Реактивная тяга или как устроен ионный реактивный двигатель. Ионный двигатель - новые космические горизонты

Цель работы: изучение истории ионного двигателя, рассмотрение перспектив его использования в ближайшем будущем и проведение расчётов связанных с его применением.

При выполнении работы ставились следующие задачи:
найти, изучить и проанализировать литературу о ионном виде двигателей
составить краткий вводный курс об истории создания, применения, а также принципе работы ионных двигателей
проанализировав результаты осуществлённых космических полётов, провести свои расчёты с целью получения необходимой информации о моделируемом мной полёте
сделать выводы

Была выдвинута гипотеза: ионный двигатель имеет некоторые заметные преимущества перед обычными ракетными двигателями, делающие его использование перспективным.

В работе были использованы следующие методы исследования:
анализ
синтез
моделирование
измерение

Объект исследования: Ионный двигатель

Актуальность темы:

Человек пытается разглядеть и попасть во всё более отдалённые от него места космоса. И для успешного развития человечества в этой отрасли, необходимо постоянно улучшать космические аппараты, используя в них новые технологии, позволяющие оптимизировать расход топлива, увеличить вместимость и тд. Ионный двигатель является довольно выгодным ввиду малого расхода топлива, а значит, именно он может в дальнейшем заменить обычные двигатели и помочь человеку в дальнейшем освоении космоса.

Гипотеза: ионный двигатель имеет некоторые заметные преимущества перед обычными ракетными двигателями, делающие его использование перспективным.

Определение

Ионный двигатель - тип электрического ракетного двигателя, принцип работы, которого основан на создании реактивной тяги на базе ионизированного газа, разогнанного до высоких скоростей в электрическом поле.

Принцип работы

Принцип работы двигателя заключается в ионизации газа и его разгоне электростатическим полем. При этом благодаря высокому отношению заряда к массе, становится возможным разогнать ионы до очень высоких скоростей. Таким образом, в ионном двигателе можно достичь очень большого удельного импульса, что позволяет значительно уменьшить расход реактивной массы ионизированного газа, но требует больших затрат энергии. В ионизатор подается ксенон, который сам по себе нейтрален, но при бомбардировании высокоэнергетическими электронами ионизируется. Таким образом в камере образуется смесь из положительных ионов и отрицательных электронов. Для «отфильтровывания» электронов в камеру выводится трубка с катодными сетками, которая притягивает к себе электроны. Положительные же ионы притягиваются к системе извлечения, состоящей из 2 или 3 сеток. Между сетками поддерживается большая разница электростатических потенциалов (+1090 вольт на внутренней против – 225 на внешней). В результате попадания ионов между сетками, они разгоняются и выбрасываются в пространство, ускоряя корабль, согласно третьему закону Ньютона. Электроны, пойманные в катодную трубку выбрасываются из двигателя под небольшим углом к соплу и потоку ионов. Это делается для того, чтобы ионы «нейтрализованные» таким образом не притягивались обратно к кораблю.

История

Принцип ионного двигателя довольно давно известен и широко представлен в фантастической литературе, компьютерных играх и кинематографе, но для космонавтики стал доступен только в последнее время. В 1960 году был построен первый, функционирующий широко-лучевой ионный электростатический двигатель (создан в США в NASA Lewis Research Center). В 1964 году - первая успешная суборбитальная демонстрация ионного двигателя (SERT I), тест на выполнимость нейтрализации ионного луча в космосе. В 1970 году - испытание на длительную работу ртутных ионных электростатических двигателей в космосе (SERT II). С 1970-х годов ионные двигатели на эффекте Холла использовались в СССР в качестве навигационных двигателей (двигатели SPT-60 использовались в 1970-х годах на «Метеорах», SPT-70 на спутниках «Космос» и «Луч» в 1980-х, SPT-100 в ряде спутников в 1990-х). В качестве основного (маршевого) двигателя ионный двигатель был впервые применён на космическом аппарате Deep Space 1 (первый запуск двигателя 10 ноября 1998). Следующими аппаратами стали европейский лунный зонд Смарт-1, запущенный 28 сентября 2003, и японский аппарат Хаябуса, запущенный к астероиду в мае 2003. Следующим аппаратом NASA, обладающим маршевыми ионными двигателями, стала (после ряда замораживаний и возобновления работ) АМС Dawn, которая стартовала 27 сентября 2007 года. Dawn предназначается для изучения Весты и Цереры, и несет три двигателя NSTAR, успешно испытанных на Deep Space 1. Европейское Космическое Агентство установило ионный двигатель на борту спутника GOCE, запущенного 17 марта 2009 года на сверх-низкую околоземную орбиту высотой всего около 260 км. Ионный двигатель создаёт в постоянном режиме импульс, компенсирующий атмосферное трение и другие негравитационные воздействия на спутник.

Ближайшие космические программы

В ближайшем будущем, ЕКА (Европейское космическое агенство) совместно с JAXA(Японское космическое агенство) и Роскосмосом планирует использовать ионный двигатель в меркурианской миссии BepiColombo(апрель 2018). К планете отправятся две орбитальных станции на одном транспортном модуле Mercury Transfer Module (MTM). BepiColombo будет использовать ионные двигатели, опробованные на модуле Смарт-1.

NASA ведёт проект «Прометей», для которого разрабатывается мощный ионный двигатель, питающийся электричеством от бортового ядерного реактора. Предполагается, что такие двигатели в количестве восьми штук смогут разогнать аппарат до 90 км/с. Первый аппарат этого проекта Jupiter Icy Moons Explorer планировалось отправить к Юпитеру в 2017 году, однако разработка этого аппарата была приостановлена в 2005 году из-за технических сложностей. В настоящее время идёт поиск более простого проекта АМС для первого испытания по программе «Прометей».

Возможность доставки грузов

Из-за небольшого ускорения, аппараты с ионным двигателем более разумно использовать для межпланетных (или других, на длинные дистанции) перелётов (для чего он уже и не раз использовался).
А если сравнить характеристики обычных и ионного двигателей, на данном помежутке, то выгодность использования второго будет хорошо заметна. Засчёт меньшего количества топлива увеличится полезная масса, уменьшатся денежные расходы на топливо, а сам аппарат доберётся до цели быстрее, развив скорость значительно больше, чем аппараты с другими видами двигателей.

Я провёл свои расчёты, чтобы узнать за какое время аппарат с заданными мной массой и другими техническими характеристиками сможет попасть на Марс, используя ионный двигатель в качестве основного. За основу я взял данные уже называемого мной аппарата Dawn и некоторые данные его полёта.

В качестве двигателя в расчётах я использовал ксеноновый ионный двигатель аппарата Dawn, разработанный на основе образца, испытанного на зонде Deep Space 1 с тягой 30 мН и удельным импульсом 3100 с.

Используя примерную схему полёта и проведения манёвров, я рассчитал, что общая длина траектории равна ~1 млрд км.

Используя данные полёта я узнал, что на перелёт от Земли до Весты одним двигателем было израсходовано ~275 кг ксенона, далее соотнеся длины траекторий полёта на Марс и Весту, я вычислил, что для одного двигателя будет необходимо лишь 100 кг ксенона.

Я решил установить на предполагаемый аппарат 3 двигателя с данными характеристиками, в результате чего масса топлива с небольшим запасом должна будет составлять ~325 кг Назначемнием данного аппарата я выбрал перевоз грузов с Земли на Марс в один конец. При таких условиях масса грузовика будет состоять из: 325 кг топлива, 250 кг программной аппаратуры, и некоторой массы перевозимого груза. Для примера я взял 600 кг, 1 т и 5т. По формулам равноускоренного движения я нашёл, что аппарат достигнет цели лишь спустя 3,5 года, 4,5 года и около 10 лет при конечной скорости 17, 13 и 6 км/с, которую необходимо будет уменьшать при приближении к Марсу. В итоге я получил довольно слабый невыгодный результат, однако для 3 двигателей с такой маленькой тягой - этот результат является неплохим. В будущем, я возьму за основу данные более мощных, современных и совершенных ионных двигателей или создам и вычислю характеристики своей модели.

- Работа линейных ускорителей элементарных частиц требует много энергии. Единственная существующая на сегодняшний день технология, позволяющая получить необходимое количество энергии за требуемое время, - это ядерный реактор на борту корабля. Однако в таком случае аппарат перестаёт быть полностью безопасным.

Ионный двигатель ускоряется медленно, поэтому его нельзя использовать для вывода космического корабля на орбиту Земли. Он функционален только для корабля, уже находящегося в космосе.

Подведение итогов

Я считаю, что в настоящее время, ионный двигатель - одно из действительно самых перспективных приспособлений для передвижения в космосе, имеющее целый ряд преимуществ перед прочими видами двигателей.

Учёные уже сейчас снабжают спутники и небольшие космические станции, исследующие другие планеты ионными двигателями как для стабилизации аппаратов в пространстве, так и в роли основного двигателя.

Ввиду своих специфических преимуществ, возможно, в будущем, именно ионный двигатель будет передвигать огромные межпланетные и межгалактические звездолёты со множеством людей на борту.

Заключение

Цели и задачи, поставленные в проекте, выполнены. Я изучил принцип работы ионного двигателя, рассмотрел плюсы и минусы его использования и узнал об основных космических программах с участием данного вида двигателя. В перспективе работу можно усовершенствовать, проведя более точные расчёты и в других возможных сферах использования ионного двигателя, опираясь на другие официальные данные, а также собрать действующую модель ионного двигателя.

Плазма между анодом и катодом ионного двигателя.

Фотография: Joao Duarte / eLab hackerspace

Португалец Жуан Дуарте собрал в домашних условиях простую рабочую модель ионного двигателя. Рассказ о своем проекте разработчик опубликовал на портале eLab hackerspace. В его двигателе используются несколько держателей, подставка, корпус и сопло, напечатанные из пластика на 3D-принтере, семь гвоздей, семь медных трубок и высоковольтный трансформатор.

При строительстве ионного двигателя важна высокая электрическая проводимость всех элементов. Для ее увеличения Дуарте покрыл гвозди тонким слоем меди. Он зачистил гвозди от ржавчины, а затем опустил их вместе с окислившимися медными монетами в раствор соли и уксуса. Благодаря меднению электрическая проводимость на поверхности гвоздей увеличилась.

Затем португалец взял медную трубу диаметром два сантиметра и нарезал ее на пять частей длиной пять сантиметров каждая. После этого Дуарте распечатал на принтере держатели для трубок и гвоздей, подставку, кожух двигателя и сопло. Для эффективной работы ионного двигателя кончики медненных гвоздей должны находиться точно в центре окружности медных трубок.


На каком расстоянии от трубок следует разместить гвозди от трубок Дуарте не уточнил, но отметил, что оно должно быть одинаковым для всех гвоздей. Для регулирования тяги португалец сделал держатель с гвоздям подвижным в горизонтальной плоскости. К трубкам и гвоздям Дуарте подключил трансформатор, способный выдавать напряжение в девять киловольт и силу тока в 50 миллиампер.

В конструкции двигателя гвозди выступают в качестве катода, а медные трубки - анода. При включении напряжения воздух вокруг гвоздей ионизируется и притягивается анодом, возникает воздушный поток, который и формирует незначительную тягу за соплом двигателя. Сдвинутся с места такая силовая установка не может, но способна колыхать обрезки бумаги.

Концепцию ионного двигателя впервые предложил американский ученый Роберт Годдард. В 1954 году технологию детально описал ученый Эрнст Штулингер, а первый функционирующий двигатель был собран в 1959 году в NASA. Он смог проработать на протяжении 31 минуты. В качестве маршевого двигателя ионная силовая установка была впервые использована на космическом аппарате Deep Space в 1998 году.

Современные ионные двигатели способны непрерывно работать на протяжении трех лет. В них для создания реактивной тяги используются как правило аргон или ксенон. Эти инертные газы разгоняются в электрическом поле. Положительными качествами ионного двигателя является малое энергопотребление и расход топлива, а серьезным недостатком - микроскопическая тяга, составляющая до 250 миллиньютонов.

Человек вышел в космос благодаря ракетным двигателям на жидком и твердом топливе. Но они же и поставили под вопрос эффективность космических полетов. Для того чтобы сравнительно небольшой хотя бы "зацепился" за его устанавливают на вершине ракеты-носителя внушительных размеров. А сама ракета, по сути, это летающая цистерна, львиная доля веса которой отведена под топливо. Когда все оно израсходуется до последней капли, на борту корабля остается мизерный запас.

Чтобы не упасть на Землю, периодически поднимает свою орбиту импульсами Топливо для них - примерно 7,5 тонны - несколько раз в году доставляют автоматические корабли. Но на пути к Марсу такой дозаправки не предвидится. Не пора ли распрощаться с устаревшими схемами и обратить внимание на более совершенный ионный двигатель?

Для того чтобы он заработал, безумных количеств топлива не потребуется. Только газ и электричество. Электроэнергия в космосе добывается улавливанием светового излучения Солнца панелями солнечных батарей. Чем дальше от светила, тем меньше их мощность, поэтому придется воспользоваться еще и Газ поступает в первичную камеру сгорания, где он бомбардируется электронами и ионизируется. Получившуюся холодную плазму отправляют на разгорев, а потом - в магнитное сопло, на разгон. Ионный двигатель выбрасывает из себя раскаленную плазму со скоростями, недоступными обычным ракетным двигателям. И получает необходимое ускорение.


Принцип работы настолько прост, что можно собрать демонстрационный ионный двигатель своими руками. Если электрод в форме вертушки предварительно сбалансировав, установить на острие иглы и подать высокое напряжение, на острых концах электрода появится синее свечение, создаваемое срывающимися с них электронами. Их истечение создаст слабую реактивную силу, электрод начнет вращаться.

Увы, ионные двигатели обладают настолько мизерной тягой, что не могут оторвать космический аппарат от поверхности Луны, не говоря уже о наземном старте. Наиболее наглядно это можно увидеть, если сравнить два корабля, отправляющихся к Марсу. Корабль с жидкостными двигателями начнет перелет после нескольких минут интенсивного разгона и потратит чуть меньше времени на торможение у Красной планеты. Корабль с ионными двигателями будет разгоняться два месяца по медленно раскручивающейся спирали, причем такая же операция ждет его в окрестностях Марса...


И все же ионный двигатель уже нашел свое применение: им оснащен ряд беспилотных космических аппаратов, отправленных в многолетние разведывательные миссии к ближним и дальним планетам Солнечной системы, в пояс астероидов.

Ионный двигатель - та самая черепаха, которая обгоняет быстроногого Ахилла. Израсходовав все топливо в считанные минуты, жидкостный двигатель умолкает навсегда и становится бесполезным куском железа. А плазменные способны работать годами. Не исключено, что ими будет оснащен первый космический аппарат, который на досветовой скорости отправится к - ближайшей к Земле звезде. Предполагается, что перелет займет всего лишь 15-20 лет.

March 9th, 2013

Проблема перемещения в космосе стоит перед человечеством с момента начала орбитальных полетов. Ракета взлетая с земли расходует практически все свое топливо, плюс заряды ускорителей и ступеней. И если ракету еще можно оторвать от земли, заправив её огромным количеством топлива, на космодроме, то в открытом космосе заправляться попросту негде и нечем. А ведь после выхода на орбиту нужно двигаться дальше. А топлива нет.

И в этом то и состоит основная проблема современной космонавтики. Выбросить на орбиту корабль с запасом топлива до луны еще можно, под эту теорию строятся планы создать на луне базу дозаправки «дальнобойных» космических кораблей, летящих например на Марс. Но это все слишком сложно.

А решение проблемы было создано очень давно, еще в 1955 году, когда Алексей Иванович Морозов опубликовал статью «Об ускорении плазмы магнитным полем». В ней он описывал концепцию принципиально нового космического двигателя.

Устройство ионно плазменного двигателя

Принцип действия плазменного двигателя состоит в том, что рабочим телом выступает не сгорающее топливо, как в реактивных двигателях, а разогнанный магнитным полем до безумных скоростей поток ионов.

Источником ионов служит газ, как правило это аргон или водород, бак с газом стоит в самом начале двигателя, оттуда газ подается в отсек ионизации, получается холодная плазма, которая разогревается в следующем отсеке посредством ионного циклотронного резонансного нагрева. После нагрева, высокоэнергетическая плазма подается в магнитное сопло, где она формируется в поток посредством магнитного поля, разгоняется и выбрасывается в окружающую среду. Таки образом достигается тяга.

С тех пор плазменные двигатели прошли большой путь и разделились на несколько основных типов, это электротермические двигатели, электростатические двигатели, сильноточные или магнитодинамические двигатели и импульсные двигатели.

В свою очередь электростатические двигатели делятся на ионные и плазменные (ускорители частиц на квазинейтральной плазме).

В данной статье мы напишем про современные ионные двигатели и их перспективные разработки, так как на наш взгляд именно за ними будущее космического флота.

Ионный двигатель использует в качестве топлива ксенон или ртуть. Первый ионный двигатель назывался сетчатый электростатический ионный двигатель.

Принцип его действия таков:

В ионизатор подается ксенон , который сам по себе нейтрален, но при бомбардировании высокоэнергетическими электронами ионизируется. Таким образом в камере образуется смесь из положительных ионов и отрицательных электронов. Для «отфильтровывания» электронов в камеру выводится трубка с катодными сетками, которая притягивает к себе электроны.

Положительные же ионы притягиваются к системе извлечения, состоящей из 2 или 3 сеток. Между сетками поддерживается большая разница электростатических потенциалов (+1090 вольт на внутренней против – 225 на внешней). В результате попадания ионов между сетками, они разгоняются и выбрасываются в пространство, ускоряя корабль, согласно третьему закону Ньютона.

Российские ионные двигатели. На всех хорошо видны катодные трубки, направленные в сторону сопла

Электроны, пойманные в катодную трубку выбрасываются из двигателя под небольшим углом к соплу и потоку ионов. Это делается по двум причинам:

Во первых чтобы корпус корабля оставался нейтрально заряженным, а во вторых чтобы ионы «нейтрализованные» таким образом не притягивались обратно к кораблю.

Чтобы ионный двигатель работал нужны всего две вещи – газ и электричество. С первым все просто отлично, двигателю американского межпланетного аппарата Dawn, который стартовал осенью 2007-го, для полета в течении почти 6 лет потребуется всего 425 килограммов ксенона. Для сравнения для корректировки орбиты МКС с помощью обычных ракетных двигателей каждый год затрачивается 7,5 тонн горючего.

Одно плохо – ионные двигатели имеют очень небольшую тягу, порядка 50–100 миллиньютонов, что абсолютно недостаточно при перемещении в атмосфере Земли. Но в космосе, где нет практически никаких сопротивлений, ионный двигатель при длительном разгоне может достигнуть значительных скоростей. Общее приращение скорости за всё время миссии Dawn составит порядка 10 километров в секунду.

Тест ионного двигателя для корабля Deep Space

Недавние испытания проведенные американской компанией Ad Astra Rocket, проведенные в вакуумной камере показали, что их новый Магнитоплазменный двигатель с переменным удельным импульсом” (Variable Specific Impulse Magnetoplasma Rocket) VASIMR VX-200может дать тягу уже в 5 ньютонов.

Второй вопрос – электричество. Тот же VX-200 потребляет 201 кВт энергии. Солнечных батарей такому двигателю просто мало. Следовательно необходимо изобретать новые способы получения энергии в космосе. Тут есть два пути – заправляемые батареи например тритиевые, выводимые на орбиту вместе с кораблем, либо автономный атомный реактор, который и будет питать кораблю на протяжении всего полета.

Еще в 2006 году Европейское космическое агентство (European Space Agency) и Австралийский национальный университет (Australian National University) успешно провели испытания нового поколения космических ионных двигателей, достигнув рекордных показателей.

Двигатели, в которых заряженные частицы ускоряются в электрическом поле - давно известны. Они применяются для ориентации, коррекции орбиты на некоторых спутниках и межпланетных аппаратах, а в ряде космических проектов (как уже осуществившихся, так и только задуманных - читайте , и ) - даже в качестве маршевых.

С ними специалисты связывают дальнейшее освоение Солнечной системы. И хотя все разновидности так называемых электроракетных двигателей сильно уступают химическим в максимальной тяге (граммы против килограммов и тонн), зато кардинально превосходят их в экономичности (расходе топлива на каждый грамм тяги за секунду). А эта экономичность (удельный импульс) прямо пропорционально зависит от скорости выбрасываемой реактивной струи.

Так вот, в опытном двигателе, названном «Двухступенчатый с четырьмя решётками» (Dual-Stage 4-Grid - DS4G), построенном по контракту ESA в Австралии, скорость эта достигла рекордных 210 километров в секунду.

Это, к примеру, раз в 60 выше, чем скорость выхлопа у хороших химических двигателей, и в 4-10 раз больше, чем у прежних «ионников».

Как ясно из названия разработки, такая скорость достигнута двухступенчатым процессом разгона ионов при помощи четырёх последовательных решёток (вместо традиционных одной стадии и трёх решёток), а также высоким напряжением - 30 киловольт. Кроме того, расхождение выходного реактивного пучка составило всего 3 градуса, против примерно 15 градусов - у прежних систем.

А вот информация последних дней.

Ионный двигатель (ИД) работает просто: газ из бака (ксенон, аргон и пр.) ионизируется и разгоняется электростатическим полем. Поскольку масса иона мала, а заряд он может получить значительный, ионы вылетают из двигателя со скоростями до 210 км/с. Химические двигатели могут достичь… нет, ни чего-то подобного, а всего лишь в двадцать раз меньшей скорости истечения продуктов сгорания лишь в исключительных случаях. Соответственно, расход газа в сравнении с расходом химического топлива крайне мал.

Именно поэтому на ИД полностью или частично работали и работают такие «дальнобойные» зонды, как Hayabusa , Deep Space One и Dawn . И если вы собираетесь не просто по инерции лететь до далёких небесных тел, но и активно маневрировать близ них, то без таких двигателей не обойтись.

В 2014 году ионные двигатели справляют полувековой юбилей в космосе. Всё это время проблему эрозии не удавалось решить даже в первом приближении. (Здесь и ниже илл. NASA, Wikimedia Commons.)

Как и всё хорошее, ИД любит, чтобы его питали: на один ньютон тяги нужно до 25 кВт энергии. Представим, что нам поручили запустить 100-тонный космический корабль к Плутону (вы уж простите нас за мечтательность!). В идеале даже для Юпитера нам потребуется 1 000 ньютонов тяги и 10 месяцев, а до Нептуна на той же тяге - полтора года. В общем, давайте про Плутоны всё-таки не будем, а то грустно как-то…

Ну а чтобы получить эти пока умозрительные 1 000 ньютонов, нам потребуется 25 мегаватт. В принципе, ничего технически невозможного - 100-тонный корабль мог бы принять атомный реактор. Кстати, в настоящее время НАСА и Министерство энергетики США работают над проектом Fission Surface Power . Правда, речь идёт о базах на Луне и Марсе, а не о кораблях. Но масса реактора не так уж высока - всего пять тонн, при размерах в 3×3×7 м…

Ну ладно, помечтали и хватит, скажете вы, и тут же вспомните частушку, якобы придуманную Львом Толстым во время Крымской войны. В конце концов, такой большой поток ионов, проходящий через двигатель (а это ключевое препятствие), вызовет его эрозию, и значительно быстрее, чем за десять месяцев или полтора года. Причём это не проблема выбора конструкционного материала - благо разрушаться в таких условиях будут и титан, и алмаз, - а неотъемлемая часть конструкции ионного двигателя per se.

Подготовлено по материалам Gizmag . и http://lab-37.com

А вы в курсе что в России активноили например о том, что скоро может появится Оригинал статьи находится на сайте ИнфоГлаз.рф Ссылка на статью, с которой сделана эта копия -

Основная проблема в освоении космических просторов - крайне низкие скорости у разработанных человечеством летательных аппаратов. Современные разработки имеют также и огромный расход топлива. Таким образом, если построить ракету и запустить ее, например, на Марс и обратно, то корабль будет просто огромный. И большую его часть будет занимать именно топливо. Приблизительно для высадки на Марс нужно более миллиарда тонн высококачественного ракетного топлива. К счастью, такая современная разработка ученых, как ионный двигатель, сможет в недалеком будущем решить эту проблему. Теоретически с его помощью можно разгоняться до двухсот километров за секунду. Основными плюсами можно назвать именно огромные развиваемые скорости и маленький запас горючего. Для работы такого агрегата, как ионный двигатель, нужны лишь электричество и инертный газ. Однако есть у него и некоторые недостатки, например, слабая разгонная скорость. Это заставляет задуматься о многих проблемах применения двигателя в условиях присутствия гравитационных полей.

Ионный двигатель: принцип действия

Благодаря высокому напряжению ионизируется газ в специальной камере. Вследствие этого ионы газа начинают выбрасываться прочь из камеры и создавать тягу. Однако, так как это цепная реакция, и сила тяги увеличивается очень медленно и постепенно, понадобится приблизительно полгода, чтобы разогнаться до двухсот километров в секунду. Примерно такое же количество времени уйдет и на торможение. С другой стороны, объективно эти цифры очень малы в сравнении с показателями у современных космических двигателей, которым на достижение подобных по качеству результатов необходимо было бы затратить в двадцать раз больше времени. Более того, инертный газ занимает в сотни раз меньше места, чем топливо у ракет. Единственная проблема, которую сложно решить - это наличие электричества. Солнечных батарей просто не хватит для работы таких приборов, как ионные двигатели, поэтому вероятно применение ядерного реактора.

Еще одним недостатком можно считать низкую маневренность. Также основным вопросом стоит проблема с гравитацией. Находясь в пределах поля Земли, двигатель просто не будет работать. С другой стороны, в условиях открытого космоса аналогов такого устройства, как ионный двигатель, пока нет.

Немного истории и перспективы

В фантастической литературе подобные приборы встречались довольно часто. Однако только в 1960 году был создан ионный двигатель своими руками (а точнее, руками научных сотрудников НАСА). Он назывался широко-лучевым электростатическим устройством. Уже в начале семидесятых прошли испытание ртутные электростатические двигатели в условиях открытого космоса.

К концу семидесятых генераторы на основе эффекта Холла использовали в Советском Союзе. В качестве именно основного двигателя ионный был применен на американском космическом аппарате в 1998 году. За ним последовали европейский зонд, японский космический корабль в 2003 году. На сегодняшний день НАСА разрабатывает знаменитый проект под названием «Прометей». Для него конструируют супермощный ионный двигатель, который питается от ядерного реактора.