Автомобильный счетчик топлива. Автомобильный измеритель расхода топлива своими руками

Наш автомобиль обходится нам в кругленькую сумму. Как бы мы не были благодарны ему за его работу, всё же нам время от времени хочется снизить траты на него и тщательнее контролировать расходы топлива, масел и технических жидкостей. Для того, чтобы осуществлять контроль за этими процессами, необходимо точно знать, каков расход топлива за тот или иной период времени. Естественно, что данную задачу нельзя выполнить вручную и на глазок - для быстрых и точных замеров Вам нужен современный прибор, который выполнит все необходимые работы и не отнимет у Вас много времени. Компания «Иннотех» предлагает всем автолюбителям приобрести расходомер топлива, чтобы всегда быть в курсе затрат бензина или дизеля.

Топливный расходомер

Топливный расходомер - это прибор, разработанный специально для измерения топлива в автомобильных и других системах. Данный прибор имеет широкий спектр применения - он широко используется не только для транспортных средств, но и для водных судов, дизельных генераторов и прочих агрегатов и оборудования, где источником энергии служит топливо. Большинство подобных приборов отличается безупречной точностью, так как монтируется непосредственно в топливную магистраль. Это значит, что показания, которые будет выдавать расходомеры дизельного топлива, будут лишены даже минимальной погрешности.

Данный вид расходомеров - это удобный и практичный прибор для всех видов техники, использующей жидкое топливо. Так, начать стоит с того, что расходомер топлива для автомобиля легко монтировать - Вам не потребуется на это много времени, а к работе расходомер может приступить сразу же после окончания монтажа.

Преимущества топливного расходомера

Идея купить расходомер топлива покажется Вам ещё более выгодной, если Вы узнаете о достоинствах этого прибора. Несмотря на его компактность и доступную цену, количество его ценный характеристик действительно впечатляет!

  • Высокая точность - как мы сказали, данный прибор отличается отсутствием погрешности в показаниях, что делает его стопроцентно эффективным в области поставленных задач;
  • Надёжный и крепкий корпус, что важно для прибора, работающего внутри другой системы. Ему не страшны случайные повреждения, способен выдержать нагрузки высокой интенсивности;
  • Прибор обладает высокой устойчивостью к износу, он способен проработать долгие годы - конечно, при условии, что Вы правильно его использовали и соблюдали все правила эксплуатации.

Топливный расходомер может работать с разными видами жидкостей. Кроме дизельного топлива это также минеральное масло, печное масло, а также иные разновидности жидкого топлива с определённой плотностью и вязкостью. Для того, чтобы не ошибиться с выбором прибора по этому параметру, внимательно читайте описание его технических параметров на упаковке.

Компания «Иннотех» ждёт Вас, чтобы помочь с выбором топливного расходомера для Вашего транспортного средства или оборудования. На расходомеры топлива цены у нас Вы можете найти различные - подходящие под любой бюджет и потребности. С нами у Вас не будет проблем с измерением топлива!

Конструкции мониторинга рабочих параметров автомобиля заметно продвинулись за последние годы. Они стали функциональнее, технологичнее и просто ближе к массовому потребителю. Системы учета топливного расхода пока занимают периферийное место в общей нише транспортной электротехники, но и это направление интересует все большее количество автолюбителей. На таком фоне вполне логично появляются расходомеры топлива, действующие по разным принципам. Также практикуется и самостоятельное изготовление аналогичных которые, разумеется, имеют свою специфику.

Общие сведения и характеристики расходомеров

Большинство таких приборов представляет собой традиционные счетчики небольших размеров, конструкция которых рассчитывается на установку в топливной системе. Характеристики по габаритам типового устройства можно представить так: 50 х 50 х 100 мм.

Это небольшой блок с пропускной способностью 100-500 л/ч. Погрешность в среднем составляет 5-10%. В процессе расхода жидкости прибор фиксирует тем или иным способом показатели чувствительного элемента и сохраняет полученные данные. Реализация системы учета, контроля и представления информации может быть разной. Например, проточный расходомер топлива для автомобиля выполняется с расчетом на ручное снятие показаний. У него может быть механическая панель с отображением данных или привязка к жидкокристаллическому цифровому дисплею в салоне, но информация не обрабатывается бортовым компьютером. Более технологичные устройства допускают и возможность электронного учета в автоматическом режиме. В зависимости от динамики расхода, например, бортовое оборудование может корректировать определенные параметры узлов и агрегатов машины.

Разновидности устройств

Классификация основывается как раз на принципе учета показаний, который определяется чувствительным элементом. На сегодняшний день выделяют следующие расходомеры для автомобилей:

  • Кориолисовые. Принцип работы основан на эффекте Кориолиса, при котором происходит измерение динамики фаз механических колебаний в трубках, по которым циркулирует топливо.
  • Турбинные. В систему интегрируется лопаточное устройство, вращение лопастей которого преобразуется в скоростные показатели. Таким образом, с учетом параметров обслуживаемых каналов определяется и объем потребления.
  • Шестеренчатые. Еще одна разновидность механического расходомера топлива, который фиксирует данные посредством вращающихся элементов. В данном случае используется компактное зубчатое колесо, движение которого позволяет регистрировать данные по расходу.
  • Ультразвуковые. Это счетчики нового типа, которые вовсе не контактируют с целевой средой, а фиксируют параметры изменения характеристик топливной системы на основе акустических волн.

Особенности приборов учета дизеля

На тяжелом топливе обычно работают грузовики и спецтехника, предъявляющие более высокие требования к приборам учета топлива. Принцип действия, как правило, механический. Причем конструкция датчиков имеет более высокую степень изоляции - например, с Таким образом устройство защищается от воздействий агрессивной среды. Корпус может формироваться алюминиевым твердотельным сплавом, измерительные камеры которого также обеспечиваются антифрикционными покрытиями. Размещается расходомер и в магистрали подачи топливной смеси, и в возвратном канале, по которому жидкость возвращается в бак. Только при условии охвата обоих контуров можно получить точные данные по объему потребления.

Дополнительный функционал

Наличие системы GPS-мониторинга, пожалуй, является наиболее современным дополнением датчиков топливного расхода. Такие устройства позволяют передавать информацию бортовому компьютеру по беспроводному каналу. Многофункциональные устройства могут комплексно фиксировать данные по расходу в нескольких системах одновременно. Учитываться может основная топливная смесь и с присадками и модификаторами. Преимущество комплексного мониторинга заключается в возможности точного контроля добавок для топливной, трансмиссионной и других систем. Кроме того, могут предусматриваться разные режимы работы приборов. Существуют расходомеры топлива, которые помимо функции счетчиков выполняют задачи контроля холостого хода, фиксируют возможные температурные перегрузки и на основе полученной информации регулируют климатическое оборудование. При вводе устройства в сигнализационную инфраструктуру датчик расхода вполне может программироваться на выполнение задач контроля обогревателя и системы автозапуска двигателя.

Установка расходомеров

Приборы устанавливаются в целевом контуре учета посредством физической врезки в канал. И здесь важно подчеркнуть, что топливные каналы в зависимости от модели автомобиля изначально могут иметь выносные патрубки с пробками, которые можно использовать как раз в качестве точек интеграции приборов учета. Также следует учитывать, что монтаж производится за системой фильтрации. Это решение предотвратит возможные загрязнения расходомера топлива и его преждевременный выход из строя.

Механическая фиксация массивных устройств обычно производится на комплектной раме, которая крепится к поверхности кузова. По отзывам автолюбителей, важно рассчитать так, чтобы чувствительный канал достаточно сопрягался с целевой средой, а основа корпуса могла быть надежно зафиксирована на монтажной платформе метизами. Желательно, чтобы место установки не предполагало сильных вибрационных нагрузок и тепловых воздействий.

Самостоятельное изготовление расходомеров

Полностью с нуля, по отзывам водителей, собрать полноценный счетчик достаточно сложно, и для этого необходимо обладать определенными знаниями в радиотехнике. Однако на базе готового блока управления типа контроллера и датчика с электрическим клапаном задача упрощается. Сам датчик интегрируется в топливную магистраль. Размещать его следует между бензонасосом и карбюратором. Что касается блока управления, то он соединяется с детектором и выводится в салон. Применяя CAN-интерфейс, расходомер топлива своими руками можно подключить и к бортовой электронике. В качестве дополнительных элементов крепления и управления датчиком может потребоваться использование штуцеров, шайб, поддонов и втулок. Техническая инфраструктура должна рассчитываться на автономное срабатывание, когда бензонасос открывается.

Как обмануть расходомер топлива?

Штатные счетчики контроля потребления бензина или дизеля вполне можно скорректировать в ту или иную сторону. Простейший способ предполагает выполнение слива через обратную магистраль. В этот канал достаточно вставить штуцер и слить жидкость по скрытому контуру. В некоторых конфигурациях встроенную линию можно использовать для непосредственной функции снабжения, и в этом случае счетчики расходомера топлива просто не будут давать актуальную информацию. Еще один вариант предусматривает тепловое воздействие на датчик. Это касается именно детекторов уровня жидкости, которые после термического ожога перестают корректно работать, хотя внешне выглядят целыми. Можно полить прибор кипятком или поднести к нему обогреватель на 5-10 мин. Но прежде чем делать это, стоит подумать о целесообразности таких экспериментов.

РАСХОДОМЕР ТОПЛИВА ДЛЯ АВТОМОБИЛЯ


Один из вариантов устройства, которое позволяет контролировать количество и скорость жидкости (в частности топлива), протекающего через магистраль, был описан в статье И. Семенова и др. "Электронный расходомер жидкости" ("Радио", 1986, № 1).

Повторение и налаживание этого расходомера связано с определенными трудностями, так как многие его детали требуют высокой точности обработки. Его электронный блок нуждается в хорошей помехозащищенности из-за высокого уровня помех в бортовой сети автомобиля. Еще один недостаток этого устройства - увеличение погрешности измерения с уменьшением скорости потока топлива (а режиме холостого хода и малой нагрузки на двигатель).

Описанное ниже устройство свободно от перечисленных недостатков, имеет более простую конструкцию датчика и схему электронного блока. В нем нет прибора для контроля скорости расходования топлива, его функцию выполняет счетчик суммарного расхода. Частота срабатывания пропорциональна скорости расходования топлива и воспринимается водителем на слух. Это не отвлекает от управления автомобилем, что особенно важно в условиях городского движения.

Расходомер состоит из двух узлов: датчика с электроклапаном, встроенного в топливную магистраль между бензонасосом и карбюратором, и электронного блока, расположенного в салоне автомобиля. Конструкция датчика изображена на рис. 1. Между корпусом 8 и поддоном 2 зажата эластичная диафрагма 4, разделяющая внутренний объем на верхнюю и нижнюю полости. Шток 5 свободно перемещается в направляющей втулке 7 из фторопласта. Диафрагма зажата в нижней части штока двумя шайбами 3 и гайкой. На верхнем конце штока установлен постоянный магнит 9. В верхней части корпуса параллельно каналу, в котором находится шток, просверлены два дополнительных канала. В них установлены два геркона 10. В нижнем положении магнита, а значит, и диафрагмы, срабатывает один геркон, а в верхнем - другой.

Puc.1 . 1-Штуцер, 2 - Поддон, 3- Шайбы, 4 - Диафрагма, 5- Шток,
6 - Пружина, 7 - Втулка, 8 - Корпус, 9 - Магнит, 10 - Герконы

В верхнее положение диафрагма переходит под действием давления горючего, поступающего от бензонасоса, а в нижнее ее возвращает пружина 6. Для включения датчика в топливную магистраль предусмотрены три штуцера 1 (один на поддоне и два - на корпусе).

Гидравлическая схема расходомера показана на рис. 2. Через канал 3 и электроклапан топливо от бензонасоса поступает в каналы 1, 2 и заполняет верхнюю и нижнюю полости датчика, а через канал 4 поступает в карбюратор. Переключается клапан под действием сигналов электронного блока (на этой схеме не показан), управляемого герконовым коммутатором датчика.

Puc.2

В исходном состоянии обмотка электроклапана обесточена, канал 3 сообщается с каналом 1, а канал 2 пепекрыт. Диафрагма находится в нижнем положении, как показано на схеме. Бензонасос создает избыток давления жидкости в нижней полости 6. По мере выработки двигателем топлива из верхней полости а датчика диафрагма будет медленно подниматься, сжимая пружину.

При достижении верхнего положения сработает геркон 1 и электроклапан закроет канал 3 и откроет канал 2 (канал 1 открыт постоянно). Под действием сжатой пружины диафрагма быстро переместится вниз, в исходное положение, и перепустит топливо через каналы 1, 2 из полости б в а. Далее цикл работы расходомера повторяется.

Электронный блок (Puc.3) подключают к датчику и электроклапану гибким кабелем через разъем ХТ1. Горкомы SF1 и SF2 (1 и 2 соответственно, по рис. 2) установлены в датчике (на схеме они изображены в положении, когда магнит не воздействует ни на один из них); Y1 - обмотка электромагнита клапана. В исходном положении транзистор VT1 закрыт, контакты К1.2 реле К1 разомкнуты и обмотка Y1 обесточена. Магнит датчика находится рядом с герконом SF2, поэтому геркон тока не проводит.

Puc.3

По мере расхода топлива из полости а датчика магнит медленно перемещается от геркона SF2 к геркону SF1. В некоторый момент геркон SF2 переключится, но это не вызовет никаких изменений в блоке. В конце хода магнит переключит геркон SF1 и через него и резистор R2 потечет базовый ток транзистора VT1. Транзистор откроется, сработает реле К1 и контактами К1.2 включит электромагнит клапана, а контактами К1.1 замкнет цепь питания счетчика импульсов Е1.

В результате диафрагма вместе с магнитом начнут быстро перемещаться вниз. В некоторый момент геркон SF1 после обратного переключения разорвет цепь базового тока транзистора, но он останется открытым, так как базовый ток теперь протекает через замкнутые контакты К1.1, диод VD2 и геркон SF2. Поэтому шток с диафрагмой и магнитом продолжат движение. В конце обратного хода магнит переключит геркон SF2, транзистор закроется, электромагнит Y1 клапана и счетчик Е1 выключатся. Система вернется в исходное состояние, и начнется новый цикл ее работы.

Таким образом, счетчик Е1 фиксирует число циклов срабатывания датчика. Каждый цикл соответствует определенному объему израсходованного топлива, который равен объему пространства, ограниченного диафрагмой в верхнем и нижнем положениях. Суммарный расход топлива определяют умножением показаний счетчика на объем топлива, израсходованного за один цикл. Этот объем устанавливают при тарировке датчика. Для удобства отсчета расходуемого топлива объем за один цикл выбран равным 0,01 литра. При желании этот объем можно несколько уменьшить или увеличить. Для этого необходимо изменить расстояние между герконами по высоте. При указанных размерах датчика оптимальный ход диафрагмы равен примерно 10 мм. Длительность цикла датчика зависит от режима работы двигателя и находится в пределах от 6 до 30 с.

При тарировке датчика необходимо отключить трубопровод от бензобака автомобиля и вставить его в мерный сосуд с топливом, а затем запустить двигатель и выработать некоторое количество топлива. Разделив это количество на число циклов по счетчику, получают значение единичного объема топлива за один цикл.

В расходомере предусмотрена возможность его отключения тумблером SA1. В этом случае диафрагма датчика постоянно находится в нижнем положении и топливо по каналам 2 и 3 через полость а будет напрямую поступать в карбюратор. Для реализации возможности отключения устройства в электроклапане необходимо снять резиновую манжету, перекрывающую канал 3, но при этом ухудшится погрешность расходомера.

Электронный блок смонтирован на печатной плате из стеклотекстолита толщиной 1,5 мм. Чертеж платы показан на рис. 4. Детали, устанавливаемые на плату, обведены на схеме штрихпунктирной линией. Плата смонтирована в металлической коробке и укреплена в салоне автомобиля под щитком приборов.

Puc.4

В устройстве использовано реле РЭС9, паспорт PC4.529.029.11; электроклапан - П-РЭ 3/2,5-1112. Счетчик СИ-206 или СБ-1М. Постоянный магнит можно использовать любой с торцевым расположением полюсов и длиной 18...20 мм, необходимо только, чтобы он свободно перемещался в своем канале, не задевая стенок. Например, подойдет магнит от дистанционного переключателя РПС32, надо только сточить его до нужных размеров.

Корпус и поддон датчика вытачивают из любого немагнитного бензостойкого материала. Толщина стенки между каналами герконов и магнита не должна быть более 1 мм, диаметр отверстия под магнит - 5,1+0,1 мм, глубина - 45 мм. Шток изготовлен из латуни или стали 45, диаметр - 5 мм, длина резьбовой части - 8 мм, общая длина - 48 мм. Резьба на штуцерах датчика - М8, диаметр отверстия - 5 мм, а на штуцерах электроклапана - коническая К 1/8" ГОСТ 6111-52. Пружина навита из стальной проволоки диаметром 0,8 мм ГОСТ 9389-75. Диаметр пружины - 15 мм, шаг - 5 мм, длина - 70 мм, усилие полного сжатия - 300...500 г.

Если шток выполнен из стали, то магнит удерживается на нем за счет магнитных сил. Если же шток выполнен из немагнитного металла, то магнит необходимо приклеить или укрепить любым другим способом. Для того, чтобы работе датчика не мешало давление сжимаемого над магнитом воздуха, во втулке следует предусмотреть перепускной канал сечением около 2 мм2.

Диафрагма изготовлена из полиэтиленовой пленки толщиной 0,2 мм. Перед установкой в датчик ее необходимо отформовать. Для этого можно воспользоваться поддоном датчика в сборе со штуцером. Необходимо изготовить технологическое прижимное кольцо из листового дюралюминия толщиной 5 мм. По форме это кольцо точно соответствует сборочному фланцу поддона.

Для формовки диафрагмы шток в сборе с ее заготовкой вставляют с внутренней стороны в отверстие штуцера поддона и зажимают заготовку технологическим кольцом. Затем равномерно нагревают узел со стороны диафрагмы, держа его над пламенем горелки на расстоянии 60...70 см и, слегка поднимая шток, формуют диафрагму. Для того, чтобы диафрагма не теряла эластичности в процессе эксплуатации, необходимо, чтобы она постоянно находилась в топливе. Поэтому при длительной стоянке автомобиля необходимо пережимать шланг от датчика к карбюратору, чтобы исключить испарение бензина из системы.

Датчик и электроклапан устанавливают на кронштейне в моторном отсеке около карбюратора и топливного насоса и кабелем соединяют с электронным блоком.

Работоспособность расходомера может быть проверена без установки его на автомобиль с помощью насоса с манометром, подключенного вместо бензонасоса. Давление, при котором срабатывает датчик, должно быть 0,1 ...0,15 кг/см2. Испытания расходомера на автомобилях "Москвич" и "Жигули" показали, что точность измерения расхода топлива не зависит от режима работы двигателя и определяется погрешностью установки единичного объема при тарировке, которую легко довести до 1,5...2 %.

В. ГУМЕНЮК г. Харьков

24 декабря 2011 в 15:23

Самодельный расходомер для автомобиля

  • Разработка под Arduino

Привет! Расскажу вам о своей попытке сделать бортовой расходомер на основе Arduino Nano. Это моё второе изделие из ардуинки, первым был шагающий паучок. После экспериментов с лампочками и сервоприводами хотелось сделать что-нибудь более полезное.

Конечно, можно было купить готовое изделие, может, даже за меньшую цену (хотя за меньшую я не находил). Но это было неинтересно, и оно могло не иметь тех функций, которые мне хотелось иметь. К тому же, хобби, как и спорт, редко оправдывает затраты в материальной форме.

Прежде, чем рассказать о процессе, покажу картинку, как это выглядит сейчас. Программа пока в стадии дебага, поэтому контроллер висит на проводах в салоне, а дисплей прилеплен на двухсторонний скотч) В дальнейшем это будет установлено по-человечески.

Прибор вычисляет и отображает на дисплейчике километровый расход топлива: на нижней строке мгновенный, на верхней - средний за последний километр.

Мысль сделать эту штуку мне пришла давно, но этому мешала нехватка информации о том, что и как устроено в моей машине. Она у меня достаточно старая - Corolla E11 с двигателем 4A-FE. О двигателе мне было известно, что он инжекторный и что форсунки имеют более-менее постоянную производительность, на что рассчитывает и собственный блок управления. Поэтому основная идея измерения расхода - измерение суммарной длительности открытия форсунок.

ЭБУ, как подсказал хороший человек и как потом подтвердила инструкция, управляет форсункой следующим образом: плюс на неё подаётся всегда, а минус открывается и закрывается в зависимости от пожеланий ЭБУ. Стало быть, если подключиться к минусовому проводу форсунки, то можно отслеживать момент её открытия, измеряя потенциал: когда ЭБУ замыкает форсунку на массу, 14 вольт падают до нуля. Эта простая мысль меня посетила далеко не сразу, т. к. мои познания в электронике ограничены школьным курсом физики и законом Ома. Далее потребовалось превратить +14В в +5В, которые можно подавать на логический вход контроллера. Тут я каким-то образом допёр до известной всем электронщикам схемы шунтирования, но перед этим пришлось изучить мануалы и убедиться, что сопротивление форсунки пренебрежительно мало, а сопротивление логического входа почти бесконечно.

Чтобы вычислить километровый расход, необходимо было получить данные с датчика скорости. С ним оказалось всё проще, т. к. он выдаёт ступеньки 0… +5В, чем больше ступенек, тем больше пробег. Эти ступеньки пошли сразу на логический вход без преобразований.

Очень хотелось выводить данные на ЖК-дисплей. Я рассматривал разные варианты и остановился на текстовом дисплее МЭЛТ за 234 рубля на основе микроконтроллера Hitachi HD44780, с которым ардуино умеет работать с рождения.

После долгих и мучительных размышлений была составлена вот такая схема:

Помимо резисторов, понижающих напряжение с форсунки, здесь присутствуют стабилизатор напряжения, дабы запитать контроллер от бортовой сети, а также по советам деда и хорошего друга добавлены конденсаторы, дабы сгладить возможные пики напряжения, и по резистору «на всякий случай» для каждого логического входа. И да, я решил подавать сигналы с форсунки и датчика на аналоговые входы, о чём впоследствии нисколько не пожалел, т. к. в цифровом режиме аналоговые входы не хотели понимать разницу между закрытой и открытой форсункой, а в аналоговом очень чётко показывали разный уровень напряжения. Возможно, это недоработка моей схемы, но всё делалось впервые, вслепую и без тестирования на макете, в общем, наобум.

Вслед за схемой я накидал разметку печатной платы (да, я сразу ломанулся печатать, т. к. возиться с копной проводов на монтажной плате не очень хотелось):

Плату травил в первый раз и с некоторыми нарушениями технологии, поэтому результат вышел так себе. Но после лужения всё пришло в порядок. Травил методом лазерного утюга, учился по хорошо известным роликам на easyelectronics. После травления плата получилась вот такая:

Чтобы припаять на плату элементы, пришлось изрядно её продырявить. Мне не хотелось покупать дорогую дрель типа Dremel или подобной, и чтобы сэкономить пару тысяч рублей, я сколхозил микродрель из моторчика и цангового зажима, которые были куплены в радиомагазине неподалёку:

После сверления дырок, лужения и пайки плата стала выглядеть вот так:

Тут я по глупости припаял лишний стабилизатор, который впоследствии был заменён на резистор.

После того, как изделие было готово, я приступил к тестированию в боевых условиях, т. е. прямо на машине. Для этого по моей просьбе провода от форсунки и датчика были выведены в салон. Для микроконтроллера я написал тестовую программу, которая писала в COM-порт сырые данные - число импульсов с датчика скорости и милисекунды, в течение которых была открыта форсунка. Посидев в машине с ноутбуком и увидев, что данные соответствуют действительности, я несказанно обрадовался и пошёл домой писать рабочую версию программы.

После двух-трёх сеансов тестирования программа стала показывать годные данные. Поначалу я вычислял средний расход по временному интервалу (5-10 минут), что вызвало интересный эффект: после пяти минут стояния на светофоре (даже не пробка, а лёгкое подобие) километровый расход подскакивал до запредельных величин в 50-100 литров на 100 км. Я поначалу недоумевал, а потом понял, что это обычное дело, т. к. расход километровый, а усредняю я по времени: часики тикают, бензин льётся, а машина стоит. После этого мне пришла в голову светлая идея усреднять по пробегу: в текущей версии программа вычисляет, сколько бензина было израсходовано за последний километр, и показывает, сколько литров уйдёт, если проехать 100 км в таком же темпе. «Моментальный» же расход вычисляется как средний за последнюю секунду и каждую секунду обновляется.

Исходный код (если кому интересно) я

В одной из статей первого номера журнала «Радио» за 1986 год был описан вариант устройства, позволяющего осуществлять контроль над количеством жидкости и ее скоростью (в данном случае нас интересует топливо для авто), которая протекает в магистральных трубах.

В связи с высокими требованиями к точности обработки, могут возникнуть определенные сложности при повторении описанного расходомера, а так же в процессе его налаживания. Электронный блок этого прибора должен быть хорошо защищен от помех, в связи с тем, что в автомобильной бортовой сети уровень помех достаточно высокий. У этого устройства имеется и другой недостаток. Речь идет об том, что при сокращении скорости топливного потока, погрешность измерения неизбежно увеличивается.

Устройство, описанное ниже, не имеет указанных недостатков, конструкция датчика у него более простая, так же, как и схема электронного блока. Это устройство не имеет прибора, контролирующего скорость топливного расхода – для данной функции предназначен счетчик суммарного расхода. Водитель на слух воспринимается скорость топливного расходования, которое пропорционально частоте срабатывания. В городских условиях интенсивного движения это особенно важно, поскольку не отвлекает водителя от управления автомобилем.

Из чего состоит расходомер?

В приборе два узла:

1. Датчик с электрическим клапаном.

2. Электронный блок.

Датчик встроен в топливную магистраль, и располагается между карбюратором и бензонасосом. Электронный блок находится в салоне. На рисунке изображена конструкция датчика. 1 Эластичная диафрагма 4 зажата между поддоном 2 и корпусом 8. Она разделяет внутренний объем на две полости – нижнюю и верхнюю.

Направляющая втулка 7 выполнена из фторопласта. В ней свободно перемещается шток 5. В его нижней части зажата диафрагма с помощью гайки и двух шайб 3. Постоянный магнит 9 установлен на верхнем конце штока. Параллельно каналу, где расположен шток, вверху корпуса, имеется 2 дополнительных канала. В эти каналы входят два геркона 10. Один геркон срабатывает при нижнем положении магнита и диафрагмы, другой – при верхнем положении.

Puc.1. 1-Штуцер, 2 – Поддон, 3- Шайбы, 4 – Диафрагма, 5- Шток, 6 – Пружина, 7 – Втулка, 8 – Корпус, 9 – Магнит, 10 – Герконы

Диафрагма переходит в верхнее положение, благодаря действию давления топлива, которое поступает от бензонасоса. В нижнее положение она возвращается с помощью пружины 6. Чтобы датчик включился в топливную магистраль, на корпусе предусмотрено два штуцера, на поддоне – один. Штуцеры 3. На рисунке показана 2 гидравлическая схема расходомера. Топливо от бензонасоса, через электроклапан и канал 3, начинает поступать в каналы 1, 2, заполняя в датчике нижнюю и верхнюю полости. А в карбюратор оно поступает через канал 4. Клапан переключается под воздействием электронного блока и поступающих от него сигналов (на данной схеме не указан). Эл.блок управляется герконовым коммутатором, установленным в датчике.

Puc.2 Гидравлическая схема расходомера топлива.

Обмотка электроклапана в исходном состоянии обесточена, каналы 3 и 1 сообщаются между собой, в то время, как канал 2 перекрыт. На схеме показано, что диафрагма располагается в нижнем положении. В нижней полости 6 возникает избыток давления жидкости с помощью бензонасоса. Диафрагма начнет постепенно подниматься, по мере выработки топлива двигателем, из верхней полости а датчика, сжимая пружину.

Геркон 1 сработает по достижении верхнего положения, тогда электроклапан откроет канал 2 и закроет канал 3. При этом канал 1 постоянно открыт. Диафрагма немедленно переместится вниз под действием сжатой пружины. Она вернется в свое исходное положение, пропустив топливо из полости б в а, через каналы 1 и 2. Затем наблюдается повтор цикла в работе расходомера.

К электроклапану и датчику подключают электронный блок, с помощью гибкого кабеля, через разъем ХТ1. В датчике установлены горкомы SF1 и SF2. По схеме – ни на один из них не воздействует магнит. Транзистор VT1 закрыт в исходном положении, обмотка электромагнита клапана Y1 обесточена, 2 реле К1 разомкнуты. рРядом с герконом SF2 находится магнит датчика, поэтому геркон не проводит ток.

Puc.3 Электронный блок расходомера топлива.

Магнит постепенно перемещается, по мере расхода топлива, между герконами SF2 и SF1, из полости а датчика. В определенный момент переключается геркон SF2, но изменений в блоке это не вызовет никаких. Магнит, в конце хода переключает геркон SF1, и базовый ток транзистора VT1 потечет резистор R2 и через геркон SF1. Открывается транзистор, срабатывает реле К1, и включает электромагнит клапана контактами К1.2. При этом цепь питания счетчика импульсов Е1 замкнет контактами К1.1.
В итоге магнит и диафрагма быстро будут перемещаться вниз. В определенный момент, после обратного переключения, геркон SF1 размыкает цепь базового тока транзистора. При этом он остается открытым, поскольку теперь базовый ток протекает через диод VD2, замкнутые контакты К1.1 и геркон SF2. Это является причиной того, что шток с магнитом и диафрагмой продолжают перемещаться.
Магнит переключает геркон SF2 в конце обратного хода. После этого выключатся счетчик Е1 и электромагнит Y1 клапана, транзистор закроется и система возвращается в свое исходное состояние, после чего она готова новому циклу работы. Как видим, число циклов фиксирует счетчик Е1. При этом один цикл соответствует тому или иному объему топлива, равного объему ограниченного диафрагмой пространства, расположенной в нижнем и верхнем положениях.
Умножением объема топлива, использованного в ходе одного цикла, на показания счетчика, и определяют расход топлива, который устанавливают во время тарировки датчика. Чтобы было удобнее рассчитывать расходуемое топливо за один цикл, его объем приравнен к 0,01 литра. Этот объем можно изменить, увеличив или уменьшив, меняя при этом между герконами расстояние по высоте.
Оптимальный ход диафрагмы, при имеющихся размерах датчика, составляет около 10 мм. Продолжительность цикла датчика – в пределах от 6 до 30 с., и находится в зависимости от режима работы двигателя. При его тарировке следует отключить от бензобака трубопровод, вставив его в мерный сосуд, наполненный топливом, далее надо запустить двигатель, чтобы выработать то или иное количество топлива – делим его на число циклов (определяем по счетчику), и в итоге получаем число единичного объема топлива, израсходованного за один цикл.

Возможность его отключения предусмотрена в расходомере, тумблером SA1. При этом топливо будет поступать в карбюратор напрямую, через полость а, по каналам 2 и 3, поскольку диафрагма датчика в это время постоянно будет находиться в нижнем положении. Чтобы отключить в электроклапане устройства, придется снять перекрывающую канал 3 резиновую манжету, однако погрешность расходомера при этом ухудшится. Монтаж электронного блока выполнен на печатной плате, изготовленной из стеклотекстолита – пластина толщиной 1,5 мм. Ее чертеж приведен на рисунке 4. устанавливаемые на плату детали обведены штрихпунктиром на схеме. Смонтирована плата в металлической коробке. Ее крепление выполнено под щитком приборов в салоне авто.

Puc.4 Чертеж платы электронного блока расходомера топлива

Что использовалось в устройстве:

– Реле РЭС9

– Электроклапан – П-РЭ 3/2,5-1112

– Паспорт PC4.529.029.11

– Счетчик СИ-206 или СБ-1М.

– Постоянный магнит.

При этом магнит можно брать любой, где длина 18…20 мм, а полюса имеют торцевое расположение. Важно, чтобы магнит мог свободно перемещаться в пределах своего канала, не затрагивая стенок. Для этого вполне подойдет магнит от РПС32 дистанционного переключателя, но придется его сточить до нужных размеров. Вытачивают поддон и корпус датчика из любого материала с немагнитными и бензостойкими качествами.

Между каналами магнита и герконов толщина стенки должна составлять до 1 мм, под магнит глубина отверстия – 45 мм, диаметр – 5,1+0,1 мм. Шток выполнен из стали 45 или латуни, длина резьбовой части – 8 мм, диаметр – 5 мм, общ.длина – 48 мм. На штуцерах датчика резьба – М8; отверстие с диаметром – 5 мм. На штуцерах электроклапана резьба коническая К 1/8″ ГОСТ 6111-52.

Используется пружина диаметром 0,8 мм, из стальной проволоки, ГОСТ 9389-75. Усилие полного сжатия – 300…500 г, диаметр пружины – 15 мм, длина – 70 мм, шаг – 5 мм. В случае, когда шток изготовлен из стали, магнит сам удерживается на нем.

Когда шток сделан из немагнитного металла, необходимо укрепить магнит другим способом. Чтобы давление сжимаемого воздуха, не мешало работе датчика, следует предусмотреть во втулке перепускной канал, сечением порядка 2 кв.мм. Диафрагма выполнена из полиэтилена 0,2 мм. Ее придется отформовать перед установкой в датчик. В этих целях можно использовать поддон датчика.

Из листового дюралюминия 5 мм. следует выполнить прижимное кольцо, которое по форме соответствует фланцу поддона. Шток, в сборе с ее заготовкой, для формовки диафрагмы вставляют в отверстие штуцера поддона с внутренней стороны, и зажимают технологическим кольцом всю заготовку.

Далее нагревают равномерно узел со стороны диафрагмы, удерживая его на расстоянии 60…70 см от пламени горелки. Формуют диафрагму слегка поднимая шток. Чтобы он, в дальнейшем, не теряла эластичности, надо чтобы она находилась в топливе постоянно. Поэтому придется пережимать шланг к карбюратору при длительной стоянке машины. Это исключит испарение бензина.

В моторном отсеке устанавливают электроклапан и датчик. Крепят их около топливного насоса и карбюратора на кронштейне, соединяя кабелем с электронным блоком. С помощью насоса с манометром можно проверить работоспособность расходомера, без его установки на автомобиль.

При этом манометр подключают вместо бензонасоса. Датчик срабатывает при давлении 0,1 …0,15 кг/см 2 . Расходомер был испытан на автомобилях Жигули и Москвич. В ходе проверки было установлено, что режим работы двигателя никак не влияет на точность показаний расхода топлива. Точный расход определяется расчетом погрешности установки разового объема при тарировке до 1,5…2 %.