментально установлено, что для свинцово-кислотных АКБ величина саморазряда варьируется от 1,5 до 3% в месяц.

Одной из причин повышенного саморазряда обслуживаемых аккумуляторов является применение не дистиллированной воды, содержащей примеси железа, хлора и различных солей.

Также при переворачивании батареи или сильной тряске происходит осыпание активного вещества с пластин.

Заглянем что внутри?

Принципиально конструкция аккумуляторов осталась неизменной со времени их изобретения: свинцовые пластины и кислота. Внутреннее пространство заполнено электролитом, состоящим из 38%-ной серной кислоты и дистиллированной воды. В каждой батарее отрицательные и положительные электроды чередуются. Между пластинами размещаются пластмассовые сепараторы. Все перемычки между элементами и батареями изготовлены из свинца.

Разберемся в конструкции АКБ подробней

Устройство автомобильного аккумулятора простое: ёмкость для размещения электродов, пластин, сепараторов и крышки. В обслуживаемых в крышке предусмотрены горловины для заливки электролита и закручивающиеся пробки. Они позволяют при необходимости доливать дистиллированную воду.

Корпуса батарей изготавливают из прочного полипропилена.

Материал корпуса не токопроводящий и химически стоек к серной кислоте. По нижнему краю корпуса предусмотрена отбортовка для жесткого крепления в автомобиле, чтобы исключить удары и падения.

Вентиляционные (лабиринтные) пробки используются в обслуживаемых батареях. Они предохраняют от выноса и выплескивания электролита, но обеспечивают свободный выход газа. В качестве лабиринтного наполнителя могут использоваться гранулы полиэтилена.

Чтобы исключить неправильное подключение батареи к бортовой сети автомобиля, свинцовые клеммные выводы отличаются по размерам, и чём вкратце описано в статье про .

Практически все виды свинцово-кислотных автомобильных аккумуляторов неремонтопригодны.

Принцип работы автомобильного аккумулятора

Принцип работы аккумулятора в автомобиле основан на процессах двух видов. При подключении к батарее потребителей (стартер, фары, приборы панели управления автомобили и др.) происходит её разряд.

При этом химическая энергия превращается в электрическую, которая, в свою очередь, может быть превращена в тепловую, механическую и световую.

Если к такому источнику питания подключить электродвигатель, то часть электроэнергии превратится в механическую, а какая-то — в тепловую.

При заряде происходит обратный процесс — электрическая энергия преобразуется в химическую.

Во время заряда на пластинах- катоде, аноде и в электролите образуются те вещества, которые вступают в электрохимическую реакцию при разряде. Химические реакции при заряде идут в обратном направлении по сравнению с химическими реакциями при разряде. Этим и объясняется то, что АКБ называют обратимым источником тока, его работа носит циклический характер: разряд-заряд.

Как заряжать аккумулятор автомобиля?

Способов зарядки существует великое множество.

Зарядка аккумуляторных батарей производится постоянно при работающем двигателе или специальным зарядным устройством.

Для заряда аккумулятора заводской готовности его нужно залить электролитом и выдержать требуемое для пропитки время, после чего подключить к зарядному устройству. Положительный полюс батареи необходимо соединить с положительным полюсом ЗУ, а отрицательный — с отрицательным. Начать заряд можно при условии, что температура электролита в банках не выше 30°С в холодной и не выше 35°С в жаркой и теплой влажной зонах, в противном случае ему надо дать остыть.

Сам процесс заряда подробно расписан в инструкциях к зарядным устройствам. О зарядке кальциевых батарей Вы можете почитать .

В заключение можно отметить, что практически все виды свинцово-кислотных автомобильных АКБ не ремонтопригодны.

В настоящее время вышедшие из строя АКБ, в лучшем случае, умельцы выжигают на кострах с целью получения свинца. А в основном отработавшие батареи сдают в пункты приема цветных металлов или обменивают на новые с доплатой.

Свинцово-кислотный аккумулятор — это наиболее распространённый на данный момент тип источника энергии в автомобиле. Он был изобретён в далёком 1859 году и до сих пор устанавливается на большинстве машин, конечно же, есть и альтернативы, но они пользуются меньшей популярностью у автопроизводителей.

Немного истории

Авторство данного устройства принадлежит французу Гастону Планте. Именно он в 1859 году создал первый рабочий прототип. Конструкция устройства не представляла собой что-то слишком сложное. Электроды делались из листового свинца. В качестве разделителя использовался сепаратор из простого полотна. Он сворачивался в спираль, после чего помещался в колбу, в которой был раствор серной кислоты.

Внимание! Учёный использовал десятипроцентный раствор серной кислоты.

К сожалению, устройство обладало слишком малой ёмкостью, которая легко объясняется излишним примитивизмом конструкции. Чтобы её немного увеличить ученый множество раз заряжал и разряжал свинцово-кислотный аккумулятор.

Чтобы достичь хоть какого-нибудь результата Планте понадобилось два года. Естественно, что подобный недостаток был слишком существенным. Неудивительно, что свинцово-кислотные аккумуляторы тогда не получили большого распространения. Главный дефект крылся в конструкции пластин.

Конечно же, учёный свет не остановился на достигнутом. Совершенствование конструкции свинцово-кислотного аккумулятора только начиналось. Большой прорыв в этом деле совершил К. Фор. Он предложил инновационную технологию изготовления электродов.

В 1880 год К. Фор на электроды наносит окись свинца. Результат превосходит все ожидания. Учёному в значительной степени удалось увеличить ёмкость аккумулятора. Идея получила широкое распространение. А уже в 1881 Э. Фолькмар начал использовать вместо обычных электродов специальную решетку. Селлоун пошёл дальше и получил патент на производство решеток, в сплаве которых была сурьма.

Сразу же учёным пришлось столкнуться со следующей проблемой. Не было нормальных зарядных устройств. Чтобы хоть как-то возобновить начальный заряд свинцово-кислотного аккумулятора применялась разработка Бунзена. К сожалению, результат был не очень хорошим.

Внимание! Суть подобной методики заряда сводилась к источнику в виде гальванической батареи. Именно от неё в то время можно было осуществить подзарядку.

Данное положение дел изменили генераторы постоянного тока, которые были дёшевы в производстве. Результат поразил весь мир. В 1890 году свинцово-кислотные аккумуляторы начинают массово выпускаться во всех цивилизованных странах мира. Мало того, все они нашли себе коммерческое применение.

Важно! Настоящим прорывом стал выпуск в 1900 году немецкой компанией Varta свинцово-кислотных аккумуляторов.

Следующая весомая дата в развитии технологии по созданию свинцово-кислотных аккумуляторов приходится уже на 70-е годы XX века. Именно в этот период разрабатываются необслуживаемые аналоги. Их главным отличием от всех предыдущих является то, что они способны работать в любом положении.

На смену жидкому электролиту пришёл гель. Батареи стали полностью герметичными. Для выведения отработанных газов установили специальные клапаны. Кардинально изменилась конструкция пластин. Их основой стал медно-кальциевый сплав. Чтобы добиться ещё большего результата он дополнительно покрывался оксидом свинца. Решётки делались из титана, алюминия и меди.

Все активные вещества нового свинцово-кислотного аккумулятора были расположены в электролите вместе с положительными и отрицательными электродами. Все эти элементы образуют сложную электрохимическую систему.

Всё о свинцово-кислотных аккумуляторах

Подробно о принципе работы

Для начала суммируем всё вышесказанное. Свинцово-кислотные аккумуляторы выступают в роли вторичных источников питания. Они обеспечивают работу электрических устройств за счёт химической реакции, которая происходит в электролите.

Важно! Свинцово-кислотные аккумуляторы имеют множество циклов зарядки и разрядки.

Свинцовые аккумуляторы могу использоваться многократно. Они являются вторичными источниками тока, работающими за счёт создания химических реакций. При их работе в большом количестве расходуются химические элементы. Но следующая зарядка их восстанавливает.

Химическое вещество, в котором и происходят все реакции состоит из окислителя, электролита и специального восстанавливающего вещества. Роль восстановителя играет отрицательный электрод. Он в процессе токообразующей реакции отдаёт электроны. Как результат проходит процесс окисления. При этом положительный электрод восстанавливается. Он по умолчанию является и окислителем.

Важно! Роль электролита в свинцово-кислотном аккумуляторе играет химическое соединение. Главное к нему требование — хорошая ионная проводимость.

Активные вещества — это жёсткая пористая масса, которая хорошо проводит электричество. Диаметр пор в свинцово-кислотном аккумуляторе составляет 1,5 мкм. Если же речь идёт про PbO2, то у этого вещества аналогичный показатель будет побольше, в районе 5—10 мкм.

Серная кислота в электролите имеет положительные ионы водорода и отрицательные. Когда кислотно-свинцовый аккумулятор лишается накопленного заряда выделяются положительные ионы.

Отрицательные ионы сближаются с положительным электродом. Подобное становится возможным благодаря внешнему замкнутому участку цепи. Здесь же восстанавливаются четырёх- и двухвалентные ионы свинца.

Важно! Положительные ионы соединяются с отрицательными. В результате образуется сернокислый свинец.

Как только свинцово-кислотный аккумулятор подключается к зарядному устройству. Электроны начинают двигаться к отрицательному электроду. В результате нейтрализуются двухвалентные ионы свинца.

В данном процессе выделяется губчатый свинец. Он отдаёт по два электрона, при этом происходит процесс окисления. Апогеем является соединение ионами кислорода. Только после этого образуется PbO2.

Упрощённый принцип работы свинцово-кислотного аккумулятора

В данном устройстве происходит множество химических реакций. Если же опустить химические формулы, то сам процесс будет выглядеть следующим образом: плотность серной кислоты и электролита будет уменьшаться при разряде; во время подзарядки данный показатель будет увеличиваться.

Важно! Положительные электроды расходуют кислоты больше чем отрицательные.

При разрядке электролит увеличивается незначительно. Уменьшение составляет один сантиметр кубический на 1 А·ч. Расход свинца, когда аккумулятор разряжается составляет 3,86 г. Количество других химических элементов также значительно уменьшается. Больше всего уходит сульфата свинца, порядка 12 грамм.

Варианты устройства конструкции

С вышеизложенного материала вам должно быть понятно, что учёные приложили множество усилий, чтобы создать по-настоящему надёжную свинцово-кислотную батарею с большой ёмкостью.

На данный момент в производстве чаще всего используются два варианта конструкции свинцово-кислотной батареи. В первом случае это обычны моноблок. В нём размещены ячейки банок и специальные перемычки между ними.

Электроды погружены в электролит. Данные устройства представляют собой свинцовые решётки. Их полости заполняются пастой. Повышенной плотности удаётся добиться за счёт волокон полипропилена. В качестве альтернативы некоторые производители используются сажу на основе сернокислого бария.

При накладывании на решётки паста прессуется и сушится. Дополнительно она обрабатывается электрохимическими процессами. Подобная конструкция свинцово-кислотной батареи помогает добиться эффективного использования всех активных химических соединений.

Важно! Решётки способствуют равномерного распределению тока.

Второй вариант отличается от первого тем, что батарея помещается в один моноблок. Межэлементные перемычки присутствуют.

Режимы работы

В свинцово-кислотных аккумуляторах в качестве электролита выступает раствор серной кислоты. Положительные пластины также имеют активное вещество — это двуокись свинца, отрицательные содержат свинец РЬ. В зависимости от режима эксплуатации все свинцово-кислотные аккумуляторы можно поделить на такие группы:

  1. Буферный режим. В качестве основного источника питания выступает сетевой блок. Основное назначение такого аккумулятора — резервный источник.
  2. Циклический режим. Такие аккумуляторы разряжаются после чего происходит зарядка.
  3. Смешанный режим — соединение предыдущих двух режимов.

При создании определённого агрегата или для выполнения какой-либо работы выбирается аккумулятор с подходящим для конкретной цели режимом работы.

Как заряжать свинцово-кислотный аккумулятор

Существует множество методов зарядки свинцово-кислотного аккумулятора. Эффективнее всего использовать так называемый I-U. Его суть сводится приблизительно к следующему: вначале вы пускаете постоянные ток, как только необходимое напряжение достигнуто, вашей задачей является его поддержание на заданном уровне.

Очень важно правильно определить величину тока на начальном этапе зарядки. Обычно она указывается на корпусе батареи. Обычно она лежит в диапазоне от 20 до 30 процентов от ёмкости элемента питания. Возьмём конкретный пример. Ёмкость аккумулятора составляет 100 А*ч. В таком случае ток должен быть 25 А.

Важно! Автомобильные производители рекомендуют начинать зарядку с 10 % от ёмкости батареи. Это позволит уберечь свинцово-кислотный аккумулятор от повреждения.

Итоги

Несмотря на год создания, свинцово-кислотные аккумуляторы до сих пор пользуются большой популярностью среди автомобилестроителей. Свойства этих устройств позволяют хранить приличный запас энергии, обеспечивая стабильную работу машины.

Кислотные аккумуляторы характеризуются повышенным параметром стойкости. По конструкции устройства довольно сильно отличаются. Емкость кислотного аккумулятора всегда указана в инструкции. На рынке представлены модификации на 2 и 4 вывода. Показатель саморазряда у них может отличаться.

Электролит в устройствах чаще всего применяется серии КС. Выходное напряжение, как правило, не превышает 10 В. Для того чтобы более подробно разобраться в указанном вопросе, надо рассмотреть устройство кислотного аккумулятора.

Устройство аккумуляторной батареи

Стандартный аккумулятор средней емкости состоит из блока, герметичной оболочки, пластин, электролита, а также клемм. Крышки в устройствах производятся с выходным контактами. Пластины у моделей фиксируются на стойках. Некоторые модификации производятся с клапанами. Если рассматривать аккумуляторы с высокой емкостью, то у них имеется сепаратор. Указанный элемент устанавливается с перемычкой. Как правило, минусовые выводы соединяются с платинами напрямую. Непосредственно блок батареи обрабатывается каучуком.

Модификации с емкостью 8 Ач

Аккумуляторы кислотные (необслуживаемые) данного типа используются часто для компрессоров на 2 кВт. Частота в данном случае равняется минимум 30 Гц. Электролит в устройствах применяется разных серий. Проводимость напряжения у них отличается. Показатель перегрузки батарей в среднем равняется 40 А.

У некоторых модификаций установлена система защиты от перегрева. Если рассматривать устройства на две клеммы, то у них имеются проводные пластины. Сепаратор, как правило, устанавливается в нижней части блока. Камера у моделей обрабатывается смолой. Показатель герметичности в среднем колеблется в районе 85 %. Параметр саморазряда, как правило, не превышает 0.2 %.

Допустимый уровень температуры зависит от электролита. Для приводов указанные аккумуляторы подходят плохо. Также важно отметить, что современные устройства производятся с блоками рекомбинации. Процесс восстановления у них много времени не отнимает. Однако важно отметить, что стоят они на рынке довольно много.

Модели на 20 Ач

20 Ач производятся под приводные устройства. Также модели подходят для освещения местности. На рынке представлены модификации на 2 и 4 клеммы. Перемычки в устройствах используются с различной проводимостью. Электролит чаще сего применяется с маркировкой КС202. Заряд устройства осуществляется при напряжении в 10 В. Пластины в данном случае устанавливаются в вертикальном положении.

По степени герметичности устройства довольно сильно отличаются. Блоки рекомбинации установлены не во всех модификациях. Для компрессоров малой мощности устройства подходят плохо. Параметр допустимой температуры у батарей в среднем равняется 40 градусов. Сепараторы чаще всего используются коммутируемого типа. У некоторых модификаций выходное напряжение достигает 15 В. Параметр порогового сопротивления находится в пределах 18 Ом. Срок службы устройств колеблется от 3 до 10 лет.

с емкостью 50 Ач

Аккумуляторные батареи указанной емкости используются для компрессоров на 6 кВт. В данном случае устройства выпускаются с пластинами из свинца. Многие модификации оснащаются проводными сепараторами. Положительный выход в устройствах устанавливается на крышке. Модификации с двумя клеммами обладают проводимостью на уровне 3 мк. Клапана у моделей, как правило, находятся в нижней части блока. Выходное напряжение у моделей составляет около 13 В.

Система защиты от перегрузок используется второй либо третей степени. Герметичность блоков в среднем составляет 90 %. осуществляется при напряжении в 4 В. Допустимый уровень температуры, как правило, не превышает 45 градусов. По плотности энергии модификации довольно сильно отличаются. Для приводных устройств модели не подходят. Диоксидные пластины в них устанавливаются редко.

Устройства на 100 Ач

Кислотные аккумуляторы на 100 Ач производятся для контрольных блоков. Для облуживания генераторов и котлов модификации подходят отлично. Допустимая температура устройств в среднем равняется 35 градусов. Современные батареи производятся с четырьмя пластинами. Система защиты от перегрузок имеется не во всех модификациях.

Уровень внутреннего сопротивления, как правило, не превышает 30 Ом. По герметичности устройства довольно сильно отличаются. колеблется от 5 до 10 лет. В среднем параметр проводимости у них равняется 3 мк. Выходное напряжение, в свою очередь, составляет не менее 15 В. Электролит в устройствах используется серии КС200. Для силового оборудования батареи применяются часто. Клапана, как правило, соединены с положительными выходами.

Модели с емкостью 120 Ач

Кислотные аккумуляторы на 120 Ач имеют высокую плотность энергии. В среднем проводимость у них равняется 3 мк. Показатель выходного напряжения зависит от размеров пластин. Многие модификации производятся с четырьмя клеммами. Для компрессоров на 5 кВт устройства подходят замечательно. Крышки у моделей используются герметичного типа. Допустимая температура батарей составляет около 40 градусов. Для приводов низкочастотного типа устройства подходят плохо.

Параметр герметичности, как правило, не превышает 80 %. Кислотные аккумуляторы для фонарей со свинцовыми пластинами встречаются не часто. По параметру саморазряда модели отличаются. В данном случае многое зависит от чувствительности сепаратора. Плюсовые выводы в устройствах, как правило, находятся на крышке. Плотность энергии аккумуляторных батарей - в пределах 3 %.

Аккумуляторные батареи на 150 Ач

Кислотные аккумуляторы на 150 Ач производятся с проводными сепараторами. Некоторые модификации оснащаются коммутируемыми клапанами. Пластины чаще всего изготовлены из свинца. В среднем показатель проводимости не превышает 3 мк. Выходное напряжение модификаций зависит от чувствительности сепаратора. Срок службы моделей колеблется от 3 до 10 лет.

Электролит в устройствах чаще всего применяется серии КС200. Плотность энергии - около 3 %. Блоки рекомбинации встречаются редко. Для компрессоров на 10 кВт устройства подходят замечательно. Однако важно отметить, что у некоторых моделей отсутствует выходной клапан. Показатель герметичности находится в пределах 90 %. Однако в данном случае многое зависит от торговой марки.

Восстановление устройств

Восстановление кислотных аккумуляторов осуществляется при помощи зарядных устройств. Указанные приборы выпускаются различной чувствительности. Параметр перегрузки в среднем равняется 20 А. Чтобы ускорить восстановление кислотных аккумуляторов используются триггеры с переходниками. Если рассматривать батареи малой емкости, то у них зарядка в среднем занимает 2 часа. Однако в данном случае важно учитывать параметры модели. Аккумуляторные батареи на 120 Ач восстанавливаются около 10 часов при среднем напряжении.

Зарядные устройства Pulso BC-15860

Зарядные устройства данной серии хорошо подходят для аккумуляторных батарей емкостью до 20 Ач. Расширитель у модели применяется аналогового типа. Параметр проводимости, как правило, не превышает 3 мк. В среднем рабочая частота составляет 35 Гц. Система защиты от импульсных скачков имеется. Восстановление батарей занимает не более двух часов. Обкладка у данного зарядного устройства отсутствует. Всего в комплекте имеется два зажима. Стабилитрон у зарядного устройства указанной серии отсутствует. Если работать с батареями на 15 Ач, то выходное напряжение следует выбирать 10 В.

Особенности зарядных устройств Pulso BC-15855

Зарядные устройства представленной серии производятся с двумя зажимами. Для аккумуляторных батарей на 50 Ач модель подходит хорошо. Параметр выходного напряжения у модификации регулируется контроллером. Расширитель в устройстве применяется лучевого типа. имеет высокую проводимость, и сбои в системе происходят не часто. Защита от импульсных скачков есть.

Преобразователь в данном случае отсутствует. Для аккумуляторных батарей на100 Ач устройство не подходит однозначно. Демпфер у модификации применяется переменного типа. Параметр чувствительности в среднем составляет 4 мВ. В свою очередь показатель перегрузки не превышает 50 А. С моделями на две клеммы зарядное устройство для кислотных аккумуляторов работать может.

Параметры зарядных моделей Lavita 192204

Зарядное устройство представленной серии состоит и проводного расширителя. Триггер в данном случае используется электродного типа. Также важно отметить, что у модели имеется преобразователь. Зажимы установлены с фиксаторами и соединены в устройстве с выпрямителем.

Параметр проводимости модификации равняется не менее 4 мк. Перегрузка системы в среднем составляет 30 А. Для аккумуляторных батарей на 100 Ач устройство подходит замечательно. Процесс зарядки в среднем времени занимает не более 5 часов. Стабилизатор используется с фильтром. Система защиты от импульсных скачков отсутствует.

Зарядные устройства Lavita 192212

Зарядное устройство указанной серии имеет массу преимуществ. В первую очередь важно отметить, что у модификации используется два фильтра. Расширитель стандартно установлен проводного типа. Преобразователь у зарядного устройства производителем не предусмотрен. Параметр перегрузки системы, как правило, составляет 33 А. Выпрямитель применяется с обкладкой. Для аккумуляторных батарей на 150 Ач устройство подходит хорошо. Импульсные скачки в системе наблюдаются редко. Стабилитрон применяется регулируемого типа.

Особенности зарядных устройств TESLA ЗУ-10642

Зарядные устройства указанной серии производятся с двумя расширителями. Преобразователь у них используется коммутируемого типа. В среднем проводимость модели составляет 3 мк. Для аккумуляторных батарей на 10 Ач устройство подходит замечательно. Параметр пороговой чувствительности в устройстве невысокий. Проблемы с перегрузками наблюдаются очень редко. Система защиты от скачков есть. Фильтр у зарядки используется на 12 В.

Для аккумуляторных батарей на две клеммы устройство подходит. В данном случае выходное напряжение можно регулировать. Держатели в устройствах применяются довольно широкие. Непосредственно ручка в комплекте есть. Регулятор у зарядки применяется поворотного типа. Зажимы используются без фиксаторов. Для аккумуляторов на 100 Ач устройство не подходит. Показатель перегрузки в среднем составляет 33 А. Для моделей на четыре клеммы модификация не подходит.

Параметры зарядных моделей Deltran

Указанное зарядное для кислотных аккумуляторов производится с выпрямителем. Триггер применяется с фильтрами. Для аккумуляторных батарей на 10 Ач устройство подходит хорошо. Проводимость в данном случае составляет не менее 4 мк. Допустимый уровень перегрузки равняется 30 А. Система защиты от импульсов есть. Преобразователь у зарядки отсутствует.

С аккумуляторами на 20 Ач модель используется часто. Всего у модификации есть один держатель. Фиксаторы установлены на выходных контактах. Показатель напряжения максимум равняется 20 В. Компаратор в представленной зарядке отсутствует. Зажимы используются довольно широкие. Регулятор у зарядки установлен с поворотным механиком. По габаритам модель является компактной и весит крайне мало. Селектор в устройстве применяется открытого типа.

Зарядные устройства Tenex

Зарядка данной серии подходит для аккумуляторов на 100 Ач. В данном случае расширитель используется переходного типа. Показатель выходной проводимости у модели невысокий. Проблемы с диодным мостом наблюдаются редко. Зарядка кислотных аккумуляторов на 20 Ач примерно происходит за один час. Система защиты от импульсов имеется.

Динистор у модификации используется с двумя фильтрами. Показатель предельного напряжения находится на отметке 30 В. Регулятор тока у модели есть. При необходимости можно включать циклический режим. Зарядить кислотный аккумулятор на 500 Ач можно в среднем за три часа. Проблемы с кроткими замыканиями наблюдаются не слишком часто.

Аккумуляторная батарея – именно то, что встречается на абсолютно всех современных транспортных средствах. Основное предназначение данного узла всегда заключалось и заключается на сегодня в подаче электроэнергии на электронные устройства машины, если таковая им требуется в обход генератора . Вообще, первые аккумуляторы появились несколько сотен лет назад. Начиная с 1800-х годов, конструкционное и техническое развитие аккумуляторных батарей привело к созданию одного из самых известных в мире видов узла – свинцово-кислотному аккумулятору. Взяв в расчёт востребованность подобных батарей для автомобилистов, наш ресурс решил более детально рассмотреть именно их.

История появления подобных АКБ

Первым, кто создал и спроектировал реально рабочую свинцово-кислотную АКБ, был французский ученый – Гастон Планте. Этот человек был всерьез заинтересован в создании универсальных на тот момент аккумуляторных батарей, так как имел не только научный интерес, но и отчасти финансовый. Согласно историческим сводкам, Гастону Планте производители аккумуляторов, коих на тот момент было немного, предлагали немалые деньги за создание нового вида аккумулятора и удобной зарядки к нему.

В итоге, французскому учёному частично удалось достичь поставленной цели. Если быть точнее, Планте создал конструкцию АКБ с использованием свинцовых электродов и 10-% раствором серной кислоты. Несмотря на инновационность кислотного аккумулятора в те года, недостаток у него был существенный – необходимость прохождения огромного количества циклов «заряд-разряд» для зарядки батареи «на полную». К слову, количество данных циклов было настолько велико, что для полного вмещения в АКБ электроэнергии могло потребоваться несколько лет. Во многом это происходило из-за используемой в батареях конструкции свинцовых электродов и сепараторов, вследствие чего последующие несколько десятилетий умы «аккумуляторного дела» боролись именно с этим недочётом батарей.

Так, в период с 1880-1900 годов такие учёные как Фор и Фолькмар спроектировали чуть ли не идеальный среди всех типов конструкции свинцово-кислотных аккумуляторов. Суть такой батареи заключалась в использовании не цельных пластин из свинца, а лишь его окисла, объединённого с сурьмой и нанесённого на специальные пластины. Позже, Селлон запатентовал наиболее удачный вид конструкции данной АКБ, внедрив в неё намазанную окислами свинца и сурьмы металлическую решётку, что в итоге:

  • увеличило ёмкость аккумуляторов в несколько раз;
  • усилило коммерческий интерес со стороны компаний к АКБ;
  • и, в целом, совершило некоторый эволюционный скачок в аккумуляторном деле.

Отметим, что с начала 1890 года свинцово-кислотные батареи пошли в серийный выпуск и стали широко применяться повсеместно.

В 1970 годов произошла герметизация аккумуляторов, вследствие замены в них стандартных кислотных электролитов , на усовершенствованные газы и гели. В итоге, АКБ стала отчасти герметична. Однако полной герметизации добиться не удалось, так как, в любом случае, при зарядке и разрядке батареи образуются некоторые газы, которые важно выпускать из внутренностей аккумулятора для его же блага. Именно с тех пор герметизированные свинцово-кислотные аккумуляторы стали использоваться в огромнейших масштабах и практически не изменялись, за исключением незначительных усовершенствований электролитов и электродов, используемых в их конструкции.

Устройство свинцово-кислотного аккумулятора

По своей общей конструкции свинцово-кислотные АКБ уже более 110 лет неизменны. В общем виде батарея состоит из следующих элементов:

  • пластмассовый или резиновый корпус в форме призмы;
  • металлическая решётка, имеющая соответствующую намазку из свинца и подразделения на положительный, отрицательный электроды;
  • клапан для сброса газов;
  • области для наполнения электролитом, иначе — сепараторы;
  • межпространственные области, заполненные мастикой;
  • крышка.

Все элементы как стационарного свинцово-кислотного аккумулятора, так и нестационарной батареи подобного вида представляют собой герметизированный комплекс. Частично-полная герметизация имеется у большинства современных АКБ, ибо имеет системы отвода излишне давящих газов. Полная же герметизация конструкционно предусмотрена только в высоких аккумуляторах с использованием особой конструкции электродов, что позволяет совершенно не добавлять электролит в процессе эксплуатации и не выводить газы отработки. В любом случае, что АКБ с частично-полной герметизацией, что с совершенно полной изоляцией принято называть герметизированными свинцово-кислотным аккумуляторы, поэтому в этом плане между разными типами батарей различий не имеется.

Разновидности АКБ и принцип их работы

Ранее уже было упомянуто, что свинцово-кислотные АКБ подразделяются на разные виды. Вне зависимости от типа их организации работают они по принципу электролитических химических реакций. В основе таковых лежит взаимодействие свинца (или иного металла), оксида свинца (с сурьмой) и серной кислоты (или иного электролита). Именно такой тип взаимодействия в кислотных батареях был признан наилучшим, так как при гидролизе кислоты другие комбинации взаимодействия веществ приводят либо к низкому ресурсу аккумуляторов (при добавлении кальция), либо к чрезмерному «кипению» внутри детали (при отсутствии сурьмы), либо к недостаточной мощности (при использовании только свинца пластин).

На сегодняшний день имеется три основных разновидности свинцово-кислотных аккумуляторов, а точнее:

  1. Свинцово-кислотные аккумуляторы 6V. Построены по принципу использования 6 элементов, то есть, АКБ изнутри разделён на 6 работающих вместе блоков, каждый из которых в общем случае вырабатывает порядка 2,1 Вольт напряжения, что в итоге даёт 12,6 Вольт на целую батарею. На данный момент свинцово-кислотные аккумуляторы 6V наиболее используемые в сфере автомобилестроения, так как выполнены качественней всего со всех сторон рассмотрения их работы;
  2. Гибридные АКБ. Эти «звери» представляют собой смесь, где используется один электрод (зачастую положительный) со свинцово-сурьмистым оксидом, а другой (как правило, отрицательный) со свинцово-кальциевым. Такие АКБ из-за использования кальция в их конструкции менее долговечны;
  3. Гелевые свинцово-кислотные батареи. Слегка отличаются от конструкции описанных выше видов АКБ, так как имеют гелеобразный электролит, что позволяет их использовать в любой положении. По характеристикам гелевые аккумуляторы схожи с обычными свинцово-сурмистыми батареями и уже сегодня активно завоёвывают рынок автоиндустрии в своём сегменте.

Как показывает практика, наиболее удачные конструкции свинцово-кислотных АКБ – это стандартная с наличием сурьмы на электродной сетке и гелевая, относительно молодая. Что касается гибридных, то в силу своих особенностей спроса на рынке они так и не имеют, поэтому практически не продаются и встретить их можно крайне редко.

Правила эксплуатации

По сравнению с другими типами АКБ, свинцово-кислотные аккумуляторы менее прихотливы к использованию. Общие требования к эксплуатации батарей предъявляют специальные организации и непосредственно их производителя. К слову, требования различны для стационарных и нестационарных АКБ. Для первых видов аккумуляторов они таковы:

  • Проверка и осмотр – еженедельно, специализирующимся на этом персоналом;
  • Текущий ремонт – не менее раз в 1 год;
  • Капитальное восстановление – не менее раза в 3 года, и только если это возможно;
  • Надёжное крепление АКБ при эксплуатации на специальных стендах;
  • Обязательное наличие освещения в месте хранения;
  • Покраска поверхности, на которой стоит аккумулятор, в кислостойкую краску;
  • Поддержание в сепараторах батареи электролита на должном уровне (проверка/долив ежемесячные);
  • Наличие зарядных устройств и соблюдение правил зарядки;
  • Номинальное напряжение в сети на 5 % большее, чем выдают заряжаемые в ней АКБ;
  • Недопущение хранения батареи в разряженном состоянии более 12 часов;
  • Температура хранения от -20 до +45 градусов по Цельсию, для заряженных на 50 % АКБ – от -20 до +30. Незаряженные батареи хранить недопустимо.

В случае не со стационарными свинцово-кислотными аккумуляторами условия хранения заключаются лишь в своевременной их подзарядке, контроле электролита (при необходимости) и использовании батареи строго по назначению.

Правила зарядки

Зарядка любого аккумулятора – именно та процедура, которая должна проводиться в единственно верном режиме. В противном случае парочка неправильных операций по зарядке АКБ сделает из него либо маломощный источник тока, либо вовсе «убьёт» деталь. Зная подобную особенность аккумуляторных батарей, их владельцы нередко задаются двумя вопросами:

  1. Как правильно заряжать АКБ?
  2. Какое зарядное устройство для свинцово-кислотной аппаратуры лучше всего использовать?

Относительно второго вопроса можно однозначно сказать, что заряжать АКБ допустимо любой аппаратурой, главное – чтобы она была исправна. А о том, как заряжать свинцово-кислотный аккумулятор, поговорим более детально. В общем виде правильный порядок зарядки таков:

  1. Аккумулятор ставится в специально оборудованное для зарядки место: поверхность покрашена в антикислотную краску, открытых источников воды и огня нет, доступ к территории ограничен;
  2. После этого АКБ согласно всем нормам подключается к зарядному устройству;
  3. Затем на зарядной аппаратуре выставляется режим зарядки с соблюдением двух основных условий:
    • напряжение постоянно и равно порядка 2,35-2,45 Вольт;
    • ток по началу заряда самый высокий, к концу — постепенно и заметно понижается.

Непосредственно процесс зарядки батареи в стандартном режиме длится около 3-6 часов, за исключением случаев с использованием дешёвой и слабой аппаратуры, а также при восстанавливающей зарядке «убитой» АКБ.

Восстановление аккумулятора

В завершение сегодняшнего материала обратим внимание на процесс восстановления свинцово-кислотных АКБ. Принято считать, что при глубоком разряде данный тип аккумуляторов либо вовсе «мертвеет», либо держит очень слабый заряд. На самом деле ситуация иная.

Согласно многочисленным исследованиям, свинцово-кислотные батареи способны не потерять номинальную ёмкость даже после 2-4 полных разрядов. Для этого достаточно грамотного проведения процедуры их восстановления. Как восстановить данный АКБ? В следующем порядке:

  1. Аккумулятор ставится в специально подготовленное место с температурой воздуха около 5-35 градусов выше по Цельсию;
  2. Происходит соединение АКБ и зарядного устройства;
  3. На последнем выставляются такие показатели как:
    • напряжение – 2,45 Вольт;
    • сила тока – 0,05 СА.
  4. Происходит цикличный заряд с небольшими перерывами порядка 2-3 раз;
  5. Батарея восстановлена.

Отметим, что далеко не в каждой ситуации подобная процедура заканчивается успехом, но, если правила восстановления АКБ соблюдены и сама батарея выполнена из качественных материалов, то в успешности мероприятия сомневаться не стоит.

На этом, пожалуй, наиболее важная информация по свинцово-кислотным аккумуляторам подошла к концу. Надеемся, сегодняшний материал был для вас полезен и дал ответы на интересующие вопросы.

Если у вас возникли вопросы - оставляйте их в комментариях под статьей. Мы или наши посетители с радостью ответим на них

Аккумулятор после разряда может повторно заряжаться от нескольких десятков до нескольких тысяч раз, в зависимости от конкретного типа. Наиболее распространенным является свинцовый кислотный аккумулятор , принцип устройства которого представлен на рис. 1.

Рис. 1. Принцип устройства свинцового аккумулятора и электрохимическая схема разрядного процесса

В заряженном состоянии анод (отрицательный электрод) такого аккумулятора состоит из свинца, а катод (положительный электрод) – из двуокиси свинца PbO2 . Оба электрода изготовлены пористыми, чтобы площадь их соприкосновения с электролитом была как можно больше. Конструктивное исполнение электродов зависит от назначения и емкости аккумулятора и может быть весьма разнообразным.

Химические реакции при заряде и разряде аккумулятора представляются формулой

Для заряда аккумулятора теоретически требуется удельная энергия 167 Wh/kg. Этим же числом выражается, следовательно, и теоретический его предел удельной аккумулирующей способности. Однако фактическая аккумулирующая способность намного меньше, вследствие чего из аккумулятора при разряде обычно получается электрическая энергия приблизительно 30 Wh/kg. Факторы, обусловливающие снижение аккумулирующей способности, наглядно представлены на рис. 2. Кпд аккумулятора (отношение энергии, получаемой при разряде, к энергии, расходуемой при заряде) обычно находится в пределах от 70 % до 80 %.

Рис. 2. Теоретическая и фактическая удельная аккумулирующая способность свинцового аккумулятора

Различными специальными мерами (повышением концентрации кислоты до 39 %, использованием пластмассовых конструкционных частей и медных соединительных частей и др.) в последнее время удалось повысить удельную аккумулирующую способность до 40 Wh/kg и даже немногим выше.

Следует отметить, что еще в 1980-е годы примененялись открытые стационарные аккумуляторные батареи, удельная аккумулирующая способность которых находилась в пределах от 5 Wh/kg до 10 Wh/kg.

Из вышеприведенных данных вытекает, что удельная аккумулирующая способность свинцового аккумулятора (а также, как будет показано в дальнейшем, и других типов аккумуляторов) существенно ниже, чем первичных гальванических элементов. Однако этот недостаток обычно компенсируется возможностью многократного заряда и, как результат, приблизительно десятикратным снижением стоимости получаемой из аккумулятора электроэнергии, возможностью составлять аккумуляторные батареи с очень большой энергоемкостью (при необходимости, например, до 100 MWh).

Зависит от плотности электролита и может определяться экспериментальной формулой

Согласно этой формуле, начальная ЭДС аккумулятора, в зависимости от конкретного типа, находится в пределах от 2,05 V до 2,10 V. Напряжение на зажимах аккумулятора может в конце разряда снизиться до 1,7 V, а в конце заряда повыситься до 2,6 V (рис. 3).

Рис. 3. Изменение напряжения свинцового аккумулятора в некоторых возможных процессах заряда и разряда

Каждый цикл заряда-разряда сопровождается некоторыми необратимыми процессами на электродах, в том числе медленным накапливанием невосстанавливающегося сернокислого свинца в массе электродов. По этой причине через определенное число (обычно приблизительно 1000) циклов аккумулятор теряет способность нормально заряжаться. Это может случиться и при длительном неиспользовании аккумулятора, так как электрохимический разрядный процесс (медленный саморазряд) протекает в аккумуляторе и тогда, когда он не соединен с внешней электрической цепью. Свинцовый аккумулятор теряет из-за саморазряда обычно от 0,5 % до 1 % своего заряда в сутки. Для компенсации этого процесса в электроустановках используется постоянный подзаряд при достаточно стабильном напряжении (в зависимости от типа аккумулятора, при напряжении от 2,15 V до 2,20 V).

Другим необратимым процессом является электролиз воды («закипание» аккумулятора), возникающий в конце зарядного процесса. Потерю воды легко компенсировать путем доливки, но выделяющийся водород может вместе с воздухом привести к образованию взрывоопасной смеси в аккумуляторном помещении или отсеке. Во избежание опасности врыва должна предусматриваться соответствующая надежная вентиляция.

В последние 20 лет появились герметически закрытые свинцовые аккумуляторы, в которых применяется не жидкий, а желеобразный электролит. Такие аккумуляторы могут устанавливаться в любом положении, а кроме того, учитывая, что во время заряда они не выделяют водорода, могут размещаться в любых помещениях.

Кроме свинцовых выпускается более 50 видов аккумуляторов, основанных на различных электрохимических системах. В энергоустановках довольно часто находят применение щелочные (с электролитом в виде раствора гидроокиси калия KOH) никель-железные и никель-кадмиевые аккумуляторы, ЭДС которых находится в пределах от 1,35 V до 1,45 V, а удельная аккумулирующая способность – в пределах от 15 Wh/kg до 45 Wh/kg. Они менее чувствительны к колебаниям температуры окружающей среды и менее требовательны к условиям эксплуатации. Они обладают также бoльшим сроком службы (обычно от 1000 до 4000 циклов заряда-разряда), но их напряжение изменяется во время разряда в более широких пределах, чем у свинцовых аккумуляторов, и кпд у них несколько ниже (от 50 % до 70 %).

В энергосистемах встречаются весьма мощные свинцовые и никель-кадмиевые аккумуляторные батареи, используемые в качестве резервных источников электропитания или для выравнивания электрических нагрузок. Самая крупная такая батарея была принята в эксплуатацию в 2003 году в Фэрбенксе (Fairbanks, Аляска, США); она состоит из 13 760 никель-кадмиевых элементов и присоединена через инвертор и трансформатор к сети напряжением 138 kV. Номинальное напряжение батареи составляет 5230 V и энергоемкость 9 MWh; срок службы элементов – от 20 до 30 лет. 99 % времени она работает в качестве компенсатора реактивной мощности, но может при необходимости в течение трех минут отдавать в сеть мощность в 46 MW (или в течение 15 min мощность 27 MW). Общая масса батареи составляет 1500 t, а ее изготовление обошлось в 35 млн. долларов. Имеются аккумуляторные батареи даже большей аккумулирующей способности; одна такая батарея (энергоемкостью 60 MWh) установлена в качестве резервного источника питания в Калифорнии (California, США) и может отдавать в сеть в течение 6 часов мощность 6 MW. =Аккумуляторные батареи с самого начала (со второй половины 19-го века) пытались использовать в средствах передвижения, так как питаемый от аккумулятора электропривод обладает, по сравнению с двигателями внутреннего сгорания, многими преимуществами. К ним относятся, например, намного более простая и компактная конструкция тягового двигателя (или двигателей), возможность использовать многодвигательные приводы (снабжая, например, каждое колесо отдельным двигателем), высокий кпд привода (от 80 % до 90 %), плавное регулирование скорости во всем требуемом диапазоне регулирования без применения редуктора (коробки скоростей), отсутствие специальной пусковой системы (аккумулятора и стартера), возможность аккумулировать энергию, освобождающуюся при торможении, более простые возможности использования автоматических систем управления и регулирования (в том числе беспроводных систем), более высокая надежность привода, меньшая потребность в обслуживании и больший срок службы, более безопасная эксплуатация (благодаря отсутствию огне- и взрывоопасного моторного топлива), отсутвие выхлопных газов и других выбросов, вредно действующих на окружающую среду, отсутствие дополнительных источников энергии (например, генераторов), малошумность.

Применение свинцовых аккумуляторов в средствах передвижения (в автомобилях, на лодках, на поездах и др.) затруднено из-за их относительно большой массы, превышаюшей обычно массу двигателей внутреннего сгорания, а в случае приемлемой массы – слишком малым пробегом после заряда (обычно приблизительно 100 km). Поэтому для электромобилей и для других электрических средств передвижения предложены различные аккумуляторы с большей удельной аккумулирующей способностью.