Проверка токсичности выхлопных газов. Карточка учета измерения дымности

Основными видами экологического воздействия автомобиля на окружающую среду являются:

  • вредные выбросы ОГ из ДВС автомобилей (токсичность);
  • акустические воздействия, например, вентиляционный и магнитный шумы при работе исполнительных механизмов ЭСАУ;
  • вибрация элементов кузова и вибрация, возникающая при работе электроприводных механизмов;
  • восстановление заряда В В Б.

ИСПЫТАНИЯ НА ТОКСИЧНОСТЬ ОТРАБОТАВШИХ ГАЗОВ АВТОМОБИЛЕЙ С ЭЛЕКТРОННЫМИ СИСТЕМАМИ УПРАВЛЕНИЯ

Автоэлектроника играет основную роль в снижении токсичности ОГ. Токсичность ОГ определяется наличием окиси углерода (максимум наблюдается в режиме холостого хода), окиси азота (максимум наблюдается при самой высокой температуре сгорания) и углеводорода, возникающим при перебоях в воспламенении или при пропусках зажигания.

Наибольшее отрицательное влияние в плане токсичности оказывают системы зажигания бензиновых двигателей, особенно конструкция свечей зажигания и их расположение в камере сгорания, а также энергия и продолжительность искрового разряда. Важными являются момент зажигания, угол опережения зажигания, так как при применении позднего зажигания в выпускной системе двигателя увеличивается температура газов, что позволяет уменьшить содержание окиси углерода, углеводородов и окиси азота. Но это приводит к увеличению расхода топлива. Разумное сочетание углов опережения зажигания и состава смеси, поступающей в цилиндр, достигается применением электронных систем управления и нейтрализаторов О Г. Особенно успешна каталитическая очистка при применении системы с обратной связью по датчику кислорода - 1-зонду.

Испытания на токсичность отработавших газов проводят по стандартным программам на стенде с беговыми барабанами по так называемым ездовым циклам. Во время этих циклов меняется режим работы двигателя, поэтому проводится отбор проб выхлопных газов и их газовый анализ. Существует несколько ездовых циклов: федеральный ездовой цикл США (ЕТР75), испытательный цикл ЕЭК/ЕС (ЕЭКИ. 15-04) и испытательный цикл Японии. Эти циклы различаются режимами, продолжительностью и максимальной скоростью автомобиля во время цикла.

Электронные системы управления двигателем испытывают в составе автомобиля. Причем с каждым годом эти системы все более совершенствуются, и поэтому возрастает количество функций регулирования, оптимизируются программы управления, увеличиваются диагностические функции.

В табл. 9.1 приведены технические характеристики и методы газового анализа ОГ автомобилей.

Таблица 9 .7

Основные технические характеристики газоанализаторов

Примечание. Используется обогреваемый (до 200°С) пробоотборник с гибкими шлангами длиной 6-10 м. Инструментальная погрешность - ±3%.

На рис. 9.1 представлена схема измерительной камеры инфракрасного газоанализатора. Инфракрасное излучение создается элементом, нить которого имеет температуру около 700°С.

Рис. 9.1.

7 - приемная камера с компенсационными объемами I/, и / 2 ; 2 - датчик потока; 3 - измеряющий элемент; 4 - вращающийся диск с щелью; 5 - инфракрасный

излучатель; М - электродвигатель привода диска

Инфракрасные лучи пропускаются через измеряющий элемент перед входом в приемную камеру. Окись углерода, содержащаяся в выхлопных газах, поглощает часть излучения, что сопровождается увеличением температуры газа, которое приводит к возникновению потока газа, перетекающего через датчик потока из зоны с объемом У 1 в компенсационную камеру с объемом У 2 . Вращающийся диск со щелью обеспечивает периодическое прерывание инфракрасного излучения, проходящего через два объема У 1 и У 2 . Датчик потока преобразует это перемещение диска со щелью 4 в переменный электрический сигнал. Когда испытуемый газ с измененным содержанием СО проходит через измеряющий элемент, он поглощает энергию инфракрасного излучения в количестве, пропорциональном содержанию СО. Отклонение от переменного основного сигнала соответствует показателю содержания СО в испытательном газе.

Для определения концентрации углеводородов используют пламенно-ионизационный метод, а 1ЧО Л. - хемилюминесцентный.

Сущность плазменно-ионизационного метода заключается в ионизации углеводородными атомами пламени водорода при температуре около 2000°С. Чувствительность этого метода пропорциональна количеству углеводородов. При непосредственном отборе пробоотборник нагревают во избежание адсорбции и конденсации углеводородов на его стенках при соприкосновении протекающего газа.

При анализе окислов азота (а в выхлопных газах присутствуют N0 и N03) их окисляют, проводят колориметрию и определяют интенсивность люминесценции N02, атомы которого при озонировании находятся в возбужденном состоянии. В качестве детектора применяется фотоэлектронный усилитель.

Газоанализаторы (рис. 9.2) позволяют объективно судить о полноте сгорания топлива. Любое отклонение от нормы в работе системы зажигания или других систем двигателя приводит к снижению его эффективности и, как следствие, к изменению концентрации вредных веществ в О Г.

Рис. 9.2. Структурная схема газоанализатора ОГ для ДВС:

Определено, что при каждом пятом перебое воспламенения (пропуске зажигания) на одной свече четырехцилиндрового двигателя количество углеводорода С^Н, увеличивается со 150 до 250- 400 ppm при частоте вращения коленчатого вала 1500 мин -1 ; при полностью неработающей свече оно вырастает до 1500-2000 ppm, а количество кислорода в ОГ увеличивается с 1 до 6-7%. Как правило, свечи начинают выходить из строя при холостом ходе. Поэтому при пропусках зажигания уменьшается доля СО и С0 2 , а доля 0 2 возрастает. Если при увеличении частоты вращения вала двигателя до 1500-1700 мин -1 характеристика восстанавливается полностью, то необходимо проверить свечи. При неработающей форсунке СН будет в норме, а количество кислорода в ОГ увеличится до 6-7%.

Таким образом, состав отработавших газов является обобщенным параметром, с помощью которого делается вывод об эффективности работы двигателя и его основных систем: механической, топливоподачи и зажигания. Правильно отрегулированные системы топливоподачи и зажигания при исправном двигателе дают минимальный выброс вредных веществ в атмосферу. Неоспоримое достоинство газоанализатора - его универсальность. Его с успехом можно применять при диагностике любых типов двигателей.

В настоящее время в связи с внедрением систем снижения токсичности и оборудованием автомобилей каталитическими нейтрализаторами двухкомпонентные газоанализаторы как диагностические приборы оказались малоэффективными. Они не дают достаточного количества объективной информации о работе двигателя, так как каталитические нейтрализаторы активно уменьшают именно концентрацию измеряемых ими продуктов сгорания - окиси углерода СО и углеводородов С /г Н,„. Современные четырехкомпонентные газоанализаторы измеряют концентрацию СО, С /г Н,„, С0 2 и 0 2 . Замеры содержания первых трех компонентов выполняются спектрометрическим методом. Концентрация кислорода определяется при помощи электрохимического датчика.

Преимущество приборов этого уровня заключается в том, что они позволяют расчетным путем определить исходный состав топливной смеси даже для двигателей, выхлопная система которых оборудована катализатором. Помимо этого, они дают несколько дополнительных параметров, совокупный анализ которых позволяет глубже понять характер процессов, происходящих в двигателе. Однако газоанализатор в большинстве случаев не позволяет локализовать неисправность, а лишь указывает на ее наличие.

Существенно расширить возможности применения газоанализатора можно, используя его в составе диагностических комплексов совместно с мотор-тестером.

Лучшим в своем классе является газоанализатор MGA1500 фирмы Sun. Газоанализаторы такого класса кроме измерения концентрации СО, С0 2 , 0 2 и С /г Н,„ в ОГ могут определять частоту вращения коленчатого вала двигателя, температуру масла в картере, суммарную токсичность ОГ и отображать результаты на дисплее в графическом виде, управлять режимом тестирования и вычислять коэффициент избытка воздуха по показаниям?-зонда для различных видов топлива (бензина, пропана, природного газа), осуществлять трехступенчатая очистку пробы газа. Диапазон измерения газоанализатором концентрации: СО - до 10%; С, ; Н /И - до 5000 ppm; С0 2 - до 25%; 0 2 - до 25%; диапазон рабочих температур - до -20°С; питание от сети - 220 В и от АКБ - 12 В.


Рис. 9.3.

1 - термопреобразователь; 2 - источник света; 3,5 - защитное стекло индикатора; 4 - фотоэлемент; б - измерительная камера; 7,8 - предварительные усилители; 9 - источник тока; 10 - источник питания прибора; 11 - микроЭВМ; 12 - жидкокристаллический индикатор; 13 - аналого-цифровой преобразователь; 14 - устройство коммутации; 15 - блок обработки измерительной информации

Дымомеры (рис. 9.3) предназначены для измерения дымности ОГ дизельных двигателей автомобилей. По показаниям дымомера можно определить состояние цилиндропоршневой группы (ЦПГ) и частоту вращения вала дизеля, также можно распечатать результаты диагностирования на принтере, подключаемом к дымомеру.

  • - ЭВМ; 2 - цифровые дисплеи; 3 - газоанализатор СпНт; 4 - пробоотборный насос; 5 - газоанализатор СО; 6 - газоанализатор N0*; 7 - вход для тариро- вочных газов

Лабораторная работа №7

Проверка токсичности отработавших газов

Цель работы: провести замер уровня содержания вредных веществ в отработавших газах автомобильных двигателей.

Краткие сведения:

Отработавшие газы, выбрасываемые в окружающую среду, содержат до 280 различных веществ. Среди них азот и его окислы, углекислый и сернистый газы, окись углерода, альдегиды, углеводороды, свинец, марганец и их соединения, различные соединения углерода и водорода, сажа и ряд других веществ. Все вещества входящие в состав отработавших газов находятся в различных состояниях, большинство из них являются токсичными. В составе отработавших газов автомобилей наибольший удельный вес по объему имеет окись углерода (до 10%), окислы азота (до 0,8%), несгоревшие углеводороды (до 3%), альдегиды (0,2%) и сажа. Таким образом, при сжигании 1000 л топлива бензиновые двигатели выбрасывают в окружающую среду с отработавшими и картерными газами 200 кг окиси углерода, 25 кг углеводородов, 20 кг окислов азота, 1кг сажи и 1 кг сернистых соединений.

Как правило, при очередном ТО-2, ремонте двигателя, системы питания и системы выпуска выполняется проверка отработавших газов двигателя, для этого применяются специальные приборы – газоанализаторы, работающие на основе использования инфракрасного излечения. В таких газоанализаторах анализ содержания оксида, диоксида углерода и углеводородов производится с помощью недисперсионных инфракрасных лучей. Физический смысл процесса заключается в том, что эти газы поглощают инфракрасные лучи с длиной волны 4,7 мкм, углеводороды – 3,4, а диоксид углерода -4,25 мкм. Следовательно, с помощью детектора, чувствительного к инфракрасным лучам с определенной длиной волны, можно определить степень их поглощения при прохождении анализируемой пробы, в результате чего можно установить концентрации того или иного компонента. Схема газоанализатора, работающего по принципу инфракрасного излучения, показана на рисунке 4.1.

Отработавшие газы с помощью мембранного насоса через газоотборный зонд, отделитель конденсата (оседает вода) и фильтры (очистка от твердых примесей) закачиваются в измерительную камеру. Сравнительная камера при этом заполнена инертным газом и закрыта. Источниками инфракрасного излечения являются нихромные нагреватели, которые нагреваются до температуры 700°C. Отражаясь от параболических зеркал, поток инфракрасного излечения, периодический прерываемый обтюратором, приводимым во вращение от синхронного электродвигателя, проходит через измерительную и сравнительную камеры. (Обтюратор необходим для обеспечения ритмичного прерывания инфракрасного излучения.) В измерительной камере определяемые компоненты, взаимодействуют с излучением, вызывают его поглощение в соответствующих спектральных диапазонах. В сравнительной же камере этого не происходит (камера заполнена инертным газом – N ). Как следствие возникает разница температур и давлений в обеих камерах. Вследствие этого изменяется емкость мембранного конденсатора, расположенного между камерами лучеприемника. Сигнал с конденсатора подается на усилитель и далее на регистрирующий прибор.

По такому принципу работают газоанализаторы типа ГАИ, ИНФРАЛИТ, ГИАМ 27-01, ЕТТ фирмы «BOSH» и др.

Рисунок 4.1 – Схема газоанализатора: 1 – газоотборный зонд; 2 – отделитель конденсата; 3 – фильтр тонкой очистки; 4 – защитный фильтр; 5 – мембранный насос; 6 – источники инфракрасного излечения; 7 – синхронный электродвигатель; 8 – вращающийся диск обтюратора; 9 – сравнительная камера; 10 – лучеприемник инфракрасного излучения; 11 – усилитель; 12 – мембранный конденсатор; 13 – измерительная камера; 14 – индикаторные приборы.

В современных много компонентных газоанализаторах кроме измерения содержания оксида (СО) и диоксида углерода (СО 2), углеводородов (СН) может определяться содержимое кислорода (О 2) и оксидов азота (NO), а также коэффициенты избытка воздуха λ.

Выполнение работы

Измерения следует проводить в следующей последовательности:

Установить рычаг переключения передач (избиратель скорости для автомобилей с автоматической коробкой передач) в нейтральное положение;

Затормозить автомобиль стояночным тормозом;

Заглушить двигатель (при его работе);

Открыть капот двигателя;

Подключить тахометр;

Установить пробоотборный зонд газоанализатора в выпускную трубу автомобиля на глубину не менее 300 мм от среза (при косом срезе выпускной трубы глубина отсчитывается от короткой кромки среза);

Полностью открыть воздушную заслонку карбюратора (при его наличии

Cookies – это небольшие текстовые файлы, хранящиеся на Вашем компьютере при посещении вебсайта. При желании Вы можете удалить cookies, но это может препятствовать использованию полного функционала вебсайта. Для удаления cookies смотрите меню Вашего браузера. Для дополнительной информации о используемых cookies, пожалуйста, выберите «узнать больше о наших cookies» внизу данного окна. С помощью слайдера внизу Вы можете включать или отключать различные типы cookies. Примечание: это диалоговое окно не управляет сторонними cookies, к примеру, плагинами социальных медиа.

Переместите слайдер для изменения настроек:

    Required

    Comfort

    Statistic

    Targeting


To ensure that your cookie settings to take effect, the page is to click "Save and Close" to reload.

Cookies that are used for this website:

Name plPosLatitude
Category Comfort
Type Session
Function
Name plPosLongitude
Category Comfort
Type Session
This cookie exists for the duration of your online visit. The visit is terminated by closing the browser window or the browser is closed.
Function This cookie contains information about your address or address input in the workshop search. It is used to redo the last search if required. The information is only send to the Bosch workshop search server. This server is located in Germany.
Name plSearchLatitude
Category Comfort
Type Session
This cookie exists for the duration of your online visit. The visit is terminated by closing the browser window or the browser is closed.
Function
Name plSearchLongitude
Category Comfort
Type Session
This cookie exists for the duration of your online visit. The visit is terminated by closing the browser window or the browser is closed.
Function This cookie contains information about the search address in the workshop search. It is used to redo the last search if required. The information is only send to the Bosch workshop search server. This server is located in Germany.
Name plSearchRadius
Category Comfort
Type Session
This cookie exists for the duration of your online visit. The visit is terminated by closing the browser window or the browser is closed.
Function This cookie contains information about the search radius of the workshop search. It is used to redo the last search if required. The information is only send to the Bosch workshop search server. This server is located in Germany.
Name plZoom
Category Comfort
Type Session
This cookie exists for the duration of your online visit. The visit is terminated by closing the browser window or the browser is closed.
Function This cookie contains information about the zoom of the workshop search. It is used to redo the last search if required. The information is only send to the Bosch workshop search server. This server is located in Germany.
Name plServices
Category Comfort
Type Session
This cookie exists for the duration of your online visit. The visit is terminated by closing the browser window or the browser is closed.
Function This cookie contains information about selected filters of the workshop search. It is used to redo the last search if required. The information is only send to the Bosch workshop search server. This server is located in Germany.

Для автомобилей с бензиновыми вновь изготавливаемыми и находящимися в экс­плуатации в Беларуси, действует ГОСТ 17.2.2.03-87 „Охрана природы. Атмосфера. Нормы и методы измерения содержания оксида углерода и углеводородов в отработавших газах автомобилей с бензиновыми двигателями. Требова­ния безопасности с изменением №1 «. Стандарт не распространяется на автомобили, полная масса которых менее 400 кг или максимальная скорость не превышает 50 км/ч, на автомобили с двухтактными и роторными двигателями.

При испытании на токсичность отработавших газов двигатель прогре­вается до рабочей температуры, воздушная заслонка полностью открыва­ется. В выхлопную трубу на глубину не менее 300 мм от среза вставляет­ся зонд. Устанавливается повышенная частота вращения коленчатого ва­ла двигателя. После работы на этом режиме не менее 15 с частота вра­щения снижается до минимальной пхх мин и не ранее чем через 20 с измеря­ется содержание оксида углерода и углеводородов. Затем устанавлива­ется повышенная частота вращения коленчатого вала двигателя nхх пов и не ранее чем через 30 с повторно изме­ряется содержание оксида углерода и углеводородов. Проверку на повышенной частоте вращения коленчатого вала проводят только на автомобилях, имеющих карбюратор. Минимальная и максимальная частоты устанавливаются в технических условиях и инструкции по эксплуатации автомобилей. Если эти значения не установлены, при проверке принимают nхх мин = (800±50) мин-1, nхх пов = (3000±100) мин-1.

При наличии в ав­томобиле раздельных выпускных систем измерение производят отдельно для каждой из них. Показателем токсичности служат максимальные кон­центрации оксида углерода. Содержание оксида углерода в % и углеводо­родов в млн-1 в отработавших газах по ГОСТ 17.2.2.03-87 для России с изменением №1 не должно превышать норм, приведенных в табл.

Содержание углеводородов указываются в млн-1 по принятому международному обозначению, при этом 1 % углеводородов соответствует 10 000 млн-1. Такое обозначение принято в связи с тем, что при считывании показаний приборов трудно оценивать малые значения процентного содержания углеводородов, например 0,1 или 0,01, в тоже время 100 или 1000 млн-1 более наглядно показывает динамику изменения показаний приборов.

В Республике Беларусь при проверке содержания токсичных веществ в отработавших газах следует пользоваться данными таблицы.

Табл. Предельно допустимое содержание токсичных компонентов в отработавших газах автомобилей с бензиновыми двигателями (Беларусь)

Частота

вращения коленчатого вала

мин -1

Предельно допустимое содержание оксида углерода, объемная доля, %

Предельно допустимое содержание углеводородов, объемная доля, млн -1 , для двигателей с числом цилиндров

до 4

более 4

n хх мин

1,5

1200

3000

n хх пов

2,0

600

1000

Определение токсичных компонентов в отработавших газах (ОГ) осуществляется с помощью специальных газоанализаторов. Для определения содержания оксида углерода СО и углекислого газе CО 2 при стендовых испытаниях двигателей в лаборатории МАДИ применяются оптико-акустические газоанализаторы ГИАМ-5 Смоленского завода, а для несгоревших углеводородов С n Н m - газоанализаторы ГЛ-1121, основанные на поглощении инфракрасного излучения исследуемым газом. Известно, что только многоатомные газы, смеющие хотя бы два разнородных атома в молекуле (CO 2 , H 2 O, СО, C n H m и др.), обладают наибольшей способностью поглощать лучистую энергию, причем в строго определенных для каждого газа интервалах длин волн. Это позволяет определять содержание отдельных компонентов в сложных газовых смесях (ОГ двигателя) независимо от концентрации других компонентов.

Механизм действия оптико-акустических анализаторов основан на использовании явления разогрева газа при поглощении радиации и охлаждения его, когда действие лучей прекращается, Исследуемый газ поступает в сосуд-лучеприемник и через светофильтр, пропускающий инфракрасное излучение, с помощью обтюратора периодически облучается от источника инфракрасного излучения. В результате нагрева одновременно с изменением температуры газа на величину Δt соответственно изменяется и давление его на величину Δр, которое воспринимается чувствительней мембраной конденсаторного микрофона. Колебания мембраны преобразуются в постоянный ток, величина которого характеризует поглощение данным компонентом инфракрасной радиации и служит мерой его концентрации, фиксируемой в процентах регистрирующим прибором.

Определение концентрации в ОГ оксидов азота производится в основном приборами, основанными на хемилюминесценции. При сгорании топлива в двигателе образуется оксид азота NO, который затем в условиях более низких температур в значительной части переходит в NO 2 . Таким образом, оксиды азота NO X содержат смесь NO и NO 2 Для определения концентрации NO хемилюминесцентным методом пробу ОГ предварительно обрабатывают озоном О 3 . В результате получаются возбужденные частицы NO 2 , которые при переходе в стабильное состояние излучают фотоны света. При этом интенсивность излучения пропорциональна концентрации NO в пробе газа. Интенсивность излучения измеряется с помощью фотоумножителя, причем прибор показывает непосредственно концентрацию NO. Для определения в ОГ суммарной концентрации NO X полученная ранее NO 2 (при анализе на NO) превращается в специальном конвертере прибора в NO, содержание которого определяется хемилюминесцентным методом, как было показано выше. Иногда для анализа ОГ на содержание оксидов азота используют инфракрасные и ультрафиолетовые спектрометры, принцип действия которых аналогичен принципу действия газоанализаторов на несгоревшего углеводорода.

Определение дымности ОГ осуществляется с помощью специальных дымомеров. Наибольшее распространение получили дымомеры, работающие по методу просвечивания ОГ с поглощением светового потока, и дымомеры с фильтрацией ОГ. Дымомеры с просвечиванием, использование которых для замера дымности ОГ дизелей регламентировано стандартом, оценивают относительную задымленность по оптической плотности слоя газа определенной толщины (0,4 -0,5 м). В дымомерах этого типа часть ОГ или все газы пропускаются через измерительный цилиндр прибора. По торцам цилиндра расположены осветитель и фотоэлемент, ток которого регистрируется соответствующим измерителем и служит показателем дымности. В дымомерах с фильтрацией дымность определяется по степени потемнения фильтровальной бумаги, через которую пропущен определенный объем ОГ. Степень потемнения фильтра определяют фотометрированием; при этом нулевая отметка шкалы прибора соответствует чистому фильтру, а предельная - полному поглощению света фильтром, т.е. 100% дымности.