Кислотная батарея. Свинцово-кислотный аккумулятор

Свинцовые аккумуляторы были изобретены еще в 1859 году, являясь своеобразным «классическим» решением в мире автономных источников питания. Несмотря на давность технологии, свинцовые аккумуляторы наиболее часто используются в современном обществе.

Особенности свинцовых аккумуляторов

В основе свинцовых аккумуляторов лежат химические реакции между диоксидом свинца и чистым свинцом. Электролитом в таком устройстве выступает раствор серной кислоты. Потому такие аккумуляторные батареи часто еще называют свинцово-кислотными.

Сама внутренняя структура аккумуляторов достаточно проста. Существует два типа электродов: положительные (диоксида свинца) и отрицательные (свинец). Кроме того, в электроды, кроме основных элементов, часто добавляют немного (1-2%) примесей для большей эффективности работы. Сами же электроды опущены в электролит.

Сфера применения свинцовых аккумуляторов

Условно, такой тип автономных источников питания можно поделить на 4 группы:

Стартерные аккумуляторы. Используются для запуска двигателей современных автомобилей и обеспечения электропитанием внутренних систем транспортного средства.

Стационарные свинцовые аккумуляторы. Широко используются в роли аварийных источников питания. Работа при этом, осуществляется в режиме непрерывного заряда.

Тяговые аккумуляторы. Большой ресурс, возможность глубокого разряда и небольшая стоимость позволяет их активно применять в электромобилях различного направления.

Портативные. Активно используются для питания небольшого инструмента, лампочек и обладают широкими рабочими температурами.

Преимущества и недостатки

Преимущества свинцовых аккумуляторов:

Широкий диапазон емкостей;

Невысокая цена;

Небольшой показатель саморазряда;

Стабильность работы и подаваемого напряжения;

Отработанная технология переработки свинцовых аккумуляторов позволяет снизить нагрузку на окружающую среду.

Вместе с явными преимуществами, свинцовым аккумулятором присущи такие недостатки:

Большой вес и габариты батареи;

Остро негативное влияние на цикл жизни батареи в случае глубокого разряда;

Большие (до 30%) потери электроэнергии при заряде;

Не герметичные (обслуживаемые) , необходимо регулярно подливать дистиллированную воду;

Сложно спрогнозировать момент выхода из строя батареи;

Нельзя оставлять сильно разряженный аккумулятор на морозе.

Благодаря своей стабильной работе и невысокой цене, свинцовые аккумуляторы не собираются сдавать свои позиции на рынке без боя. Впрочем, в ближайшее будущее возможен прорыв в создании кардинально более эффективных автономных источников питания.

Кислотные аккумуляторы характеризуются повышенным параметром стойкости. По конструкции устройства довольно сильно отличаются. Емкость кислотного аккумулятора всегда указана в инструкции. На рынке представлены модификации на 2 и 4 вывода. Показатель саморазряда у них может отличаться.

Электролит в устройствах чаще всего применяется серии КС. Выходное напряжение, как правило, не превышает 10 В. Для того чтобы более подробно разобраться в указанном вопросе, надо рассмотреть устройство кислотного аккумулятора.

Устройство аккумуляторной батареи

Стандартный аккумулятор средней емкости состоит из блока, герметичной оболочки, пластин, электролита, а также клемм. Крышки в устройствах производятся с выходным контактами. Пластины у моделей фиксируются на стойках. Некоторые модификации производятся с клапанами. Если рассматривать аккумуляторы с высокой емкостью, то у них имеется сепаратор. Указанный элемент устанавливается с перемычкой. Как правило, минусовые выводы соединяются с платинами напрямую. Непосредственно блок батареи обрабатывается каучуком.

Модификации с емкостью 8 Ач

Аккумуляторы кислотные (необслуживаемые) данного типа используются часто для компрессоров на 2 кВт. Частота в данном случае равняется минимум 30 Гц. Электролит в устройствах применяется разных серий. Проводимость напряжения у них отличается. Показатель перегрузки батарей в среднем равняется 40 А.

У некоторых модификаций установлена система защиты от перегрева. Если рассматривать устройства на две клеммы, то у них имеются проводные пластины. Сепаратор, как правило, устанавливается в нижней части блока. Камера у моделей обрабатывается смолой. Показатель герметичности в среднем колеблется в районе 85 %. Параметр саморазряда, как правило, не превышает 0.2 %.

Допустимый уровень температуры зависит от электролита. Для приводов указанные аккумуляторы подходят плохо. Также важно отметить, что современные устройства производятся с блоками рекомбинации. Процесс восстановления у них много времени не отнимает. Однако важно отметить, что стоят они на рынке довольно много.

Модели на 20 Ач

20 Ач производятся под приводные устройства. Также модели подходят для освещения местности. На рынке представлены модификации на 2 и 4 клеммы. Перемычки в устройствах используются с различной проводимостью. Электролит чаще сего применяется с маркировкой КС202. Заряд устройства осуществляется при напряжении в 10 В. Пластины в данном случае устанавливаются в вертикальном положении.

По степени герметичности устройства довольно сильно отличаются. Блоки рекомбинации установлены не во всех модификациях. Для компрессоров малой мощности устройства подходят плохо. Параметр допустимой температуры у батарей в среднем равняется 40 градусов. Сепараторы чаще всего используются коммутируемого типа. У некоторых модификаций выходное напряжение достигает 15 В. Параметр порогового сопротивления находится в пределах 18 Ом. Срок службы устройств колеблется от 3 до 10 лет.

с емкостью 50 Ач

Аккумуляторные батареи указанной емкости используются для компрессоров на 6 кВт. В данном случае устройства выпускаются с пластинами из свинца. Многие модификации оснащаются проводными сепараторами. Положительный выход в устройствах устанавливается на крышке. Модификации с двумя клеммами обладают проводимостью на уровне 3 мк. Клапана у моделей, как правило, находятся в нижней части блока. Выходное напряжение у моделей составляет около 13 В.

Система защиты от перегрузок используется второй либо третей степени. Герметичность блоков в среднем составляет 90 %. осуществляется при напряжении в 4 В. Допустимый уровень температуры, как правило, не превышает 45 градусов. По плотности энергии модификации довольно сильно отличаются. Для приводных устройств модели не подходят. Диоксидные пластины в них устанавливаются редко.

Устройства на 100 Ач

Кислотные аккумуляторы на 100 Ач производятся для контрольных блоков. Для облуживания генераторов и котлов модификации подходят отлично. Допустимая температура устройств в среднем равняется 35 градусов. Современные батареи производятся с четырьмя пластинами. Система защиты от перегрузок имеется не во всех модификациях.

Уровень внутреннего сопротивления, как правило, не превышает 30 Ом. По герметичности устройства довольно сильно отличаются. колеблется от 5 до 10 лет. В среднем параметр проводимости у них равняется 3 мк. Выходное напряжение, в свою очередь, составляет не менее 15 В. Электролит в устройствах используется серии КС200. Для силового оборудования батареи применяются часто. Клапана, как правило, соединены с положительными выходами.

Модели с емкостью 120 Ач

Кислотные аккумуляторы на 120 Ач имеют высокую плотность энергии. В среднем проводимость у них равняется 3 мк. Показатель выходного напряжения зависит от размеров пластин. Многие модификации производятся с четырьмя клеммами. Для компрессоров на 5 кВт устройства подходят замечательно. Крышки у моделей используются герметичного типа. Допустимая температура батарей составляет около 40 градусов. Для приводов низкочастотного типа устройства подходят плохо.

Параметр герметичности, как правило, не превышает 80 %. Кислотные аккумуляторы для фонарей со свинцовыми пластинами встречаются не часто. По параметру саморазряда модели отличаются. В данном случае многое зависит от чувствительности сепаратора. Плюсовые выводы в устройствах, как правило, находятся на крышке. Плотность энергии аккумуляторных батарей - в пределах 3 %.

Аккумуляторные батареи на 150 Ач

Кислотные аккумуляторы на 150 Ач производятся с проводными сепараторами. Некоторые модификации оснащаются коммутируемыми клапанами. Пластины чаще всего изготовлены из свинца. В среднем показатель проводимости не превышает 3 мк. Выходное напряжение модификаций зависит от чувствительности сепаратора. Срок службы моделей колеблется от 3 до 10 лет.

Электролит в устройствах чаще всего применяется серии КС200. Плотность энергии - около 3 %. Блоки рекомбинации встречаются редко. Для компрессоров на 10 кВт устройства подходят замечательно. Однако важно отметить, что у некоторых моделей отсутствует выходной клапан. Показатель герметичности находится в пределах 90 %. Однако в данном случае многое зависит от торговой марки.

Восстановление устройств

Восстановление кислотных аккумуляторов осуществляется при помощи зарядных устройств. Указанные приборы выпускаются различной чувствительности. Параметр перегрузки в среднем равняется 20 А. Чтобы ускорить восстановление кислотных аккумуляторов используются триггеры с переходниками. Если рассматривать батареи малой емкости, то у них зарядка в среднем занимает 2 часа. Однако в данном случае важно учитывать параметры модели. Аккумуляторные батареи на 120 Ач восстанавливаются около 10 часов при среднем напряжении.

Зарядные устройства Pulso BC-15860

Зарядные устройства данной серии хорошо подходят для аккумуляторных батарей емкостью до 20 Ач. Расширитель у модели применяется аналогового типа. Параметр проводимости, как правило, не превышает 3 мк. В среднем рабочая частота составляет 35 Гц. Система защиты от импульсных скачков имеется. Восстановление батарей занимает не более двух часов. Обкладка у данного зарядного устройства отсутствует. Всего в комплекте имеется два зажима. Стабилитрон у зарядного устройства указанной серии отсутствует. Если работать с батареями на 15 Ач, то выходное напряжение следует выбирать 10 В.

Особенности зарядных устройств Pulso BC-15855

Зарядные устройства представленной серии производятся с двумя зажимами. Для аккумуляторных батарей на 50 Ач модель подходит хорошо. Параметр выходного напряжения у модификации регулируется контроллером. Расширитель в устройстве применяется лучевого типа. имеет высокую проводимость, и сбои в системе происходят не часто. Защита от импульсных скачков есть.

Преобразователь в данном случае отсутствует. Для аккумуляторных батарей на100 Ач устройство не подходит однозначно. Демпфер у модификации применяется переменного типа. Параметр чувствительности в среднем составляет 4 мВ. В свою очередь показатель перегрузки не превышает 50 А. С моделями на две клеммы зарядное устройство для кислотных аккумуляторов работать может.

Параметры зарядных моделей Lavita 192204

Зарядное устройство представленной серии состоит и проводного расширителя. Триггер в данном случае используется электродного типа. Также важно отметить, что у модели имеется преобразователь. Зажимы установлены с фиксаторами и соединены в устройстве с выпрямителем.

Параметр проводимости модификации равняется не менее 4 мк. Перегрузка системы в среднем составляет 30 А. Для аккумуляторных батарей на 100 Ач устройство подходит замечательно. Процесс зарядки в среднем времени занимает не более 5 часов. Стабилизатор используется с фильтром. Система защиты от импульсных скачков отсутствует.

Зарядные устройства Lavita 192212

Зарядное устройство указанной серии имеет массу преимуществ. В первую очередь важно отметить, что у модификации используется два фильтра. Расширитель стандартно установлен проводного типа. Преобразователь у зарядного устройства производителем не предусмотрен. Параметр перегрузки системы, как правило, составляет 33 А. Выпрямитель применяется с обкладкой. Для аккумуляторных батарей на 150 Ач устройство подходит хорошо. Импульсные скачки в системе наблюдаются редко. Стабилитрон применяется регулируемого типа.

Особенности зарядных устройств TESLA ЗУ-10642

Зарядные устройства указанной серии производятся с двумя расширителями. Преобразователь у них используется коммутируемого типа. В среднем проводимость модели составляет 3 мк. Для аккумуляторных батарей на 10 Ач устройство подходит замечательно. Параметр пороговой чувствительности в устройстве невысокий. Проблемы с перегрузками наблюдаются очень редко. Система защиты от скачков есть. Фильтр у зарядки используется на 12 В.

Для аккумуляторных батарей на две клеммы устройство подходит. В данном случае выходное напряжение можно регулировать. Держатели в устройствах применяются довольно широкие. Непосредственно ручка в комплекте есть. Регулятор у зарядки применяется поворотного типа. Зажимы используются без фиксаторов. Для аккумуляторов на 100 Ач устройство не подходит. Показатель перегрузки в среднем составляет 33 А. Для моделей на четыре клеммы модификация не подходит.

Параметры зарядных моделей Deltran

Указанное зарядное для кислотных аккумуляторов производится с выпрямителем. Триггер применяется с фильтрами. Для аккумуляторных батарей на 10 Ач устройство подходит хорошо. Проводимость в данном случае составляет не менее 4 мк. Допустимый уровень перегрузки равняется 30 А. Система защиты от импульсов есть. Преобразователь у зарядки отсутствует.

С аккумуляторами на 20 Ач модель используется часто. Всего у модификации есть один держатель. Фиксаторы установлены на выходных контактах. Показатель напряжения максимум равняется 20 В. Компаратор в представленной зарядке отсутствует. Зажимы используются довольно широкие. Регулятор у зарядки установлен с поворотным механиком. По габаритам модель является компактной и весит крайне мало. Селектор в устройстве применяется открытого типа.

Зарядные устройства Tenex

Зарядка данной серии подходит для аккумуляторов на 100 Ач. В данном случае расширитель используется переходного типа. Показатель выходной проводимости у модели невысокий. Проблемы с диодным мостом наблюдаются редко. Зарядка кислотных аккумуляторов на 20 Ач примерно происходит за один час. Система защиты от импульсов имеется.

Динистор у модификации используется с двумя фильтрами. Показатель предельного напряжения находится на отметке 30 В. Регулятор тока у модели есть. При необходимости можно включать циклический режим. Зарядить кислотный аккумулятор на 500 Ач можно в среднем за три часа. Проблемы с кроткими замыканиями наблюдаются не слишком часто.

Добавить сайт в закладки

Механизм работы аккумулятора

Аккумуляторы - это химические источники тока с обрати­мым процессом: они могут отдавать энергию, преобразуя хими­ческую энергию в электрическую, или накапливать энергию, преобразуя электрическую энергию в химическую. Та­ким образом, аккумулятор попеременно то разряжается, отдавая электрическую энергию, то заряжается от какого-либо соответствующего источника постоянного тока.

Аккумуляторы, в зависимости от применяемого в них электро­лита, подразделяются на кислотные и щелочные. Кроме того, аккумуляторы различаются, в зависимости от материала электродов. Широкое применение имеют лишь свинцовые, кадмиево-никелевые, железо-никелевые и серебряно-цинковые акку­муляторы.

Емкость аккумулятора определяется количеством электри­чества q p , которое он может отдать при разряде в питаемую цепь.

Это количество электричества измеряется не в кулонах, а в более крупных единицах - ампер-часах (а-ч). 1 а-ч = 3600 кл. Но для заряда аккумулятора требуется большее количество электричества q 3 , чем отдаваемое при разряде. Отношение q p: q 3 =n e называется отдачей аккумулятора по емкости.

Напряжение, необходимое для заряда аккумулятора, значи­тельно выше того напряжения на зажимах аккумулятора, при котором он отдает длительно разрядный ток.

Важной характеристикой аккумулятора являются его средние зарядное и разрядное напряжения.

Ясно, что из-за ряда потерь энергии аккумулятор отдает при разряде значительно меньшее количество энергии W p , чем полу­чает при заряде. Отношение W p: W 3 = n есть коэффициент полезного действия или отдача по энергии аккумулятора.

Наконец, весьма важной для характеристики аккумулятора величиной является его удельная э н е р г и я, т. е. количество энергии, отдаваемой при разряде, приходящееся на 1 кг веса аккумулятора. Особенно существенно, чтобы удельная энергия была возможно больше у нестационарных аккумуляторов, уста­навливаемых, например, на самолетах. В подобных случаях обычно она важнее, чем коэффициент полезного действия и от­дача по емкости.

Следует иметь в виду, что при медленном разряде процесс в аккумуляторе протекает равномерно во всей массе пластин, бла­годаря чему при длительном разряде малым током емкость акку­мулятора больше, чем при кратковременном разряде большим током. При быстром разряде процесс в массе пластин отстает от процесса на их поверхности, что вызывает внутренние токи и уменьшение отдачи.

Напряжение аккумулятора существенно изменяется во время разряда. Желательно, чтобы оно было возможно более постоян­ным. В расчетах обычно указывается среднее разрядное напря­жение U p . Но для заряда аккумулятора нужен источник тока, дающий значительно большее зарядное напряжение U з (на 25- 40%). В противном случае невозможно зарядить аккумулятор полностью.

Если напряжение одного аккумуляторного элемента недоста­точно для данной установки, то необходимое число аккумулятор­ных элементов соединяется последовательно. Конечно, последо­вательно соединять можно только аккумуляторы, рассчитанные на одну и ту же разрядную силу тока.

Если разрядный ток одного элемента недостаточен, то приме­няется параллельное соединение нескольких одинаковых элемен­тов.

Из числа кислотных аккумуляторов практическое значение имеют лишь свинцовые аккумуляторы. В них на положительном электроде активным веществом служит двуокись свинца РЬ0 2 , на отрицательном электроде - губчатый свинец РЬ. Положительные пластины имеют бурый цвет, отрицатель­ные- серый, в качестве электролита применяется раствор сер­ной кислоты H 2 S0 4 с с удельным весом 1,18-1,29.

Химический процесс разряда и заряда свинцового аккумуля­тора относительно сложен. В основном он сводится к восстановлению свинца на положительном электроде и окислению губча­того свинца на отрицательном электроде в закисную соль серной кислоты. При этом образуется вода и, следовательно, плотность электролита уменьшается. При разря­де сначала напряжение аккумулятора быстро падает до 1,95 В, а затем медленно понижается до 1,8 В. После чего необходимо прекратить разряд.

При дальнейшем разряде имеет место необратимый процесс образования кристаллического сернокислого свинца PbS 4 . По­следний покрывает пластины белым налетом. Он обладает боль­шим удельным сопротивлением и почти не растворим в электро­лите. Слой сернокислого свинца увеличивает внутреннее сопро­тивление активной массы пластин. Такой процесс называется сульфатацией пластин.

При заряде аккумулятора процесс идет в обратном направ­лении: на отрицательном электроде восстанавливается металли­ческий свинец, а на положительном электроде свинец окисляется до двуокиси РЬ0 2 . Ион S0 4 переходит в электролит, поэтому плотность серной кислоты при заряде увеличивается, следова­тельно, возрастает и удельный вес электролита. Для измерения удельного веса электролита применяется специальный арео­метр. По его показаниям можно ориентировочно судить, в какой мере аккумулятор заряжен. Среднее разрядное напряжение свинцового аккумулятора 1,98 В, а среднее зарядное напряжение 2,4 В.

Внутреннее сопротивление r B н свинцовых аккумуляторов, бла­годаря малому расстоянию между пластинами и большой пло­щади их соприкосновения с электролитом, весьма мало: порядка тысячных долей ома у стационарных аккумуляторов и сотых до­лей у небольших переносных аккумуляторов.

Вследствие малого внутреннего сопротивления и относительно большого напряжения КПД этих аккумуляторов достигает 70- 80 %, а отдача - 0,85-0,95 %.

Однако из-за малого внутреннего сопротивления в свинцовых аккумуляторах при коротких замыканиях возникают токи очень большой силы, что приводит к короблению и распаду пластин.

Из числа щелочных аккумуляторов широкое при­менение в настоящее время имеют кадмиево-никелевые, железо- никелевые и серебряно-цинковые. Во всех этих аккумуляторах электролитом служит щелочь - примерно двухпроцентный ра­створ едкого калия КОН или едкого натра NaOH. При заряде и разряде этот электролит почти не претерпевает изменений. Сле­довательно, от его количества емкость аккумулятора не зависит. Это дает возможность свести к минимуму количество электроли­та во всех щелочных аккумуляторах и таким путем существенно их облегчить.

Остовы положительной и отрицательной пластин этих акку­муляторов делаются из стальных никелированных рамок с пакетами для активной массы. Благодаря такой конструкции активная масса прочно удерживается в пластинах и не выпадает при толчках.

В кадмиево-никелевом КН аккумуляторе ак­тивным веществом положительного электрода служат окислы никеля, смешанные для увеличения электропроводности с графи­том; активным веществом отрицательного электрода является губчатый металлический кадмий Cd. При разряде на положи­тельном электроде расходуется часть активного кислорода, со­держащегося в окислах никеля, а на отрицательном электроде окисляется металлический кадмий. При заряде обратно обога­щается кислородом положительный электрод: гидрат закиси никеля Ni(OH) 2 переходит в гидрат окиси никеля Ni(OH) 3. На отрицательном электроде гидрат закиси кадмия восстанавли­вается в чистый кадмий. Приближенно процесс в этом аккумуля­торе может быть выражен химической формулой:

2Ni (ОН) 3 + 2КОН + Cd ? ? 2Ni (ОН) 2 + 2КОН + Cd (ОН) 2 .

Как показывает формула, из электролита при разряде выде­ляется частица (ОН) 2 на отрицательной пластине и такая же частица переходит в электролит на положительной пластине. При заряде процесс идет в обратном направлении, но в обоих случаях электролит не изменяется.

Устройство железо-никелевого аккумулятора отличается лишь тем, что в нем в отрицательных пластинах кадмий заменен мелким порошком железа (Fe). Химический процесс этого аккумулятора можно просле­дить по вышеприведенному для кадмиево-никелевого аккумуля­тора уравнению путем замены Cd на Fe.

Применение железа вместо кадмия удешевляет аккумуля­тор, делает его более прочным механически и увеличивает срок его службы. Но с другой сторо­ны, у железо-никелевого акку­мулятора при том же примерно разрядном напряжении зарядное напряжение на 0,2 В выше, вследствие чего КПД этого аккумулятора ни­же, чем кадмиево-никелевого. Затем очень важным недостат­ком железо-никелевого аккуму­лятора является относительно быстрый саморазряд. У кадмиево-никелевого аккумулятора саморазряд мал, и поэтому ему отдается предпочтение в тех случаях, когда аккумулятор должен длительно находиться в заряженном со­стоянии, например для питания радиоустановок. Среднее разрядное напряже­ние обоих этих аккумуляторов равно 1,2 В.

Герметически закрытые сосуды вышеописанных щелочных аккумуляторов выполняются из листовой никелированной стали. Болты, через которые пласти­ны аккумуляторов соединяются с внешней целью, пропускаются через отвер­стия в крышке сосуда, причем болт, с которым соединены отрицательные пла­стины, тщательно изолирован от стального корпуса; но болт, соединенный с положительными пластинами, от корпуса не изолируется.

Внутреннее сопротивление щелочных аккумуляторов значи­тельно больше, чем кислотных, благодаря этому они лучше пере­носят короткие замыкания. Но по той же причине КПД щелоч­ных аккумуляторов (порядка 45%) значительно ниже, чем кис­лотных, также существенно меньше их удельная энергия и отда­ча по емкости (0,65). Так как состояние электролита у щелочных аккумуляторов при работе не изменяется, то определить их степень заряженности по внешним признакам нельзя. Вследствие чего за зарядом приходится следить на основании их емкости и напряжения. При заряде нужно сообщить аккумулятору количество электричества It=q значительно большее, чем его емкость, примерно в 1,5 раза. Например, аккумулятор емкостью 100 а-ч желательно заряжать током силой в 10 а в течение 15 час.

Серебряно-цинковые аккумуляторы являются новей­шими из числа современных аккумуляторов. Электролитом в них служит вод­ный раствор едкого калия КОН с удельным весом 1,4, с активным веществом положительного электрода (окисью серебра Ag 2 0) и отрицательного электро­да (цинком Zn). Электроды изготавливаются в виде пористых пластин и отделяют­ся друг от друга пленочной перегородкой.

При разряде аккумулятора окись серебра восстанавливается до металли­ческого серебра, а металлический цинк окисляется до окиси цинка ZnO. Об­ратный процесс происходит при заряде аккумулятора. Основная химическая реакция выражается формулой

Ag s O + КОН + Zn ? ? 2Ag + КОН + ZnO.

http://сайт/www.youtube.com/watch?v=0jbnDTRtywE
Устойчивое разрядное напряжение составляет около 1,5 В. При небольших токах разряда это напряжение почти не изменяется в течение примерно 75- 80% времени работы аккумулятора. Затем оно довольно быстро падает, и при напряжении 1 в разряд следует прекращать.

Внутреннее сопротивление серебряно-цинковых аккумуляторов сущест­венно меньше, чем остальных щелочных аккумуляторов. При равной емкости первые значительно легче. Они удовлетворительно работают как при пониженной (-50° С), так и при повышенной (+ 75° С) температурах. Наконец, они допускают большие разрядные токи. Например, некоторые типы таких акку­муляторов можно разогреть током короткого замыкания в течение одной минуты.

Выше изложены только основные сведения по аккумуляторам. При практической работе с аккумуляторами, в особенности со свинцовыми, необходимо тщательно выполнять соответствующие заводские инструкции. Нарушение их вызывает быстрое разрушение аккумуляторов.

Базовый принцип работы свинцово-кислотного аккумулятора (АКБ), определяемый термином «двойная сульфатация», был разработан (изобретен) более полутора веков назад в районе 1860 года и с тех пор никаких принципиальных новшеств не претерпел. Появилось достаточное количество специализированных моделей, но устройство аккумулятора выпущенного вчера в Японии или производимого сегодня в России или в Германии, такое же, как и устройство самой первой батареи собранной «на коленке» во Франции, с неизбежными улучшениями и оптимизацией.

Назначение

АКБ в обычном автомобиле предназначен для работы стартера при запуске двигателя и для устойчивого снабжения заданного вольтажа электроэнергией, многочисленного электрооборудования. При этом роль автомобильного аккумулятора, как «энергетического буфера», при недостаточном поступлении энергии от генератора не менее важна. Типичный пример подобного режима – при работе двигателя на холостых оборотах во время стояния в пробке . В такие моменты весь электропакет и дополнительное сервис-оборудование запитаны только от аккумулятора. Критически важна роль кислотного аккумулятора при аварийных форс-мажорах: поломка генератора , регулятора напряжения, выпрямителя тока, при обрыве ремня генератора.

Правила подзарядки

Подзарядка свинцово-кислотного автомобильного аккумулятора в штатном режиме производится от генератора. При интенсивной работе батареи требуется ее дополнительная подзарядка в стационарных условиях через специальное зарядное устройство. Особенно это актуально в зимнее время, когда возможность холодной батареи принимать заряд резко снижается, а потребление энергии на раскрутку мотора на морозе возрастает. Поэтому зарядку автомобильного АКБ необходимо проводить в тепле после его согревания естественным образом.

Важно! Ускорение согревания батареи горячей водой или феном недопустимо, так как реально разрушение пластин вследствие резкого перепада температур. При опадении наполнителя на дно банок, резко возрастает возможность саморазряда за счет замыкания пластин.
Для так называемых «кальциевых» аккумуляторов, недопущение полного или значительного разряда критически важно, потому что ресурс этого типа батарей ограничен 4-5 циклами полной разрядки, после чего аккумулятор приходит в негодность.

В современных гибридных автомобилях и в электромобилях аккумуляторная батарея имеет повышенные размеры и емкость, обеспечивая движение. Их так и называют – тяговые. В «чистых» электромобилях только аккумуляторы являются поставщиком энергии для движения и работы всего электрооборудования, отчего имеют значительные размеры и в разы большую емкость, чем батарея в «классическом» автомобиле с карбюраторным двигателем. Например: танковые, тепловозные, на подводных лодках и так далее. Хотя принцип кислотного аккумулятора во всех случаях одинаков за исключением размеров.

Устройство кислотного АКБ и принцип его работы

Устройство кислотной АКБ (свинцово-кислотного) различного назначения, от разных производителей отличается не принципиально и в тезисной форме выглядит следующим образом:

  1. пластиковый контейнер-корпус из инертного, устойчивого к агрессивной среде материала;
  2. в общем корпусе располагается несколько модулей-банок (как правило шесть), которые являются полноценными источниками тока и соединяются между собой тем или иным способом в зависимости от основных задач;
  3. в каждой банке располагаются плотные пакеты, состоящие последовательно из разделенных диэлектрическими сепараторами отрицательно и положительно заряженных пластин (свинцовый катод и анод из диоксида свинца соответственно). Каждая пара пластин является источником тока, их параллельное соединение кратно увеличивает выдаваемое на напряжение;
  4. пакеты залиты раствором химически чистой серной кислоты, разбавленной до определенной плотности дистиллированной водой.

Работа кислотного аккумулятора

В процессе работы кислотного аккумулятора на катодных пластинах образуется сульфат свинца и выделяется энергия в виде электрического тока. За счет выделяемой в процессе электрохимической реакции воды плотность кислотного электролита падает, он становится менее концентрированным. При подаче напряжения на клеммы в процессе зарядки происходит обратный процесс с восстановлением свинца до металлической формы и повышается концентрация электролита.

Как устроена щелочная батарея и принцип ее работы

Устройство щелочной батареи аналогично таковому у кислотного. Но положительно и отрицательно заряженные пластины имеют другой элементный состав, а в качестве электролита используется раствор едкого кали определенной плотности. Есть и другие отличия — в самом корпусе контейнера, выводе клемм и в наличии мелкосетчатой «рубашки» вокруг каждой отдельной пластины.

Отрицательные катоды традиционного щелочного аккумулятора выполнены из губчатого кадмия с примесью губчатого железа, положительные – из гидроокиси трехвалентного никеля с добавлением чешуйчатого графита, добавка которого, обеспечивает лучшую электропроводность катода. Пары пластин параллельно соединяются между собой в банках, которые тоже соединены параллельно. В процессе зарядки щелочного аккумулятора двухвалентный никель в гидрате закиси меняет валентность до значения «8» и превращается в гидрат окиси; соединения кадмия и железа восстанавливаются до металлов. При разрядке процессы противоположны.

Достоинства щелочной АКБ

К достоинствам щелочного типа относятся:

  • внутреннее устройство обеспечивает повышенную устойчивость к механическим нагрузкам, в том числе к тряске и ударам;
  • разрядные токи могут быть значительно выше, чем у кислотного аналога;
  • в принципе отсутствует испарение/выделение вредных веществ с газами;
  • легче и меньше при равных емкостях;
  • имеют очень высокий ресурс и служат в 7-8 раз дольше;
  • для них не является критичными перезаряд или недозаряд;
  • эксплуатация их проста.

По достижении максимального возможного заряда и при продолжении подключения к зарядному устройству никаких отрицательных электрохимических процессов с элементами не происходит. Просто начинается электролиз воды на водород и кислород с ростом концентрации едкого кали и падением уровня электролита, что безопасно и легко компенсируется добавлением дистиллированной воды.
Очевидно, что имеются показатели, по которым этот тип аккумуляторов хуже кислотного:

  • использование дорогостоящих материалов повышает стоимость на единицу емкости до четырех раз;
  • более низкое – 1,25 В против 2 и выше В — напряжение на элементах.

Заключение

Правильная эксплуатация любого типа АКБ обеспечивает его долгую и надежную работу, что не только позволяет экономить финансы, но и гарантирует большую безопасность и комфорт при езде на автомобиле.

  • Свинцово-кислотный аккумулятор - один из самых распространенных типов батарей, использующийся в качестве источника электроэнергии для автомобиля, мотоцикла, мопеда, или в случае необходимости создания запасных источников питания.

    Первая модель свинцово-кислотного аккумулятора была создана в середине XIX века ученым Гастоном Планте. Тогда его конструкция подразумевала две свинцовых пластины, стеклянную колбу с серной кислотой и обычное полотно в роли сепаратора. Это устройство обладало малой емкостью заряда и не получило достаточного распространения. Но идею оценили другие ученые и стали экспериментировать с составом электродов. В итоге самой удачной оказалась решетчатая конструкция из сплава с добавлением сурьмы. Изобретение генераторов постоянного тока решило проблему с подходящим источником энергии, и свинцово-кислотные аккумуляторные батареи наконец-таки получили широкое распространение.

    В конце ХХ века их конструкция усложнилась, появились , в электроды которых был добавлен кальций. Это нововведение позволило существенно сократить расход воды. В идеале, батареи такого типа способны работать без пополнения количества воды в электролите весь срок службы. Кстати, при необходимости утратившее работоспособность устройство можно попробовать восстановить, используя принцип действия кислотных аккумуляторов.

    По конструктивным особенностям современные батареи делятся на три типа:

    1. С жидким электролитом. Могут быть как обслуживаемыми, так и необслуживаемыми. Электролит - смесь серной кислоты и воды, находящаяся в жидком виде. В версии, требующей обслуживания, пластины изготавливаются из свинца с добавлением сурьмы и мышьяка. В таких батареях высок расход воды, что делает обслуживание аккумулятора не очень простой задачей. После замены сурьмы на кальций в состав сплава отрицательной пластины появились так называемые гибридные аккумуляторы, более удобные в эксплуатации, чем их предшественники. И, наконец, с добавлением кальция в обе пластины началась эра устройств, не требующих восстановления количества воды весь срок службы. Несмотря на совершенство конструкции, у них есть один минус - плохо переносят почти полный разряд, особенно в условиях отрицательной температуры.
    2. Гелевые АКБ. В этих конструкциях электролит находится в сгущенном состоянии благодаря добавлению кремния. Плюс такой конструкции в том, что батарея становится абсолютно герметичной. Газ, выделяющийся в процессе химических реакций, находит себе место в порах геля, а при обратных реакциях вновь присоединяется к раствору серной кислоты. Но это очень капризные батареи. Они требуют неукоснительного соблюдения условий эксплуатации, чувствительны к перепадам температур, справляются с высокой нагрузкой хуже, чем их жидкостные собратья. Но они хорошо справляются с сильной разрядкой, действительно не требуют дополнительного обслуживания. Гелевые АКБ чаще используются в качестве стационарно резервного источника питания и редко устанавливаются на транспорт.
    3. AGM-аккумуляторы. Это самый современный вид батарей, сочетающий все достоинства предыдущих вариантов. Электролит остается жидким, но циркулирует в пористой конструкции из тончайших стеклянных волокон. Два вида пор - большие и маленькие - обеспечивают свободное перемещение газа до того, как запустится обратная реакция. Конструкция устройства такова, что аккумулятор может работать, даже если его оболочка незначительно повреждена. Не боятся они и холода, глубокой разрядки, вибраций. Единственная уязвимость такого устройства - чувствительность к перепадам напряжения. Эту проблему можно решить, контролируя работу генератора и пользуясь надежным ЗУ.

    Емкость и напряжение

    У любого есть два основных параметра: емкость и напряжение. Емкость определяет количество энергии, которое аккумулятор может отдать при рабочем напряжении, измеряется в Ампер-часах. Она зависит от площади свинцовых пластин, участвующих в химических реакциях. При износе аккумулятора его емкость уменьшается из-за естественных потерь в размере пластин.

    Напряжение - количество электрического тока, отдаваемое батареей. Измеряется в вольтах, зависит от плотности электролита. Оба параметра необходимо контролировать, так как от них зависит работоспособность устройства.

    Для измерения напряжения используется вольтмер, правильные показатели - от 11 до 13 вольт (раньше производились аккумуляторы с напряжением 6 вольт, теперь они считаются устаревшими).

    Чтобы измерить емкость, существует несколько методов:

    • « » - измерение напряжения при эталонной нагрузке. Аккумулятор должен быть полностью заряжен.
    • Специальный индикатор, способный посылать сигнал, определяющий площадь свинцовых пластин, и преобразовывать его в цифры. Не требует особых условий использования.
    • В домашних условиях можно подключить мощную автомобильную галогеновую лампу и замерить в это время напряжение. Ели в течение 2 минут оно держится на уровне ~11 вольт, а свет лампы ровный и сильный - все в порядке.

    Эксплуатация и восстановление

    В зависимости от типа используемого аккумулятора, условия его эксплуатации будут сильно отличаться. Единственная общая черта - всех их необходимо вовремя заряжать. Так, обслуживаемая батарея требует долива воды в аккумулятор, что может представлять собой опасность - кислота нагревает воду, и кипяток может ощутимо обжечь автовладельца.

    Конструкция необслуживаемых аккумуляторов не предполагает возможности пополнения запаса воды в них. Но, даже если произвести небольшие изменения в конструкции, обжечься кипятком все равно будет проблематично. Для батарей такого типа важно не допускать больших колебаний напряжения. Это справедливо и для автомобильного, и для мотоциклетного аккумулятора. Но герметичный корпус уменьшает варианты восстановления устройства.

    Как ? Часто снижение емкости или напряжения аккумулятора происходит из-за того, что некоторые участки электролита слишком уплотнились. При многоразовой небольшой зарядке эти области разжижаются, и потенциал устройства восстанавливается. Существует несколько рецептов восстанавливающего раствора, который несколько улучшает состояние устройства. К сожалению, его использование несколько затруднено на батареях с герметизированным корпусом, так как слить из него этот раствор будет проблематично.

    Какой бы аккумулятор ни был установлен на транспортном средстве, важно соблюдать инструкцию по его использованию, вовремя заряжать и, при необходимости, пополнять запас воды в электролите. Тогда батареи будет максимально долгим.